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ABSTRACT In this paper, we propose an efficient approach that computes the dynamic timewarping (DTW)
distance in time-series similarity search. The DTW distance is known to offer the high accuracy in similarity
search, but it has difficulty in supporting the large database due to its high computational complexity.
Recently, FastDTW and FTW have been proposed for efficient computation of DTW distances, but they
have still performance limitations. In this paper, we propose a hybrid approach, called HybridFTW, which
combines the advantages of both FastDTW and FTW. First, HybridFTW takes the advantage of FastDTW
that provides fast computation through the limitation of allowable ranges. We call these allowable ranges
dynamic (warping) bands, which reduce the computation spaces on the fly, and we reanalyze previous
FastDTW and FTW in the viewpoint of static and dynamic bands. Second, HybridFTW also takes the
advantage of FTW that exploits the early abandon effect by using the segment-based tight lower bound.
To maximize the synergy of combining two methods, we obtain the dynamic band of FastDTW during the
process of computing the lower bound in FTW. Using HybridFTW, we next propose range search and k-NN
search algorithms and prove their correctness through formal theorems. Experimental results on real and
synthetic data sets show that HybridFTW improves the search performance by up to 38 times over FastDTW
and by up to 12 times over FTW.

INDEX TERMS Time-series data, similarity search, data mining, dynamic time warping distance, similar
sequence matching.

I. INTRODUCTION
In recent years, there have been a lot of research efforts
on a large volume of time-series data [8], [21]. Time-series
data are the sequences of real numbers representing values
at specific time points. Typical examples of time-series data
include climate changes, stock prices, biomedical measure-
ments, image boundary values, document retrieval, and object
trajectory data [1], [4], [9], [12], [15]. In this paper, we deal
with the problem of similar sequence matching in time-series
databases. Similar sequence matching can be classified into
range and k-nearest neighbor (k-NN) searches that identify
data sequences similar to the given query sequence. As the
similarity measure of similar sequence matching, the Man-
hattan distance [7], [27], the Euclidean distance [3], [18],

and the dynamic time warping (DTW) distance [2], [8], [9]
have been widely used. Among these distances, we focus on
the DTW distance since it is known to be robust against a
variety of distortions [2], [9]. However, its time complex-
ity, 2(n2) for sequences of length n, is much higher than
2(n) of Manhattan or Euclidean distances, and thus, the effi-
cient computation of DTW distances has been an important
research issue for many recent years.

There have been many research efforts [24]–[26], [28]
for efficient computation of DTW distances, and the very
recent ones are FastDTW [26] and FTW [25]. The basic
concept of these two methods is to transform high dimen-
sional sequences to low dimensional sequences and obtain the
DTW distance or its lower bound by using those low
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dimensional sequences. That is, they try to improve the per-
formance by using cheap low dimensional sequences rather
than expensive high dimensional sequences. First, FastDTW
by Salvador and Chan [26] uses piecewise aggregate approx-
imation (PAA) [24] to transform high dimensional sequences
to low dimensional sequences and constructs warping paths
over those low dimensional sequences. Second, FTW by
Sakurai et al. [25] divides a high dimensional sequence into
multiple low dimensional segments, computes lower bounds
from those segments, and uses those lower bounds to improve
performance of similar sequence matching.

Even though FastDTW and FTW improve the efficiency
of computing DTW distances, we find critical limitations
from both of them. We thoroughly analyze two methods step
by step and present their pros and cons as follows. First,
FastDTW has an advantage of improving the performance
by limiting the allowable ranges of warping paths. On the
other hand, it has a disadvantage of continuing the complex
computation until the final DTW distance is obtained even if
the intermediate distance exceeds the given query tolerance.
Second, FTW has an advantage of exploiting the early aban-
don effect by using the segment-based lower bound. On the
other hand, it has a disadvantage of not having any
performance gain if the lower bound is smaller than the
query tolerance. Based on these analytical observations, we
raise a question: can we adopt their advantages only? As an
answer of this question, in this paper we propose a new hybrid
approach, calledHybridFTW, for more efficient computation
of DTW distances.

As the hybrid approach of FastDTW and FTW,
HybridFTW limits the allowable ranges like FastDTW and
at the same time exploits the early abandon effect like FTW.
To combine two methods, we first present a novel concept
of dynamic (warping) bands, which reduce the computation
spaces of the DTW distance on the fly. We then reana-
lyze the previous computation methods in the viewpoint of
dynamic and static bands. Based on the analysis, HybridFTW
combines FastDTW and FTW as follows: it first takes the
computation procedure of FTW as its basic skeleton for
exploiting the early abandon effect; it then puts the limitation
scheme of dynamic bands, a major merit of FastDTW, to
the basic skeleton. In particular, to maximize the synergy
of combining two methods, we obtain the dynamic band
of FastDTW on the process of computing the lower bound
in FTW.

We can also explain HybridFTW on the perspective of
computation steps. First, it obtains lower bounds from the
segment-based low dimensional sequences like FTW. Inmore
detail, we adopt two key techniques from FTW: (1) the seg-
mentation scheme of high dimensional sequences and (2) the
computation scheme of lower bounds from the segmented
low dimensional sequence. Second, HybridFTW obtains the
dynamic bands (of FastDTW) from the warping paths which
are previously constructed in computing the segment-based
lower bound (of FTW). HybridFTW iterates these two com-
putation steps for judging the DTW distance-based similarity

among sequences. Please note that use of dynamic bands
comes from FastDTW while that of segmentation and its
lower bound comes from FTW. Likewise, by combing advan-
tages of both methods, HybridFTW significantly improves
the computing performance. This is because it can efficiently
reduce the dynamic bands in the process of computing lower
bounds as in FastDTW, and at the same time it can exploit
the early abandon effect in an early stage as in FTW. Experi-
mental results on real and synthetic data sets showcase that
the proposed HybridFTW improves the similar sequence
matching performance by up to 38 times and 12 times over
FastDTW and FTW, respectively.

Contributions of the paper can be summarized as fol-
lows. First, we present advantages and disadvantages of Fast-
DTW and FTW by analyzing their working mechanisms in
detail. Second, we present a novel notion of dynamic (warp-
ing) bands and discuss how to efficiently use the dynamic
bands by reanalyzing the previous computation methods.
Third, we propose HybridFTW that combines FastDTW and
FTW to take their efficiency merits and formally describe
its framework with the detailed working steps. Fourth, we
present HybridFTW-based range and k-NN search algo-
rithms and prove their correctness through formal theorems.
Fifth, through extensive experiments on real and syn-
thetic data sets, we show that HybridFTW significantly
outperforms FastDTW and FTW in evaluating range and
k-NN queries.
The rest of the paper is organized as follows. Section II

describes the related work on similar sequence matching
and DTW distances. Section III formally explains concepts
and working steps of FastDTW and FTW as the technical
background of HybridFTW. In Section IV, we first propose
HybridFTW and next present HybridFTW-based range and
k-NN search algorithms. Section V shows the experimental
results that compare HybridFTW with FastDTW and FTW.
Finally, Section VI concludes the paper with a brief discus-
sion of future work.

II. RELATED WORK
Time-series matching is the problem of finding data
sequences similar to the given query sequence. It is also
known as time-series similarity search or similar sequence
matching, and we use those terms interchangeably through-
out the paper unless confusion occurs. Time-series matching
has a variety of applications including stock price predic-
tion [5], biometric similarity search [6], query by hum-
ming [14], [30], sensor data prediction [29], and boundary
image matching [13], [19]. Queries of time-series matching
can be classified into range search and k-NN search. First,
the range search finds data sequences whose distances from
the query sequence are within the given search range ε,
called tolerance [20], [23]. Second, the k-NN search finds
k data sequences that are k-nearest neighbors to the query
sequences [3], [9]. In general, the performance of range
and k-NN searches largely depends on the input parameters,
ε and k , respectively. In this paper, we consider both of these
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range and k-NN searches as the target search algorithms of
time-series matching.

Various similarity measures have been used in time-series
matching, and the representative ones are the Euclidean
distance and the DTW distance [2], [17]. In this paper, we
use the DTW distance, which is known to be more robust
than the Euclidean distance, and we explain it in detail.
First, we define the DTW distance between two sequences
as follows [8]. In general, DTW handles unequal length
sequences as well as equal length sequences. However, as
in previous works [25], [26], we deal only with equal length
sequences to simplify the problem. Extending this to unequal
length sequences is straightforward.
Definition 1: For two sequences Q(= {q1, q2, . . . , qn})

and C(= {c1, c2, . . . , cn}) of length n, their DTW distance
DTW (Q,C) is defined as Eq. (1).

DTW ({}, {}) = 0;

DTW (Q, {}) = DTW ({},C) = ∞;

DTW (Q,C)

=

√√√√√√dist(q1, c1)+min


DTW ({q2, . . . , qn}, {c2, . . . , cn})
DTW ({q2, . . . , qn},C)
DTW (Q, {c2, . . . , cn})

.

(1)

In Eq. (1), {} is a null sequence, and dist(q1, c1) is the
squared Euclidean distance between q1 and c1, that is,
dist(q1, c1) = |q1 − c1|2 .

Since Eq. (1) has the exponential time complexity ofO(3n),
all the recent methods use the dynamic programming tech-
nique whose complexity is 2(n2). Definition 2 shows how
to construct a two-dimensional matrix for dynamic program-
ming with the related terminologies.
Definition 2: For two sequences Q and C of length n,

a two-dimensional matrix γ (1..n, 1..n) for computing the
DTW distance can be obtained by Eq. (2), which is a recur-
rence equation to fill the matrix in dynamic programming.

γ (i, j) = dist(qi, cj)

+ min{γ (i− 1, j− 1), γ (i− 1, j), γ (i, j− 1)} (2)

We call the matrix γ (1..n, 1..n) of Eq. (2) as the warping
matrix and the path that provides the optimal (minimal) dis-
tance in the warping matrix as the warping path.

If we construct the warping matrix by Definition 2, the
DTW distance is γ (n, n), i.e., DTW (Q,C) = γ (n, n), and it
corresponds to the Euclidean distance computed along with
the warping path.

Figure 1 depicts the process of computing the DTW dis-
tance in dynamic programming. As shown in the figure, we
first construct a two-dimensional warping matrix, and we
then fill the matrix from the lower-left entry γ (1, 1) to the
upper-right entry γ (n, n) using Eq. (2). Time complexity of
the dynamic programming is 2(n2), which is much efficient
compared to the recursive computation of Eq. (1). The com-
plexity of 2(n2), however, is not sufficiently efficient for a

FIGURE 1. Warping matrix for computing the DTW distance in dynamic
programming.

FIGURE 2. Static bands for limiting warping paths. (a) Sakoe-Chiba band.
(b) Itakura-Parallelogram band.

huge database containing millions, billions, or even trillions
of data sequences.

To improve the efficiency of computing the DTW distance,
many novel methods have been proposed recently [23]–[26].
First, we can use an allowable range of the warping path,
where the warping path should be inside of the allowable
range. We call this allowable range as the static (warping)
bands, where we use the term ‘static’ since the band is fixed
for all sequences. Figure 2 shows the representative static
bands, Sakoe-Chiba band [24] and Itakura Parallelogram
band [23]. As shown in the figure, when constructing the
warping matrix, we consider the band only, a small part of the
matrix. In other words, we enforce the warping path should
be inside of the given band. Simply using the band we can
reduce the computing space and improve the performance.
These band-based methods, however, may not obtain the
actual DTW distance since the warping path for the actual
distance can be outside of the band.

Second, we can use the lower dimensional transforma-
tion to achieve the high efficiency. The representative ones
are FastDTW [26] and FTW [25]. The basic procedures
of these two methods are as follows: they first transform
high dimensional sequences to low dimensional sequences;
they then obtain the DTW distance or its lower bound from
those low dimensional sequences. In this paper, we use
these two methods as the major technical background of the
proposed HybridFTW, and we will explain them in detail
in Section III.
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III. BACKGROUND AND MOTIVATION
In this section, we explain FastDTW and FTW in detail.
We also explain the motivation why we try to integrate those
two methods for performance improvement.

As the first technical background, we explain FastDTW
that narrows down the warping band to the final warping path
by exploiting PAA. FastDTW consists of three major steps:
Coarsening, Projection, and Refinement. More precisely, it
executes the Coarsening step just once and iterates the Pro-
jection and Refinement steps until getting the DTW distance.
These three steps work as follows.
• In the Coarsening step, it uses PAA to map a high
dimensional sequence to multiple low dimensional
sequences, where the lowest dimension is given by a user
parameter.

• In the Projection step, it computes the first warping path
from the lowest dimensional sequences. After then, it
constructs a warping band for the next low dimensional
sequences by projecting the previously obtained warp-
ing path to the next low dimension.

• In the Refinement step, it computes a warping path again
in the previously constructed warping band.

• It repeats the Projection and Refinement steps until it
obtains the final warping path for high dimensional
sequences and computes the actual DTW distance from
the final warping path.

We here note that FastDTW gradually shrinks the warp-
ing band by repeating the Projection and Refinement steps.
In other words, FastDTW dynamically changes, actually
reduces, the warping band while the traditional Sakoe-Chiba
and Itakura-Paralleogram bands are not changed. To empha-
size this dynamic property, in this paper we call the warping
bands of FastDTW the dynamic (warping) bands to distin-
guish from static bands of [10] and [24].

The proposed HybridFTW adopts Projection and
Refinement steps of FastDTW. To understand these
two steps, we first redefine the dimension increasing
parameter [10].
Definition 3: Suppose n-dimensional sequences

Q(= {q1, . . . , qn}), C(= {c1, . . . , cn}) are transformed
to f -dimensional sequences Qf (= {qf1, . . . , q

f
f }), C

f (=

{cf1, . . . , c
f
f }) and m-dimensional sequences Qm(= {qm1 , . . . ,

qmm}), C
m(= {cm1 , . . . , c

m
m}), respectively, by PAA. In the Pro-

jection andRefinement steps, we increase the dimension from
f tom, where f andm have the relationship of Eq. (3), and we
call radius of Eq. (3) the dimension increasing parameter.

m = 2× f × radius (3)

In Definition 3, the dimension increasing parameter,
radius, controls how fast we shrink and how often we make
the dynamic band. That is, if radius is small, dynamic bands
are constructed many times, and they are shrunk finely; on
the other hand, if radius is large, the bands are constructed
only a few times, and they are shrunk coarsely [26].

FIGURE 3. Process of computing the DTW distance in FastDTW.
(a) Coarsening step. (b) Projection step. (c) Refinement step.

Figure 3 depicts how FastDTW computes the DTW dis-
tance for 8-dimensional sequences. In Example 1, we explain
three steps of FastDTW in detail.
Example 1: In Figure 3, we use two sequencesQ and C of

length 8, and we set the lowest dimension to 2 and the dimen-
sion increasing parameter, radius, to 1. In the Coarsening step
of Figure 3(a), we obtain 4- and 2-dimensional sequences
by applying PAA to 8-dimensional sequences since the low-
est dimension and radius are 2 and 1, respectively. In the
Projection step of Figure 3(b), FastDTW first constructs a
2-dimensional warping array from 2-dimensional sequences
and obtains a warping path in the array. After then, it projects
the 2-dimensional warping path to the next 4-dimensional
warping array (refer to the right array of Figure 3(b)).We note
that the dimension is increased from 2 to 4 since radius is set
to 1; if radius is set to 2, the dimension will be changed from
2 to 8 by Eq. (3).

Figure 3(b) shows how we construct the warping band
dynamically. As shown in the figure, the 2-dimensional warp-
ing path passes through three points in the 4-dimensional
warping array, and thus, we bound their adjacent cells
as the dynamic warping band (see the shaded cells in
Figure 3(c)). In the Refinement step of Figure 3(c),
we next obtain the 4-dimensional warping pathwithin the pre-
viously constructed 4-dimensional band. After then, we can
get the 8-dimensional dynamic band from the 4-dimensional
warping path. Likewise, we repeat these Projection and
Refinement steps until we reach the original highest dimen-
sion and obtain the final warping path and its corresponding
DTW distance.

As explained in Example 1, we execute the Coarsening step
just once to obtain low dimensional warping arrays and repeat
the Projection and Refinement steps to obtain warping paths
and dynamic bands.

As the second technical background, we explain FTW
that improves the performance of DTW distance-based
similarity search. It consists of three major concepts:
LBS (Lower Bounding distance measure with Segmentation),
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TABLE 1. Comparison of existing and proposed methods.

EarlyStopping, and Refinement. First, LBS is a lower bound
of the DTW distance. FTW obtains LBS as follows: (1) it
divides a high dimensional sequence into multiple segment
sequences of the same size; (2) it gets maximum and mini-
mum entries of each segment sequence; and (3) it computes
a lower bound, called LBS, by constructing a 2-dimensional
array of those maximum and minimum entries and by apply-
ing dynamic programming to the array. Second, EarlyStop-
ping is the phase of performing early stopping, also known
as early abandon [11]. That is, if the intermediate LBS is
larger than the user-specified tolerance, FTW ignores the
next computation for achieving the high search performance.
Third, Refinement reduces the segment size if the early
stopping does not occur and repeats LBS and EarlyStopping
phases for the reduced segment sequences. In the proposed
HybridFTW, we also use these three concepts in a similar
way, and we will explain their working mechanisms in detail
in Section IV.

Table 1 compares two existing methods and our
HybridFTW. As shown in the table, FastDTW uses the
dynamic band, and it focuses on computing the exact DTW
distance efficiently by reducing the warping band dynam-
ically. However, it does not use the early abandon, which
prunes dissimilar sequences as soon as possible for perfor-
mance improvement of similarity search. On the other hand,
FTW exploits the early abandon by using the segment-based
lower bounds and achieves the high performance of similarity
search. However, it does not use the concept of dynamic
band, and thus, it considers the whole array cells for each
iteration of computing the lower bound. By taking advantages
of FastDTW and FTW, our HybridFTW uses dynamic bands
to reduce computation overhead of the DTW distance or its
lower bounds, and at the same time it uses lower bounds
to prune many sequences at an early stage of similarity
search.

IV. HybridFTW: HYBRID COMPUTATION OF DYNAMIC
TIME WARPING DISTANCES
In this section, we explain the concept of HybridFTW and
propose the HybridFTW-based range and k-NN searches.
First, we explain the basic concept of HybridFTW and its
related work in Section IV-A. Next, we present efficient
range and k-NN search algorithms that exploit HybridFTW
in Sections IV-B and IV-C, respectively.

FIGURE 4. Construction of the segment sequence and its entries.

A. CONCEPT OF THE HYBRID APPROACH
The proposed HybridFTW consists of three major steps:
Hybrid-Stopping,Hybrid-Projection, andHybrid-Refinement.
In the Hybrid-Stopping step, it constructs segment sequences
by dividing a sequence into multiple segments, as in
EarlyStopping of FTW. Definition 4 shows how to con-
struct segment sequences in HybridFTW as well as
in FTW [25].
Definition 4: For a sequence C(= {c1, . . . , cn}) of

length n, we divide the sequenceC into the segment sequence
CA(= {cA1 , . . . , c

A
n/t }), where the i-th entry cAi of CA

is obtained from t entries of C , ct·(i−1)+1, . . . , ct·i, by
using Eq. (4).

cAi =
(
cLi : c

U
i

)
, where cLi =

t
min
j=1

c(t·(i−1)+j),

cUi =
t

max
j=1

c(t·(i−1)+j). (4)

Figure 4 depicts how to construct the segment sequenceCA

and its entries cAi . As shown in the figure, t is the segment
size, and cUi (cLi ) is the maximum (minimum) value among
all entries of the i-th segment. We assume that t is a divisor
of n without loss of generality.

Definition 5 describes LBS, a lower bound distance com-
puted from two segment sequences that are constructed
by Definition 4.
Definition 5: Suppose n-dimensional sequences Q, C are

divided into t-sized segment sequencesQA(={QA1 , . . . ,Q
A
n/t }),

CA(= {CA
1 , . . . ,C

A
n/t }) of length

n
t , respectively. We define

the segment matrix by the array g of size n
t ×

n
t constructed

from QA and CA by Eq. (5) and the segment path by the
minimum path computed from the segment matrix g.

g(i, j) = gcell(i, j)+min(g(i− 1, j− 1), g(i, j− 1),

g(i− 1, j)), (5)
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gcell(i, j) = min(qTi , c
T
j )× Dseg(q

R
i , c

R
j ),

Dseg(qRi , c
R
j ) =


||qLi − c

U
j || (qLi > cUj )

||cLi − q
U
j || (cLi > qUj )

0 (otherwise),
g(0, 0) = 0, g(i, 0) = g(0, j) = ∞.

In Eq. (5), qTi (or cTi ) is the i-th time interval and qRi (or c
R
i )

is the i-th segment range, and these are the notations given in
FTW [25]. We also define LBS ofQA and CA by the distance
computed from the segment path of the segment matrix, and
we denote it by LBS(QA,CA).

Lemma 1 shows that LBS of Definition 5 is a lower bound
of the actual DTW distance [25].
Lemma 1: Suppose segment sequences QA and CA are

constructed from original sequences Q and C , respectively,
then LBS(QA,CA) is a lower bound of DTW (Q,C). That is,
Eq. (6) holds.

LBS(QA,CA) ≤ DTW (Q,C). (6)
Proof: The proof process of constructing segment

sequences and computing their LBS is the same as that
of [25]. Therefore, readers are referred to [25] for the detailed
proof of its lower bound property.

Hybrid-Stopping of HybridFTW uses the concept of LBS
and EarlyStopping of FTW. That is, during the process of
computing LBS in Earlystopping of FTW (i.e., during the
process of constructing a segment matrix g), if the interme-
diate distance of a segment is larger than the given toler-
ance, FTW prunes the next computation. Hybrid-Stopping
also uses the same pruning strategy. Unlike EarlyStop-
ping, however, Hybrid-Stopping obtains the segment path of
Definition 5 while computing LBS. Note that this segment
path will be very used in the next step, Hybrid-Projection.
Example 2: Figure 5 shows an example of processing

Hybrid-Stopping (i.e., EarlyStopping of FTW). As shown in
the figure, QA and CA are the segment sequences constructed
from Q and C , respectively; g is the segment matrix con-
structed from QA and CA by dynamic programming. We here
set the tolerance to 30. During the process of computing
LBS (i.e., constructing matrix g), we do not compute g(1, 4)
since g(1, 3) is larger than the tolerance. This is because if
g(1, 3) is larger than the tolerance, g(1, 4) is also obviously
larger than the tolerance. Similarly, we do not need to com-
pute g(2, 4) since g(2, 3) is larger than the tolerance. We also
note that g(2, 1) is larger than g(2, 2), and thus, we can ignore
g(i, 1) for the third (i = 3) and fourth (i = 4) columns and
start to compute g(i, 2) for those two columns. Eventually,
we can discard the sequence C since LBS(QA,CA) (= 42) is
larger than the tolerance (= 30) without processing the next
steps.
As the second step, Hybrid-Projection determines a

dynamic band of the next step from the low dimensional
warping path. Like FastDTW, we then increase the dimension
by radius of Eq. (3). Definition 6 explains how to construct
current and next step bands dynamically.

FIGURE 5. An example of processing the Hybrid-Stopping step.

FIGURE 6. Process of constructing PL-Band in Hybrid-Projection.

Definition 6: Suppose two n-dimensional sequences Q, C
are transformed into the current f -dimensional sequences
Qf , C f , and into the next m-dimensional sequences Qm, Cm,
where m = 2 × f × radius by Eq. (3). After obtaining the
current segment matrix and segment path for Qf and C f ,
we construct a new band by projecting the segment path
between Qf and C f into the next segment matrix between
Qm and Cm. We call this projected band PL-Band (Projected
LBS Band).
As shown in Definition 6, the proposed Hybrid-Projection

differs from Projection of FastDTW in constructing the warp-
ing band. That is, Hybrid-Projection constructs the band
based on the segment path between segment sequences of
Hybrid-Stopping, while FastDTW constructs it based on
PAA. Likewise, both HybridFTW and FastDTW construct
the band on the fly, but HybridFTW produces much narrower
bands than FastDTW since it exploits the segment concept of
FTW rather than the static PAA.
Example 3: Figure 6 shows the procedure of processing

Hybrid-Projection. HybridFTW first computes the segment
matrix and segment path based on segment sequences Qf

and C f , and it then computes LBS by the distance along
with the segment path. If the early abandon does not occur
by the current LBS, HybridFTW proceeds the projection to
the next step. In Figure 6, radius is 1; m becomes 4 (= 2 ×
2× 1) by Eq. (3); HybridFTW computes the segment matrix
and segment path from 4-dimensional segment sequences Qf

and C f . As shown in the figure, we project the 2-dimensional
segment path into the 4-dimensional matrix, and we
include neighborhood cells of the projected path into a
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FIGURE 7. Comparison of the refinement procedures of FTW and
HybridFTW. (a) Refinement of FTW. (b) Hybrid-Refinement.

new PL-Band. Therefore, in the next Hybrid-Refinement
step, we can compute the next LBS from the new
PL-Band and try the early abandon again.

As the third step, Hybrid-Refinement computes LBS
within PL-Band, which is constructed in the Hybrid-
Projection step. The refinement step of HybridFTW differs
from that of FTW in choosing the first row of compu-
tations. More precisely, the refinement of FTW computes
LBS starting from the first row of each column, while
Hybrid-Refinement computes LBS starting from the first row
of PL-Band. The concept of limiting cells in the band is
borrowed from the Refinement step of FastDTW, and it can
significantly reduce the number of investigated cells com-
pared with FTW. HybridFTW tries to compute tight LBSs
and prune unnecessary cells early by repeating the Hybrid-
Stopping, Hybrid-Projection, and Hybrid-Refinement steps.
However, these steps might be reached to the original
sequences without any early abandon since LBS is a lower
bound rather than the actual DTW distance. Therefore, for
guaranteeing no false dismissal, we need to check the sim-
ilarity of original sequences through computing the actual
DTW distance in the final step. We can also use the early
abandon [4], [16], that is, if the intermediate distance exceeds
the tolerance, we immediately stop the computation of the
DTW distance [23].

Figure 7 depicts the refinement procedure of FTW and
HybridFTW. First, as shown in Figure 7(a), Refinement of
FTW tries to perform the early abandon by computing LBS
starting from the first row of each column. On the other hand,
our Hybrid-Refinement computes LBS only within PL-Band,
which is constructed in Hybrid-Projection. Second, as shown
in Figure 7(b), we note that the first and second columns are
started from the first row, but the third and fourth columns
are started from the second and third rows, respectively.
Also, we never consider outside cells of PL-Band. Like-
wise, computing LBS of HybridFTW is efficiently processed
only within the band, and Lemma 1 guarantees that LBS by
PL-Band is a lower bound of the DTW distance.

Finally, Figure 8 shows the overall procedure of
HybridFTW. The procedure looks like FastDTW, but it quite
differs from FastDTW in a few detailed steps. From the
viewpoint of FastDTW, it considers light gray cells as well

FIGURE 8. Procedure of computing LBS and DTW distance in HybridFTW.

as dark gray cells. In contrast, HybridFTW uses different
approaches to light and dark gray cells as follows: light
gray cells are allowable ranges (bands) determined by the
previously constructed segment path while dark gray cells
are the region of computing LBS through Hybrid-Stopping.
Likewise, HybridFTW first investigates LBS from dark gray
cells only, and it then performs the early abandon for the cells
of which LBSs exceed the tolerance on the fly. Therefore,
even for the large tolerance, the number of investigated cells
in HybridFTW becomes smaller than that of FastDTW, and
it eventually outperforms FastDTW as well as FTW.

B. HybridFTW-BASED RANGE SEARCH ALGORITHM
The eventual purpose of computing DTWdistances is to mea-
sure the similarity between sequences for similar sequence
matching. Representative queries in similar sequence match-
ing are range and k-NN search queries, and we deal with
the range search first in this section. Algorithm 1 shows
the proposed HybridFTW-based range search algorithm. The
inputs to the algorithm are query sequence Q, dimension
increasing parameter r , and tolerance ε; the output is a set of
data sequences whose DTW distances from Q are within the
tolerance ε. In Line 1 of the algorithm, we initialize the result
setR. In Line 2, we divide the query sequenceQ into a setQA

of multiple segment sequences QAs , . . . ,Q
A
1 . Next, in

Lines 4-9, we perform Hybrid-Stopping by using the corre-
sponding segment sequences of query and data sequences.
In Hybrid-Stopping of Line 5, we compute LBS and at the
same time construct the segment path. If the computed LBS
is larger than the tolerance, we perform the early aban-
don (Line 6); otherwise (i.e., if LBS is smaller than or equal
to the tolerance), we construct the band of the next step by
using the segment path (Line 7). That is, the function Expand-
Windows() constructs the band through the segment path.
In summary, Line 7 is relevant to Hybrid-Projection, and the
process of performingHybrid-Stopping based on this Hybrid-
Projection is the very Hybrid-Refinement. If LBS is smaller
than the tolerance, we repeat Hybrid-Projection and Hybrid-
Refinement (Lines 5-8) until the cell size reaches to 1.

Next, Lines 10-13 decide the similarity by computing
the actual DTW distance. That is, if the pruning step
fails in Lines 4-9, we need to decide the similarity by
computing the DTW distance in Lines 10-13. Function
DTW-with-EarlyAbandon() in Line 11 computes the DTW
distance, where if the intermediate distance exceeds the tol-
erance, it stops the computation immediately by the early
abandon [23]. Finally, if the final distance (dexact ) is within
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Algorithm 1 HybridFTW-Range-Search (Query Sequence
Q, Radius r , Tolerance ε)

1. R := ∅; // initialize the result set
2. Compute QA from Q; // QA = {QAs , . . . ,Q

A
1 }

3. for each data sequence C ∈ database do
4. for i := s to 1 do // s = maximum segment size
5. dlbs := Hybrid-Stopping(QAi , C

A
i , ε);

// dlbs is LBS between QAi and CA
i .

6. if dlbs > ε then break;
7. else Expand-Windows(QAi , C

A
i , r);

8. end-if
9. end-for
10. if dlbs < ε then
11. dexact := DTW-with-EarlyAbandon(Q, C , ε);

// dexact is the actual DTW distance.
12. if dexact ≤ ε then R := R

⋃
C ;

13. end-if
14. end-for
15. return R;

the tolerance, we include the data sequence into the set R
in Line 12. A brief comparison of the differences between
Algorithm 1 and FTW/FastDTW is as follows. First, we use
Hybrid-Stopping() and DTW-with-EarlyAbadnon() instead
of EarlyStoping() of FTW. Next, Algorithm 1 adopts Expand-
Windows() for the window extension function of FastDTW.

Theorem 1 proves the correctness of the proposed
HybridFTW-Range-Search algorithm.
Theorem 1: The HybridFTW-Range-Search algorithm

performs the range search correctly. That is, HybridFTW-
Range-Search retrieves all data sequences whose DTW dis-
tances from the query sequence Q are within the tolerance
ε without any false dismissal.

Proof: In Lines 4-9 of HybridFTW-Range-Search, we
prune the data sequence whose LBS exceeds the toler-
ance. Since LBS is a lower bound of the DTW distance
by Lemma 1, the data sequence pruned by LBS has obvi-
ously a larger DTW distance than the tolerance. Thus, the
pruning step does not incur any false dismissal. Next, in
Lines 10-13, we decide the similarity between query and data
sequences by computing the actual DTW distance. Thus, this
step does not also incur any false dismissal. By these two
major steps, HybridFTW-Range-Search retrieves all similar
sequences correctly without any false dismissal.
By Theorem 1, the HybridFTW-based range search finds

all similar data sequences correctly, and we compare the
proposed range search algorithm with the existing ones
in Section V-B.

C. HybridFTW-BASED k-NN SEARCH ALGORITHM
Algorithm 2 shows the HybridFTW-based k-NN search algo-
rithm. The inputs are Q, radius, and a coefficient k of k-NN;
the output is a result set R of k data sequences which are
k-nearest neighbors of Q in the DTW distance. We explain

the algorithm in detail. In Line 1, we initialize the set R,
which is implemented as a priority queue. In Line 2, we divide
the query sequence Q into s segment sequences QA as in
the range search algorithm. We then initialize the variable
maxdist which will be used as the k-th distance (Line 3).
In Lines 5-10, we apply HybridFTW to compare query and
data sequences first. That is, we perform Hybrid-Stopping by
using the segment sequences of query and data sequences.
In particular, in Line 6, we compute LBS between query
and data sequences of the lowest step (i.e., i = s). After
then, if LBS is larger than maxdist, we do the early aban-
don (Line 7); otherwise, we construct the band of the next
step by using the segment path (Line 8). Expand-Windows()
is a function of constructing the band as in the range search
algorithm. That is, Line 8 corresponds to Hybrid-Projection;
Hybrid-Stopping based on Hybrid-Projection corresponds
to Hybrid-Refinement. In contrast, if LBS is less than or
equal to maxdist, we repeat Hybrid-Projection and Hybrid-
Refinement of Lines 5-10.

Algorithm 2HybridFTW-k-NN-Search (Query SequenceQ,
Radius r , Number k)

1. R := a priority queue having k entries;
// an entry = <sequence, distance>

2. Compute QA from Q; // QA = {QAs , . . . ,Q
A
1 }

3. maxdist :=∞;
4. for each data sequence C ∈ database do
5. for i := s to 1 do // s = maximum segment size
6. dlbs := Hybrid-Stopping(QAi , C

A
i , maxdist);

// dlbs = LBS(QAi ,C
A
i ).

7. if dlbs > maxdist then break;
8. else Expand-Windows(QAi , C

A
i , r);

9. end-if
10. end-for
11. if dlbs < maxdist then
12. dexact := DTW-with-EarlyAbandon(Q, C ,

maxdist); // dexact = D(Q,C).
13. if dexact ≤ maxdist then
14. if R is full then R.pop();
15. R.push(< C, dexact >);
16. maxdist := R.dmax ;
17. end-if
18. end-if
19. end-for
20. return R;

Next, in Lines 11-18, we determine the similarity of
original sequences by computing their actual DTW distance.
That is, if the early abandon does not occur in Lines 5-10,
we execute Lines 12-17 to know the similarity of two
sequences. Function DTW-with-EarlyAbandon() in Line 12
is the same as that of Algorithm 1. If the final distance (dexact )
is within maxdist, we include the current data sequence into
the priority queue R. After including the current sequence
into R, we need to update maxdist as the maximum distance
ofR,R.dmax, in Line 16.We repeat Lines 5-18 for every data

2092 VOLUME 6, 2018



M. Lee et al.: Hybrid Computation of DTW Distances

sequence. Finally, we return the result set R which contains
k-nearest neighbor data sequences from Q in the DTW dis-
tance. Similar to the range query of Algorithm 1, Algorithm 2
uses Hybrid-Stopping() and DTW-with-EarlyAbadnon()
instead of EarlyStopping() of FTW and adopts Expand-
Windows() for the window extension function of FastDTW.

Theorem 2 shows the correctness of the HybridFTW-
k-NN-Search algorithm.
Theorem 2: TheHybridFTW-k-NN-Search algorithm per-

forms the k-NN search correctly. That is, HybridFTW-k-NN-
Search retrieves k data sequences which are k-most similar
with the query sequence Q in the DTW distance without any
false dismissal.

Proof: In Lines 5-10 of the algorithm, we prune the
data sequence whose LBS exceeds the k-th distance maxdist.
Since LBS is a lower bound of the DTW distance by
Lemma 1, this pruning step does not incur any false dismissal.
Next, in Lines 11-18, we decide the similarity by computing
the actual DTW distance. Thus, this post-processing step
also incurs no false dismissal. Therefore, HybridFTW-k-NN-
Search retrieves the k-most similar data sequences correctly
without any false dismissal.

By Theorem 2, the k-NN search algorithm finds k-NN data
sequences correctly, and we compare it with the existing ones
in Section V-C.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL DATA AND ENVIRONMENT
In the experiment, we use two different data sets. The first
data set, a real ECG (electrocardiogram) data from Phys-
ioNet [22], contains 20,000 time-series, each of which con-
sists of 256 entries. We call this data set ECG-DATA. The
second data set contains 50,000 random walk data, each
of which consists of 256 entries generated by the random
walk model [28]: the first entry is set to a random value
in the range of (0, 10), and subsequent entries are obtained
by adding a random value in the range of (−0.5, 0.5) to the
previous one. We call this data set WALK-DATA. Two data
sets, ECG-DATA and WALK-DATA, have different charac-
teristics, and the overall trend of their experimental results
to be presented in Sections V-B and V-C is very similar.
Even though we use other data sets, the experimental results
would be similar to those of ECG-DATA and WALK-DATA.
We will discuss additional experiments using various data
sets in future works.

We evaluate the performance of HybridFTW against Fast-
DTW and FTW by using both range and k-NN search
algorithms. Through Theorems 1 and 2, we already for-
mally prove the correctness of the proposed algorithms,
and thus, here we focus on the performance improvement
of HybridFTW. The hardware platform is an HP worksta-
tion equipped with Intel(R) Xeon(TM) 3.1GHz CPU, 4.0GB
RAM, and 1TB HDD; its software platform is CentOS 5.9
Linux operating system. We use C/C++ language for imple-
menting all distance computation and search algorithms.

FIGURE 9. Experimental result of the range search for ECG-DATA.

We set radius to 2 and the segment sizes to t1 = 4, t2 = 16,
t3 = 64 as in [25]. The radius is used in HybridFTW
and FastDTW; the segment sizes are used in HybridFTW
and FTW. Sakurai et al. [25] have already showed that FTW
is superior to LB_PAA, which is an advanced lower bound
of LB_Keogh and LB_Improved. Thus, in this paper we
compare HybridFTW with FTW since FTW outperforms
LB_PAA, the tightest lower bound. As the performance
metric, we measure the actual execution time of range and
k-NN search algorithms. We take ten query time-series for
each experiment and use their average execution time as the
performance metric.

B. EXPERIMENTAL RESULT OF THE RANGE SEARCH
We first explain the experimental result of ECG-DATA.
Figure 9 shows the actual and relative execution time of
range search for ECG-DATA. In this experiment, we measure
the wall clock time by increasing the tolerance ε from 5 to
20 by 5. In Figure 9(a), x axis represents the tolerance ε,
and y axis represents the wall clock time of range search.
We note that HybridFTW significantly reduces the wall clock
time compared with FastDTW and FTW. In case of Fast-
DTW, there is no or very little performance change as the
tolerance increases. This is because FastDTW performs the
range search after completing the computation of actual DTW
distances. Due to this complete distance computation, Fast-
DTW shows the worst performance among three methods.
Next, when the tolerance is small, FTW, which performs
EarlyStopping using LBS, shows the relatively good perfor-
mance by exploiting the early abandon effect through seg-
ment sequences. However, the performance of FTW rapidly
decreases (i.e., the execution time rapidly increases) as the
tolerance increases. This is because FTW cannot exploit the
early abandon effect any more for large segment sequences.
On the other hand, the proposed HybridFTW shows the char-
acteristics of integrating advantages of both methods. First,
there is no or very little performance change according to
the tolerance change like FastDTW; second, it significantly
improves the performance by using the early abandon effect
through LBS like FTW. In Figure 9(b), HybridFTW improves
the performance by up to 38 times over FastDTW and by up
to 12 times over FTW.

Next, Figure 10 shows the experimental result of the range
search for WALK-DATA. In this experiment, the tolerances
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FIGURE 10. Experimental result of the range search for WALK-DATA.

FIGURE 11. Experimental result of the k-NN search for ECG-DATA.

are the same as those of Figure 9. We note that the overall
trend of Figure 10 is similar to that of Figure 9. That is,
HybridFTW shows the best performance, FTW shows the
next, and FastDTW shows the worst. A notable point is that
the performance difference between HybridFTW and FTW
is much smaller in Figure 10 than in Figure 9, especially for
large tolerances. This is because, in case of WALK-DATA,
the change of adjacent entries is very small, and thus, the
LBS computed by segment sequences is not enough to prune
many dissimilar data sequences. And accordingly, the per-
formance of FTW and HybridFTW, which is largely influ-
enced by LBS, is relatively worse in WALK-DATA than in
ECG-DATA. In summary of Figure 10, HybridFTW improves
the performance by up to 27 and 6.4 times over FastDTW and
FTW, respectively.

C. EXPERIMENTAL RESULT OF THE k-NN SEARCH
Figure 11 shows the experimental result of the k-NN search
for ECG-DATA. In the figure, x axis represents the coefficient
k of k-NN, and y axis represents the actual wall clock time in
Figure 11(a) and the relative execution time in Figure 11(b).
In this experiment, we increase k from 4 to 32 by 2 times,
which correspond to 0.02% to 0.16% of the total number of
sequences. As shown in Figure 11, HybridFTW significantly
reduces the k-NN search time compared with FastDTW and
FTW. First, FastDTW shows no or little increase of execu-
tion times even for increase of k , but it shows the worst
performance due to heavy overhead of computing the DTW
distance completely. Second, FTW shows the relatively better
performance than FastDTW by exploiting the early abandon
effect through segment sequences. However, as k increases,
the k-th distance maxdist also increases, and accordingly, the
performance of FTW also decreases slightly since the early

FIGURE 12. Experimental result of the k-NN search for WALK-DATA.

abandon effect is less exploited for large k’s. By combining
advantages of both FastDTW and FTW, the performance
of HybridFTW shows no or little change even for different
k’s like FastDTW, and the overall performance improve-
ment is much superior to FTW. In summary of Figure 11,
HybridFTW improves the performance by up to 11 times over
FastDTW and by up to 3.4 times over FTW.

Next, Figure 12 shows the experimental result of the k-NN
search for WALK-DATA. In this experiment, we increase k
from 10 to 80, which are the same percentages of Figure 11.
Comparing Figure 12 with Figure 11, the result for
WALK-DATA is very similar to that of ECG-DATA, but
the trend is slightly different. First, the similar point is that
HybridFTW still significantly outperforms FastDTW and
FTW, and FastDTW shows the worst performance among
three methods. Second, the different point is that the per-
formance difference in Figure 12(b) is slightly smaller than
that of Figure 11(b). This is because, as we explained in
SectionV-B, the entry changes inWALK-DATA are relatively
smaller than those of ECG-DATA, and accordingly, the early
abandon effect by LBS is less exploited in WALK-DATA
than in ECG-DATA. In summary of Figure 12, HybridFTW
outperforms FastDTW and FTW by up to 8.3 times and
2.0 times, respectively.

VI. CONCLUSIONS
In this paper, we proposed HybridFTW as a very fast
approach of computing the DTW distance. The DTW dis-
tance offers the high accuracy in similarity search, but it
has high computational complexity. Recently, FastDTW and
FTW were proposed to improve the efficiency of computing
the DTW distance. FastDTW transforms high dimensional
sequences to low dimensional sequences and refines the
DTW distance starting from low dimensional sequences step
by step. FTW defines the LBS as a lower bound and uses
it to exploit the early abandon effect for the performance
improvement.

As a hybrid approach, HybridFTW takes advantages of
both FastDTW and FTW for efficient computation of the
DTW distance. That is, HybridFTW takes the advantage of
FastDTW that provides fast DTW computation and at the
same time takes the advantage of FTW that exploits the
early abandon effect. To formally propose HybridFTW, in
this paper we first reanalyzed the detailed working procedure
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of FTW and FastDTW thoroughly. We then presented their
pros and cons and discussed how to efficiently combine those
advantages in detail. As a result, we proposed a concept
of HybridFTW as a hybrid approach, presented three major
steps of HybridFTW, and formally described its detailed
working steps. After then, we proposed the HybridFTW-
based range search and k-NN search algorithms, and we
also formally proved their correctness in Theorems 1 and 2,
respectively. Finally, through the experiments on real and syn-
thetic data sets, we showcased that HybridFTW significantly
outperformed FTWaswell as FastDTW.As a future work, we
will apply HybridFTW to various data mining applications
including clustering and classification algorithms.
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