
Received October 21, 2017, accepted November 26, 2017, date of publication December 8, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2781459

Multiagent Architecture for Distributed Adaptive
Scheduling of Reconfigurable Real-Time Tasks
With Energy Harvesting Constraints
WIEM HOUSSEYNI1,2,3, (Student Member, IEEE), OLFA MOSBAHI1,2, MOHAMED KHALGUI 1,2,
ZHIWU LI 4,5, (Fellow, IEEE), AND LI YIN4,5
1School of Electrical and Information Engineering, Jinan University (Zhuhai Campus), Zhuhai 519070, China
2National Institute of Applied Sciences and Technology, University of Carthage, Tunis 1080, Tunisia
3Tunisia Polytechnic School, University of Carthage, Tunis 1080, Tunisia
4Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
5School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China

Corresponding authors: Mohamed Khalgui (khalgui.mohamed@gmail.com) and Zhiwu Li (zhwli@xidian.edu.cn)

This work was supported by the Science and Technology Development Fund, MSAR, under Grant 078/2015/A3.

ABSTRACT This paper presents new challenges for the real-time scheduling of distributed reconfigurable
embedded systems powered by a renewable energy. Reconfigurable computing systems have to deal with
unpredictable events from the environment, such as activation of new tasks and hardware or software failures,
by adapting the task allocation and scheduling in order to maintain the system feasibility and performance.
The proposed approach is based on an intelligent multiagent distributed architecture composed of: 1) a global
agent ‘‘coordinator’’ associatedwith thewhole distributed system and 2) four local agents, such as supervisor,
scheduler, battery manager, and reconfiguration manager, belong to each subsystem. The efficiency and
completeness of the reconfiguration adaptative strategy is proved as all possible reconfiguration forms are
considered to guarantee a feasible system with a graceful quality of service. Two communication protocols,
such as an intra-subsystem communication protocol and an inter-subsystem communication protocol, are
proposed to ensure the effectiveness of the proposed reconfiguration strategy. Extensive simulations show
the effectiveness of the proposed intelligent multiagent distributed architecture in terms of the number of
exchanged messages, deadline success ratio, and the energy consumption.

INDEX TERMS Distributed embedded system, energy harvesting, multiagent, reconfiguration, real-time
scheduling.

NOMENCLATURE
NREEHS Networked Reconfigurable Embedded Energy

Harvesting System.
DAG Directed Acyclic Graph.
MAS Multi-Agent System.
DMH Decomposition Migration Heuristic.
DH Degradation Heuristic.
RH Removal Heuristic.
QoS Quality of Service.
EDF Earliest Deadline First.
SDA Semi-Dynamic Algorithm.
EH-EDF Energy-Harvesting Earliest Deadline First.
WSNs Wireless Sensor Networks.
DVS Dynamic Voltage Scaling.
DMS Dynamic Modulation Scaling.

CPU Central Processing Unit.
DVFS Dynamic Voltage Scaling Selection.

TSM Task slack Management.
EDH Earliest Deadline Harvesting.
UTB Utilization Based.
ILP Integer Linear Programming.
DRDECS Distributed Reconfigurable Discrete Event

Control System.
WCET Worst Case Execution Time.
WCEC Worst Case Energy Consumption.
R Set of all simultaneous reconfiguration

requests.
R(t) Set of all simultaneous requests received at

time t.
BCr Charging rate BCr of the battery calculated as

the difference of the regenerated energy from
the harvesting device Ehj and the consumed
energy by the embedded system Ecj .

2068
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6311-3588
https://orcid.org/0000-0003-1547-5503

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

Sys Networked reconfigurable real-time
embedded system.

6 Set of m networked subsystems in Sys.
σj Subsystem σj, j ∈ {1, ..,m}.
Pj Processor Pj, j ∈ {1, ..,m}.
Bj Battery Bj associated to processor Pj in σj,

j ∈ {1, ..,m}.
Edj Energy demand of tasks set ψj in time interval

calculated by
∑n

i=1 Eni.
Phj (t) Instantaneous power of harvesting energy of

the battery associated to processor Pj.
Ehj (t1, t2) Harvested energy in time interval [t1, t2] in

battery Bj.
EBj (t) Energy available in Bj, j ∈ {1, ..,m} at time t.
Pcj (t) Instantaneous power consumption of

processor Pj, j ∈ {1, ..,m} expressed in watts.
Ecj (t-1, t) Energy required between t-1, and t for the

execution of jobs related to the tasks assigned
to processor Pj.

BCj Capacity of battery Bj expressed in units of
energy.

N Number of tasks that can implement Sys.
0 Software platform to handle N tasks that can

implement Sys.
ψ Set of N tasks to be executed in Sys.
ψj Set of n tasks assigned to processor Pj,

j ∈ {1, ..,m}.
τi i-th task in ψ , i ∈ {1, ..,N }.
Ci Worst case execution time (WCET) of task τi,

i ∈ {1, ..,N }.
Ti Period of task τi, i ∈ {1, ..,N }.
Di Relative deadline of task τi, i ∈ {1, ..,N }.
Eni Worst case energy consumption of task τi,

i ∈ {1, ..,N }.
Uτi Utilization factor of task τi, Uτi =

Ci
Ti
.

dci Emergency execution level of task τi,
i ∈ {1, ..,N }.

γi Density of task τi, i ∈ {1, ..,N }.
Gi Graph corresponding to task τi, i ∈ {1, ..,N }.
ni Number of all subtasks in graph Gi.
τi,k k-th subtask in Gi, i ∈ {1, ..,N }, k ∈ {1, .., ni}.
Vi Set of nodes in Gi that presents the subtasks

of task τi, i ∈ {1, ..,N }.
Ei Set of directed edges in Gi, i ∈ {1, ..,N }.
Fi Set of all possible execution flows of Gi,

i ∈ {1, ..,N }.
mi Number of all possible execution flows in

graph Gi.
Fi,l l-th execution flow of graph Gi, i ∈ {1, ..,N },

l ∈ {1, ..,mi}.
Vi,l Set of nodes associated to execution flow Fi,l ,

i ∈ {1, ..,N }, l ∈ {1, ..,mi}.
Ei,l Set of edges associated to execution flow Fi,l ,

i ∈ {1, ..,N }, l ∈ {1, ..,mi}.
CFi,l WCET of Fi,l , i ∈ {1, ..,N }, l ∈ {1, ..,mi}.

Fci Critical execution flow in Gi, i ∈ {1, ..,N }.
3 Distributed multi-agent architecture.
CSys Coordinator agent.
ASup Supervisor agent.
ASched Scheduler agent.
AReconf Reconfiguration manager agent.
AB Battery manager agent.
UPj Utilization factor of processor Pj,

j ∈ {1, ..,m}.
Uej Energy load of tasks set ψj assigned to

processor Pj.
Um,k Utilization processor factor with (m,k)-firm

requirements.

I. INTRODUCTION
Distributed embedded systems have drawn substantial inter-
est and the number of their application domains is varying
and increasing ranging from all objects of our daily life
to industry production. Most of these applications are real-
time constrained where the timing behavior is of paramount
importance and is a part of their performance or correctness
criteria. The correctness of real-time systems depends not
only upon their accurate results, but also upon the imposed
deadlines in which the results are delivered [1]. An increasing
trend in embedded systems is towards implementing multi-
ple functionalities with different levels of criticality upon a
common platform. The degree of criticality is defined as the
functional and operational importance of a task. The designer
of the system defines (manually) the criticality degree of each
task in the system. Some of these functionalities are hard
real-time where the treatments must absolutely respect all
time constraints, only one failure to meet deadlines can have
serious consequences and the task is considered to be critical,
whereas others may be soft real-time where failure to respect
temporal constraints will have no catastrophic effect on the
controlled environment and the task can be considered to be
non critical [2].

A major constraint in the design of real-time embedded
systems today is the battery lifetime. Obviously, these batter-
ies have limited energy storage capacity and therefore, finite
useful life. As a result, there is tremendous interest in the
energy harvesting technology that emerges as a promising
alternative to enhance the system’s lifetime and to achieve
energy autonomy [3]–[5]. Several technologies are proposed
for environmental energy harvesting, such as solar cells,
piezoelectric vibration generators, and energy drawn from
thermal and acoustic noise [6], [7]. In particular, solar energy
harvesting provides relatively higher power densities which
make it increasingly deployed to design the new generation
of embedded devices.

Reconfigurable computing systems have the potential to
greatly satisfy the simultaneous demand for application per-
formance and flexibility [8]. Reconfigurable computing sys-
tems have pervaded nearly all research work from both
academia and industry [9]–[11]. Reconfiguration is usually

VOLUME 6, 2018 2069

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

performed in response to both user requirements and dynamic
changes in its environment such as unpredictable activation of
new tasks, and hardware or software failures. Some examples
of reconfigurable systems are multirobot systems [12] and
wireless sensor networks [13]. At run-time, the occurrence
of unpredictable task’s activation makes the static sched-
ule no longer optimal and may evolve the system towards
an infeasible state due to energy and processing overloads.
Thereafter, some existing or added tasks may violate dead-
lines. The system has to dynamically adjust and adapt the
task allocation and scheduling in order to cope with unpre-
dictable new task’s arrival. Classical scheduling approaches
mostly ignore the dynamic nature of the systems. Multiagent
systems (MAS) appear as a promising approach for auto-
matic reconfiguration in distributed systems such as sensor
networks [14]–[18].

In this paper, the proposed contribution exposes new chal-
lenges for the development of a networked reconfigurable
embedded energy harvesting system (NREEHS). The system
can be reconfigured at run-time where additional tasks may
arrive on a given processor. We assume that the execution
frequency of reconfiguration scenarios is lower than that of
system tasks. It means that the periods of system tasks are
in seconds or minutes whereas the reconfigurations are in
hours or days. Therefore, the processing time and energy
overhead involved by any reconfiguration are considered to
be negligible than those involved by the system tasks. In addi-
tion, the migration overhead is assumed to be neglected since
the execution code of tasks resides in all the processors from
initialization.

Initially, the computing distributed system is assumed to be
schedulable. In other terms, every task initially assigned to a
given processor is guaranteed tomeet its timing requirements.
At any instant, external unpredictable new task’s activation
may occur on a given processor. The latter may become
faulty due to processor overload and/or energy starvation.
In what follows, we consider that a processor is faulty if the
schedulability cannot be guaranteed, i.e., deadline missing
may occur. The reconfiguration is motivated by the unschedu-
lability which appears because of processor overload and/or
energy starvation on a processor.

The objective of the reconfiguration process is to opti-
mize the global quality of service (QoS) measured in terms
of deadline success ratio and the degree of criticality. This
paper proposes a solution with three successive adaptation
strategies to be applied in a hierarchical step by step order:
(i) decomposition and migration which decomposes software
tasks and migrates their branches from a faulty processor
to a non-faulty one, (ii) degradation heuristic that modi-
fies the scheduling mode, and (iii) removal heuristic which
deletes branches or tasks. We propose an efficient protocol
for NREEHS deploying an MAS that comprises a global
agent denoted as ‘‘Coordinator’’ for coordination between
networked subsystems, and four local agents: supervisor,
scheduler, battery manager, and reconfiguration manager
belonging to each subsystem.

The proposed solution is a complete methodology that
deals with all possible reconfiguration forms to guarantee a
feasible system with a graceful QoS. Simulation results are
presented to demonstrate the effectiveness of the proposed
multiagent distributed architecture and the three proposed
reconfiguration scenarios measured in terms of deadline miss
ratio and energy savings. Moreover, the effectiveness of the
proposed communication protocols is evaluated in terms of
the number of exchanged messages.

The remainder of the paper is structured as follows.
Section II summarizes the state of the art that deals with (i) the
real-time scheduling in energy harvesting based embedded
systems, and (ii) multiagent architectures for reconfigurable
embedded systems. Section III gives a formal presentation
of the NREEHS context. Section IV details the proposed
solution for NREEHS. Section V describes a new multiagent
architecture dedicated to networked reconfigurable energy
harvesting systems. The results of the conducted experiment
to evaluate the proposed solutions are reported in section VI.
Finally, the paper is concluded with a summary of the contri-
butions and the presentation of the future work in Section VII.

II. STATE OF THE ART
This section, presents a state of the art dealing first with
energy harvesting oriented architectures, and then with the
scheduling in reconfigurable embedded systems based on
distributed multiagent architectures.

A. REAL-TIME SCHEDULING IN ENERGY HARVESTING
BASED EMBEDDED SYSTEMS
Uniprocessor real-time scheduling for energy harvesting
based systems has been the focus of many works from
one decade only, including [19]–[21]. In [20], the earliest
deadline-harvesting (ED-H) scheduling algorithm is proved
to be optimal. ED-H is an extension of the EDF (Earliest
Deadline First) scheduler with energy awareness capabilities.
By using the notions of slack-time and slack-energy, ED-H
not only makes scheduling decisions based on the relative
urgency of the deadline constrained tasks, it also provides
dynamic power management capabilities. The idea behind
ED-H is to order the tasks according to the EDF rule. In con-
trast to EDF, tasks are not systematically executed as soon
as possible due to possible energy shortage. The difference
between ED-H and classical EDF is to decide when to execute
a task and when to let the processor be idle. Before authoriz-
ing any task to execute, the energy level of the storagemust be
sufficient such that all future occurring tasks execute timely
with no energy starvation, considering both their energy
consumption and the replenishment rate of the storage unit.
Recently, a research work has been done on the multiproces-
sor case. The work in [22], presents an energy management
approach based on epoch in performance-constrained WSNs
(Wireless Sensor Networks) that utilize energy harvesting.
The proposed approach utilizes two energy management
techniques, Dynamic Voltage Scaling (DVS) and Dynamic
Modulation Scaling (DMS). In order to satisfy performance

2070 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

requirements, the approach adjusts radio modulation levels
and CPU frequencies. Several simulations show that the pro-
posed algorithms achieve significantly higher performance
than a baseline approach under both normal and emergency
situations. The work in [23] presents a taskmapping, schedul-
ing and power management method for multicore real-time
embedded systems with energy harvesting. The proposed
method is based on the concept of task CPU utilization, which
is defined as the worst-case task execution time divided by its
period. This method combines with a new dynamic voltage
and frequency selection (DVFS) algorithm with energy har-
vesting awareness and task slack management (TSM), forms
the proposed utilization based (UTB) algorithm. Moreover,
UTB was extends to support multicore platforms by allocat-
ing a subset of tasks to each core and executing the single-
core UTB algorithm separately on each core. It introduces a
deadline-aware scheduling algorithm with energy migration
strategies specifically designed to manage distributed super-
capacitors in sensor networks.

B. RECONFIGURABLE REAL-TIME EMBEDDED SYSTEM
BASED ON MULTIAGENT DISTRIBUTED ARCHITECTURE
Several research works have been done in recent years, focus-
ing on reconfigurable embedded systems [24], [25]. Recently,
the multiagent distributed architectures have attracted con-
siderable attention from the community of reconfigurable
embedded technologies [26], [27]. The work in [27] reports
a decentralized supervision policy for a Petri net through
collaboration between a coordinator and subnet controllers.
Then, a coordinator is selected from subnet controllers by
using integer linear programming (ILP) to reduce the com-
munication cost. The research in [28] develops a new coordi-
nation method for a distributed reconfigurable discrete event
control system (DRDECS) where each subsystem is mod-
eled by a reconfigurable timed net condition/event system.
The paper develops a virtual coordinator and a communica-
tion protocol in order to treat all concurrent reconfiguration
requirements using judgment matrices while the exchanged
messages are reduced. However, all of these works cope with
reconfigurable multiagent distributed embedded systems but
no one among them deals with energy requirements. Power
consumption and energy requirements for the reconfigurable
distributed embedded systems have received much less atten-
tion. The research in [29] proposes a multiagent based archi-
tecture consisting of: (i) a master agent defined for the
whole control in the distributed multiprocessor architecture,
and (ii) a slave agent assigned to each processor for the local
control of energy and memory. In addition, it defines a com-
munication protocol between the different proposed agents to
guarantee the respect of memory capacity while minimizing
the energy consumption. The research work in [30] deals with
a software-agent-based architecture that provides three vir-
tual processors and four solutions to reconfigure the system at
run-time in order to reduce the system’s power consumption.

To the best of our knowledge, most of the previous studies
consider a centralized architecture where the whole system

depends on the decision of the coordinator agent. As far as
we know, the intelligent multiagent distributed architecture
for networked reconfigurable embedded systems with energy
harvesting requirements where tasks are represented by DAG
(Directed Acyclic Graph) is reported for the first time in
this research. The main advantages of our multiagent dis-
tributed architecture and the two proposed communication
protocols are: i) by performing the proposed coordination
strategy, the exchanged messages among agents are reduced
significantly, and ii) by applying the new solution with four
adaptative strategies, the percentage of satisfied deadlines and
energy saving are increased.

III. FORMALIZATION OF NETWORKED
RECONFIGURABLE SYSTEM
In this section we formally describe the system model of
NREEHS composed of multiple networked subsystems. Each
subsystem consists of one processor and one rechargeable
energy storage unit with limited capacity supplied by a renew-
able energy source. We assume that the system is composed
of a set of identical processors in which the preemption and
migration of tasks are authorized. Each subsystem performs
a set of periodic and independent tasks. The system can be
reconfigured at run-time where additional tasks may arrive
on a given processor.

This paper proposes to address the scheduling problem
in NREEHS through a multiagent distributed architecture.
The agents are categorized into two categories: i) a global
agent denoted as ‘‘Coordinator’’ for coordination between
networked subsystems, and ii) four local agents: supervi-
sor, scheduler, battery manager, and reconfiguration man-
ager. Every subsystem has local agents in order to maintain
its feasibility whenever possible after any external recon-
figuration scenario. Two communication protocols are pro-
posed: i) an intra-subsystem communication protocol for
communication between agents inside each subsystem, and
ii) an inter-subsystem communication protocol for commu-
nication between subsystems. Fig. 1 shows the overview of
the NREEHS considered in this paper which consists of net-
worked reconfigurable real-time subsystems, a middleware
based on the proposed multiagent architecture, and a set of
real-time periodic and independent tasks.

A. HARDWARE ARCHITECTURE
Let Sys = (6,0,3) be an NREEHS composed of m net-
worked subsystems, where 6 = {σ1, σ2, ..., σm} is the set
of subsystems, 0 is the software platform, and 3 is a dis-
tributed multiagent architecture. Each subsystem σj ∈ 6,
j ∈ {1, ..,m}, is composed of: (i) processor Pj that performs
a set ψj of tasks where the preemption and migration of tasks
are authorized; and (ii) a rechargeable energy storage with
limited capacity Bj.

B. ENERGY CONSIDERATIONS
The energy produced by the source is not considered con-
trollable. Let Phj (t) be the instantaneous power of harvesting

VOLUME 6, 2018 2071

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

FIGURE 1. Proposed system model for NREEHS.

energy of the battery associated with processor Pj that incor-
porates all losses. The harvested energy in the interval time
[t1, t2] in the battery Bj denoted by Ehj (t1, t2) is calculated as
follows:

Ehj (t1, t2) =
∫ t2

t1
Phj (t) dt

We assume that the energy production times can overlap
with the consumption times. While the source power is not
necessarily a constant value, we assume that we can predict
it accurately for near future with negligible time and energy
cost. Our system uses an ideal energy storage unit (superca-
pacitor or battery) with a nominal capacity BCj expressed in
watt. The energy available in the storageBj at time t is denoted
by EBj (t). We also assume that each energy storage can be
charged up to its capacity. In addition, each processor Pj in
the embedded system is characterized by instantaneous power
consumption Pcj (t), expressed in watts where 0 ≤ Pcj (t),
and by power demand Pdj expressed in watts corresponds to
the power needed by tasks’ jobs when executing in proces-
sor Pj considering EDF scheduling. The charging rate BCr
of the battery state of charge is calculated as the difference
of the regenerated energy from the harvesting device Ehj and
the energy consumption of the embedded system Ecj .

BCr = Ehj − Ecj (1)

C. REAL-TIME TASKS
We consider a software platform 0 composed of a set ψ of
N periodic tasks, i.e., ψ = {τ1, ..., τN }. We assume that Sys
performs two classes of tasks: soft and hard. The task τi,

i ∈ {1, ..,N }, is characterized by: i) Worst case energy
consumption (WCEC) Eni expressed in Joules, the energy
consumption of τi is considered at the worst case and cor-
responds to the largest amount of energy that τi can consume
when executed on a processor, ii) Worst case execution
time (WCET) Ci, iii) Period Ti, and iv) A degree of criticality
dci that defines its applicative importance. The degree of crit-
icality is defined as the functional and operational importance
of a task. The designer of the system defines (manually) the
degree of criticality of each task in the system. It is considered
that tasks have implicit deadlines, i.e., deadlines are equal to
periods. A task τi is characterized by (Ti,Ci,Eni, dci). More-
over, a non critical task with soft deadline is characterized
also by a (mi, ki) parameter which indicates the tolerance of
at leastm among k consecutive instances that meet their dead-
lines for task τi. The utilization factor of task τi is denotedUτi
and is defined as Uτi =

Ci
Ti
.

D. REAL-TIME SCHEDULING
In this paper, the semi-partitioned approach is considered.
Tasks are initially allocated to processors, and every task
set assigned to a processor is scheduled according to the
EDF policy. The scheduling problem in a reconfigurable
distributed embedded system based on energy harvesting falls
into two constraints which should be respected.

1) TIME FEASIBILITY
Without considering energy requirements, exact schedulabil-
ity tests for uniprocessor EDF-scheduling are given by

UPj ≤ 1 (2)

where UPj is the utilization factor of the processor Pj
calculated by

∑n
i=1 Uτi .

2) ENERGY FEASIBILITY
The energy demand Edj of each processor Pj in the embedded
systemmust be less than the total energy provided by both the
battery BCj and the energy generator Ehj , i.e.,

Edj (t1, t2) ≤ BCj + Ehj (t1, t2)

where Edj (t1, t2) is the energy demand of tasks set ψj in
time interval [t1, t2], calculated by

∑n
i=1 Eni, and Ehj (t1, t2)

is the harvested energy in the time interval [t1, t2]. The energy
load Uej (t1, t2) of the task set ψj assigned to processor Pj is
given by:

Uej (t1, t2) =
Edj (t1, t2)

BCj + Ehj (t1, t2)
≤ 1

Uej = sup
0≤t1,t2≤H

Uej (t1, t2)

where H is the hyper period.

Uej ≤ 1 (3)

Proof: Since ψj is energy-feasible, we consider an
energy-valid schedule. The amount of energy demanded in

2072 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

each interval of time [t1, t2], Edj (t1, t2), is necessarily less
than or equal to the actual energy available in [t1, t2] given by
EBj (t1) + Ehj (t1, t2). An upper bound on EBj (t1) is the max-
imum storable energy at time t1, that is BCj . Consequently,
Edj (t1, t2) is lower than or equal to BCj+Ehj (t1, t2). This leads
to [t1, t2], Edj (t1, t2) ≤ BCj + Ehj (t1, t2) i.e. Uej (t1, t2). Thus,
Uej ≤ 1. �
Proposition 1: The set of tasks ψj assigned to processor Pj

is feasible only if

UPj ≤ 1 and Uej ≤ 1. (4)

Proof: Suppose that ψj is feasible. Thus, ψj is time-
feasible and energy feasible. From constraint (2) and con-
straint (3), constraint (4) is satisfied. �

E. DAG MODEL
1) MOTIVATION
A recurring task requests the execution of infinite sequential
pieces of code called jobs. Therefore, real-time tasks are
usually modeled as a sequence of recurrent jobs. Tasks are
released several times and have a job to do for each release.
In other words, a task starts a job for each release time.
Thus, a job can be seen as an instance of a real-time task
associated with a temporal deadline relative to its arrival time.
Each task should complete its current job before it has been
released for the next one. In the real application scenarios the
execution flow of tasks is characterized by multiple condi-
tional structure such as the (if-then-else, statement). Two jobs
τi,h and τi,k of task τi may execute different parts of the code.
Hence, an ‘‘execution flow’’ is defined as the path used by a
job throughout its execution. To the best of our knowledge,
the recurring real-time task model proposed by Baruah [31]
represents the first attempt that permits the presentation of
conditional real-time code. The conditional structure within
the code may mean that different activations of the task cause
different parts of the code to be executed.

2) DAG TASK MODEL DESCRIPTION
Each task τi, i ∈ {1, ..,N }, is represented by a task graph
Gi(Vi,Ei), as depicted in Figure 2, where Vi = {τi,1, ..., τi,ni}
is the node set that represents the subtasks of τi, ni is the
number of subtasks in Gi, and Ei is the directed edge set that
represents the dependencies between the nodes in Gi. This
task graph is a DAGwith a unique source vertex, i.e., a vertex
with no incoming edge, and a unique sink vertex, i.e., a vertex
with no outgoing edge. Each vertex represents a subtask and
each edge defines a possible flow of control. Each subtask τi,k
is labeled by a WCET Ci,k . The total execution requirement
of task τi is calculated as the sum of theWCET of all subtasks
of the critical path in Gi. The critical path is the longest
path in Gi.
DAG Gi corresponding to task τi is characterized by set

Fi = {Fi,1, ...,Fi,mi} which denotes the mi possible exe-
cution flows in Gi. Each execution flow Fi,l = (Vi,l,Ei,l)
is characterized by: i) set of nodes Vi,l , and ii) set of
edges Ei,l . The semantics of this task DAG are as follows.

FIGURE 2. DAG task model.

Whenever subtask τi,1 is released, depending upon the out-
come of τi,1 either τi,2 with WCET Ci,2, or subtask τi,3
with WCET Ci,3 are executed. If τi,2 is executed, depend-
ing upon the outcome of this subtask, either τi,4 with
WCET Ci,4 or subtask τi,5 with WCET Ci,5 are executed.
A single subtask τi,6 with WCET Ci,6 is executed. Therefore,
task τi (i ∈ {1, ..,N }) is characterized by the sixtuplet
(Gi,Ci,Ti,Eni, dci). We introduce the following notation and
terminology.
Definition 1: The WCET of execution flow Fi,l of task τi,

i ∈ {1, .., N}, l ∈ {1, .., mi}, is defined as the cumulative
amount of WCET of Vi,l subtasks

CFi,l =
∑

τi,k∈Vi,l

Cτi,k (5)

The critical execution flow Fci in graph Gi is defined as the
execution flow with the longest execution time.

IV. RECONFIGURATION APPROACH
This section details the proposed reconfiguration solution
used to reestablish the system feasibility in NREEHS.

A. RECONFIGURABLE REAL-TIME SCHEDULING
To adjust the framework to cope with any unpredictable
external event such as hardware faults or new task arrivals,
we characterize a reconfiguration as any procedure that per-
mits to reconfigure the system to be feasible, i.e., satisfying
its real-time and energy constraints with the consideration of
system performance optimization. This research presents a
solution with three successive adaptation strategies to recon-
figure the system at run-time. These strategies are performed
in a hierarchical order as depicted in Fig. 3.
• Decomposes the task DAG of the faulty processor to a
set of branches and to be migrated to other non-faulty
processors,

• Degrades the QoS on each faulty processor. Non-critical
tasks with the lowest degree of criticality execute in
degrade mode according to (m,k)-firm constraints,

VOLUME 6, 2018 2073

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

FIGURE 3. Flow chart of the proposed methodology.

• Deletes branches or tasks DAG so as to minimize the
global deadline miss ratio.

1) DECOMPOSITION AND MIGRATION MODULE
A two steps strategy:
• First step: Branch Selection Heuristic. Selects a
branch or a group of branches to be migrated to other
non-faulty processors in order to reestablish the sys-
tem feasibility. The task with the lowest degree of
criticality will be decomposed into a set of branches.
Then the critical execution flow will be removed from
the DAG.

• Second step: Processor Selection Heuristic. Selection
of a processor into which the migrant branches will
be assigned. Sorts the set of candidate processors in
an increasing order of energy availability in storage
unit.

2) DEGRADATION MODULE
Degrades the scheduling in each faulty processor. In this case,
the tasks with the lowest degree of criticality may be executed
under (m,k)-firm constraints according to user requirements
which indicate that the deadlines of at least m among any
k consecutive instances of a task must be met. According
to [32], a given task set ψj is assumed to be schedulable with
(m,k)-firm constraints if the utilization processor factor with
a (m,k)-firm requirement, defined by Um,k =

∑n
i=1 Uτi ∗

mi
ki
,

is no greater than 1 defined by

Um,k =
n∑
i=1

Uτi ×
mi
ki
≤ 1 (6)

3) REMOVAL MODULE
Deletes branches or DAG tasks with the highest densities
so as to minimize the global deadline miss ratio. With each
task τi, i ∈ {1, ..,N } is associated a density denoted by

γi =
Eni
Ti

(7)

We sort all the tasks in an ascending order of densities such
that we can reject those with higher densities one by one until
the remaining utilization factor and energy consumption of
the faulty processor satisfy (3) and (4).

B. RECONFIGURATION ALGORITHM

Algorithm 1 Reconfiguration Solution With Three
Adaptation Strategies
Input : ψ = {τ1, .., τN }; ψj: Set of tasks assigned to

processor Pj; ψr = {τr,1, .., τr,k}: Set of
reconfiguration tasks; 6 = {σ1, ..σm}: Set of
subsystems; Sched: boolean.

Begin;
Sched < − true;
/*ψ is schedulable on 6*/
; if Event (τr− > Pj) then

ψj < −ψj
⋃
{τr};

if Set ψj
⋃
{τr} not schedulable in Pj then

Sched < − false;
if Decomposition migration(ψj, 6) is
schedulable in Pj then

Perform Decomposition migration(ψj, 6);
else

if Degradation((m,k),ψj) is schedulable in
ψj then

Perform Degradation((m,k), ψj)
else

Perform removal();
end

end
end

end
Sched < − true;
Output: ψ

⋃
ψr schedulable on 6.

The proposed solution with the three adaptation strategies
is described in Algorithm 1. The system performs set ψ of
tasks assigned to multiprocessor platform 6. At run-time an
unpredictable event occurs and adds task τr to processor Pj.
Thereafter, the proposed solution performs the feasibility
analysis to the set ψj

⋃
{τr} in processor Pj. If the system is

infeasible due to processor overload and/or energy starvation,

2074 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

then the proposed algorithm performs the reconfiguration
solution.

V. MULTIAGENT ARCHITECTURE FOR NREEHS
This section details the proposed multiagent architecture for
networked reconfigurable energy harvesting systems.

A. MOTIVATIONS FOR THE USE OF THE MAS PARADIGM
The NREEHS works in dynamic environment where unpre-
dictable events occur such as activation of new tasks and
software or hardware failures. Thereafter, the static schedul-
ing is no longer optimal and the system may evolve towards
a situation of processor or energy overloads. An occurred
problem such as processor or energy overloads in a particular
processor Pj is resolved by a global or local reconfiguration.
For this purpose, this paper proposes the use of a distributed
system decentralizing the control, and more precisely the
use of an MAS. A distributed control system is built to
connect all the processors for information exchange, and to
conduct a global control of the entire system with guaran-
teed correctness and optimized performance. We aim through
the use of MAS to represent as near as possible the real
behavior of the physical NREEHS thanks to the developed
simulator.

An intelligent reconfiguration agent is developed to
provide the proposed solution with the three adaptation
strategies. The software agents are helpful to perform
some tasks such as the supervision to detect unpredictable
events, feasibility analysis, and battery management. Moti-
vated by these considerations, we choose to deploy the
intelligent agents to simulate the dynamic behavior of
NREEHS.

B. CLASSIFICATION OF AGENTS
We propose a new multiagent architecture consisting of:
• Three agents belonging to each subsystem σj ∈ 6,
j ∈ {1, ..,m}: (i) supervisor agent ASupj , (ii) schedul-
ing agent ASchedj , (iii) reconfiguration manager agent
AReconfj , and (iv) battery manager agent ABj .

• A coordinator agent CSys defined to coordinate between
the networked reconfigurable subsystems and to handle
all concurrent reconfiguration requirements.

1) SUPERVISOR AGENT
A supervisor agent for σj ∈ 6, j ∈ {1, ..,m}, that plays
the role of a coordinator in the subsystem. The supervisor
establishes two kinds of interactions:
a) Intra-subsystem interaction with agents from the

same subsystem in order to 1) control reconfigura-
tion scenarios and check the system feasibility, and
2) establish useful solutions to reobtain the system
feasibility,

b) Inter-subsystem interaction with the coordinator agent
in order to obtain an authorization to apply a global
reconfiguration scenario.

2) SCHEDULING AGENT
A scheduling agent is assigned to each subsystem of the
execution environment in order to perform the feasibility
analysis. Each subsystem σj composed of processor Pj and
battery Bj to perform the tasks set ψj, should satisfy the
following schedulability test:

UPj ≤ 1 and Uej ≤ 1

3) RECONFIGURATION MANAGER AGENT
The automatic reconfiguration scenarios are classified into
two categories: 1) internal reconfiguration scenarios where
each subsystem handles its own reconfiguration scenar-
ios without the permission of the coordinator agent, and
2) external reconfiguration scenarios where the supervisor
agent needs the permission from the coordinator agent.
Furthermore, a reconfiguration manager agent affected to
each subsystem σj ∈ 6, j ∈ {1, ..,m} is defined, to handle
automatic reconfigurations in order to maintain the system
feasibility. The reconfiguration manager agent performs the
proposed solution with the three successive adaptation strate-
gies in a hierarchical order. Therefore, the reconfiguration
manager agent is decomposed into three modules: i) decom-
position and migration, ii) degradation, and iii) removal
modules.

4) BATTERY MANAGER AGENT
In the distributed architecture, a battery manager agent is
associatedwith each subsystem6 = {σ1, σ2, ..., σm}. Indeed,
the main role of this agent is to control the energy level in
the storage unit (battery/ supercapacitor) and to predict the
availability of the energy in the future. Further, the battery
manager agent performs the solar energy harvesting predic-
tion algorithm proposed in [33].

5) COORDINATOR AGENT
The coordinator agentCSys is defined to control all concurrent
reconfiguration scenarios and to guarantee safe, coherent and
adequate distributed reconfigurations as well as a feasible
execution in the whole system. The role of the coordinator is
to reach an agreement and to broadcast this decision value to
all the other supervisor agents. The coordinator agent affects
priority to the different concurrent reconfiguration requests
according to the criticality of the migrated tasks and manages
all concurrent reconfiguration requests. The role of the coor-
dinator is to accept or reject a reconfiguration request. In addi-
tion, when the coordinator agent accepts a reconfiguration
request to migrate a task from a faulty processor to another,
it sends a token to all supervisor agents associated with the
different subsystems. When the coordinator receives multiple
candidates, it selects a winner according to the criterionwhich
permits to balance the workloads and energy consumption of
the processors.

VOLUME 6, 2018 2075

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

C. COMMUNICATION PROTOCOL FORMALIZATION
To guarantee a feasible execution in the NREEHS architec-
ture, two communication protocols are defined:
• Intra-subsystem communication protocol that man-
ages the communication between agents in the same
subsystem,

• Inter-subsystem communication protocol that manages
concurrent reconfigurations between subsystems to
define coherent behaviors.

FIGURE 4. Inter-subsystems communication protocol.

1) INTER-SUBSYSTEM COMMUNICATION PROTOCOL
We propose a communication protocol between the super-
visor agent associated with each subsystem σj ∈ 6,
j ∈ {1, ..,m}, and the coordinator CSys. It defines the interac-
tion rules between subsystems and this coordinator in order
to guarantee a feasible execution of the whole distributed
system. Hence, any subsystem cannot apply Decomposition-
Migration strategy until it receives the permission from
the coordinator agent. The communication between super-
visors and the coordinator is performed through exchanged
messages. Fig. 4 depicts the interaction between the coor-
dinator and supervisor agents. When a particular recon-
figuration manager agent AReconfa , a ∈ {1, ..,m}, should
apply a Decomposition-Migration reconfiguration scenario,
the supervisor agent ASupa sends the following request
Ra to CSys to obtain its authorization, i.e.,

Ra: request(from-ASupa , to-CSys, ID, Fi,l)

In this case, the supervisor ASupa sends a request to the
coordinator for migrating the branch Fi,l of the task identified

by ID. If Ra has the highest priority between all requests
in R(t), then CSys broadcasts a token for each supervisor
agent ASupj (j ∈ {1, ..,m}/{a}) by sending the following
message, i.e.,

Send(T[ASupj , Fi,l , ID])

ASupa wants to migrate the branch Fi,l ∈ Fi =

{Fi,1, ...,Fi,mi}, i ∈ {1, ..,N }, l ∈ {1, ..,mi}. When super-
visor ASupj , j ∈ {1, ..,m}, receives the token, it verifies the
schedulabilty conditions (real-time and energy constraints)
by accepting the migrating branch. If it is possible for the
subsystem to accept the branch, then it answers by sending a
proposition to CSys as follows, i.e.,

Answer(P[ASupj , Uej , Upj])

The coordinator receives all propositions and selects a win-
ner ASupw ,w ∈ {1, ..,m}/{a}, according to the criterion which
permits to balance the workloads and energy consumption of
the processors. The coordinator sends its permission to the
supervisor for migrating the branch Fi,l of the task identified
by ID, i.e.,

Accept(from-CSys, to-ASupa , ID, Fi,l)

If no supervisor sends a proposition to the coordinator, then it
is impossible tomigrate the branch and the coordinator rejects
the supervisor request, i.e.,

Reject(from-CSys, to-ASupa , ID, Fi,l)

When the coordinator CSys accepts the request of the par-
ticular agent ASupa , it sends a reply to inform the concerned
subsystems as follows, i.e.,

Reconfiguration(from-CSys, to-ASupa , to-ASupw)

The coordinator informs the target supervisor agentASupw that
it will receive a migrating branch from agent ASupa . Finally
the coordinator sends a command to ASupa to perform the
Decomposition-Migration reconfiguration, i.e.,

Command(from-CSys, to-ASupa , to-ASupw ID, Fi,l)

2) INTRA-SUBSYSTEM COMMUNICATION PROTOCOL
We propose a communication protocol between the different
agents associated with each subsystem. The protocol defines
interaction rules between agents in order to verify the system
feasibility and to guarantee a feasible execution. The supervi-
sor agent plays the role of the coordinator in each subsystem.
Initially, the supervisor agent is in a listening state, whenever
it detects an unpredictable external event, it interacts with the
different agents from the same subsystem so as to:
1) Control reconfiguration scenarios and check the system

feasibility,
2) If not satisfied, establish solution in order to reobtain the

system feasibility.
Fig. 5. depicts the interaction between the supervisor, recon-
figuration manager, scheduling and battery manager agents.

2076 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

Algorithm 2 Reconfiguration of the NREEHS
Input : 6: set of subsystems; 0: the software platform;

3: the intelligent multiagent architecture.
Begin
ASupa listening();
if Event () then

Test-Feasibility(from-ASupa , to-Asched);
if Feasibility-Answer(from-ASupa , to-Asched , NO, Upa
) then

Ask-for-Solution(from-ASupa , to-AReconf);
Solution(SD, SDM , SR);
if Sf = (SD, SR) then

command(from-ASupa , to-AReconf , Sf);
end
else if Sf = (SDM) then

Ra: request(from−ASupa , to−CSys, ID, Fi,l);
if PRa = PH then

Send(T[ASupj , Fi,l , ID]);
A:= Answer(P[ASupj , Enj, Upj];
if A = ∅ then

Reject(from-CSys, to-ASupa , ID, Fi,l);
else

Accept(from-CSys, to-ASupa , ID,
Fi,l);
ASupw := Select-winner(A);
Reconfiguration(from-CSys,
to-ASupa , to-ASupw);
Command(from-CSys, to-ASupa ,
to-ASupw , ID, Fi,l);

end
end

end
end

end
Output: Feasible system

The interaction between the supervisor and the three other
different agents is ensured through exchanged messages as
implemented in Algorithm 2. When the supervisor agent
ASupa detects an external event in the associated subsystem
σa, a ∈ {1, ..,m}, it sends a request to the scheduling agent
to check the subsystem feasibility, i.e.,

Test-Feasibility(from-ASupa , to-AScheda)

The scheduling agent performs the feasibility analysis, and
according to related results, it sends one of the following
answers:

Feasibility-answer(from-AScheda , to-ASupa , YES, Upa)

YES means that the system is feasible,

Feasibility-answer(from-AScheda , to-ASupa , NO, Upa)

NOmeans that the system is infeasible. In this case, the super-
visor ASupa sends the following request to the reconfiguration

FIGURE 5. Intra-subsystem communication protocol.

manager agent to establish the required solution, i.e.,

Ask-for-Solution(from-ASupa , to-AReconfa)

When the reconfiguration manager agent receives a request
for establishing solution, it interacts with the three recon-
figuration modules and then it sends a token that contains
the proposed solution with the three adaptation strategies in
a hierarchical order. Indeed, this order should be respected
at run-time where the subsystem should start by the first
proposed strategy DM. Nevertheless, if the first strategy DM
does not involve feasibility, then the system proceeds to
the second strategy. Therefore, the reconfiguration manager
agent sends the following message, i.e.,

Solution(SDM , SD, SR)

If the required strategy is the Decomposition-Migration, then
the supervisor agent sends a request to the coordinator for
migrating the branches Fi,l of the task identified by ID to
apply an external reconfiguration as follows, i.e.,

Ra: request(from-ASupa , to-CSys, ID, Fi,l)

Algorithm 3 depicts the communication protocol: inter-
subsystem and intra-subsystem in the proposed multiagent
architecture.

VOLUME 6, 2018 2077

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

D. COMPLETENESS PROOF OF THE
RECONFIGURATION SOLUTION
The proposed reconfiguration solution with the three strate-
gies has the advantage of completeness. Thus, if a solution
exists, the proposed MAS will find it. We denote the solution
set as Sf = {SDM , SD, SR} for a faulty processor Pf where
the real-time and/or the energy constraints are violated. Thus,
the system feasibility is reestablished by a global recon-
figuration decomposition migration or local reconfiguration
degradation or removal strategies.
Proposition 2: The reconfiguration protocol is complete.
For each subsystem in Sys, if an unpredictable event occurs

and evolves the system towards an infeasible state where
the real-time and/or the energy constraints are not respected,
and if there exists a local or global solution S to reestablish
the system feasibility, then the reconfiguration process will
necessarily find it.

Proof: We perform a reasoning by absurdity to prove
the completeness of the proposed protocol. Let us suppose
that the protocol is not complete. That is, there is no possible
solution neither local nor global for the faulty subsystem.
Thus, we have

UPj > 1 and Uej > 1 (8)

Since the reconfiguration process is assumed by absurdity to
be not complete, we conclude that there exists a solution S
such that

UPj ≤ 1 and Uej ≤ 1 (9)

S is not found by the proposed reconfiguration protocol but
by another one. We recall that a software solution S consists
with decreasing processor resource and energy requirements
while satisfying the QoS. Such a solution can be either the
degradation of the execution mode, migration, or removal of
tasks.

Thus, we conclude that no other algorithm provides a
solution not yet found by the protocol. In fact if a solution S
exists, it is included in Sf = {SDM , SD, SR}. Thus, S belongs
to either local or global strategy. �

VI. CASE STUDY
This section investigates a running example in order to
explain the proposed methodology using theoretical tasks.
Suppose that Sys is a networked reconfigurable system com-
posed of three subsystems such that Sys = (6,0,3), where
6 = {σ1, σ2, σ3}. Initially, the batteries B1 = 45 energy
units, B2 = 110 energy units, and B3 = 100 energy units
are fully charged. The system Sys is composed of five tasks
as depicted in Table 1. The tasks τ1, τ2, and τ3 are assigned
to processor P1, task τ4 is assigned to processor P2, and task
τ5 is assigned to processor P3. The energy consumption is
equal to Ue1 = 20, Ue2 = 30 and Ee3 = 2 energy units. Due
to the cheddar [34] implementation, the feasible scheduling
result of the system Sys is shown in Figure 7. After applying
different reconfiguration scenarios as depicted in Table 2,
the system may evolve towards an infeasible state where the

energy consumption may increase and/or some tasks violate
their deadlines.

TABLE 1. System configuration.

FIGURE 6. DAG G4 associated to the task τ4.

VII. EXPERIMENTS
This section explores the performance of the proposed intel-
ligent multiagent distributed architecture that allows feasible
executions after any external reconfiguration scenario that
may evolve the system towards an infeasible state. Extensive
simulation experiment has been performed to validate the
proposed scheme in energy efficiency and deadline miss rate.
In order to evaluate this architecture, an NREEHS composed
of eight subsystems is considered. Each subsystem is com-
posed of a processor and a rechargeable energy storage with
limited capacity supplied by a renewable energy source. The
software platform consists of 100 tasks to be schedulable on
the eight identical processors. The parameters of the tasks are
randomly generated where every period Ti (i ∈ [1..100]) is
randomly chosen in the range [100, 200], every WCET Ci
(i ∈ [1..100]) is randomly chosen in the range [6, 10], and
every degree of criticality dci (i ∈ [1..100]) is randomly
chosen in the range [A, F]. We use a DAG generator to
generate graphs of tasks Gi = (Vi,Ei) (i ∈ [1..100]) accord-
ing to Ci and Ti. We assume that the intelligent multiagent
distributed architecture consists of 33 agents. A coordinator
agent is affected to the whole system and each subsystem
gathers four agents: Reconfiguration manager, scheduling,
battery manager and supervisor agents. We assume a set of
unpredictable reconfiguration scenarios is applied repeatedly.

2078 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

TABLE 2. Reconfiguration scenarios.

FIGURE 7. Scheduling of the initial system.

Each scenario adds a set of n tasks such that n is randomly
chosen in the range [10, 40].

A. COMPARISON OF DEADLINE MISS RATE
We perform a simulation in order to prove the performance
of the proposed intelligent multiagent architecture in terms
of the percentage of satisfied deadline.

1) COMPARISON WITH AND WITHOUT MAS
In this first set of experiments, we investigate the perfor-
mance of the proposed multiagent architecture. For this pur-
pose, we compare overall miss rates with and without MAS.
Fig. 8 presents the percentage of succeeded deadlines. When
we apply the intelligent multiagent distributed architecture,
the percentage of the succeeded deadlines increases from
52% to 73% if the number of concurrent reconfiguration
requests is equal to 35.

FIGURE 8. Percentage of satisfied deadlines.

2) COMPARISON WITH PREVIOUS APPROACHES
The proposed algorithm is compared with the well
known state-of-the-art techniques EDH [20], UTB [23],

VOLUME 6, 2018 2079

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

FIGURE 9. Overall miss rate comparison.

and SDA [35]. As described in Fig. 9 UTB has a much higher
miss rate as it uses an isolated task dropping scheme on each
processor, which is based on energy availability prediction for
one upcoming task, ignoring workload on other processors
that compete for the same energy source.

For the other two techniques, EDH and SDA have a lower
miss rate percentage than UTB. However, EDH before autho-
rizing any task to execute, the energy level of the storage
must be sufficient such that all future occurring tasks exe-
cute timely with no energy starvation, considering both their
energy consumption and the replenishment rate of the stor-
age unit. On the other hand, SDA performs task rejection
before assigning accepted tasks to different processors thus,
the workload is adapted to a system-wide energy budget that
has been predicted.

It is clear that the proposed approach outperforms the other
techniques. One reason for this trend is that the proposed
approach exploits the flexibility to perform dynamically a
solution with three successive adaptation strategies: migra-
tion from one processor to another one, degradation of the
execution mode, and removal which may increase the per-
centage of succeeded deadlines. In contrast to SDA and EDH,
the proposed approach allows the execution of requested
tasks while maintaining a graceful QoS.

B. COMPARISON OF ENERGY GAIN
The approach proposed in [30] presents a software-agent-
based architecture where an intelligent software control agent
is developed to perform four solutions. The study in [30]
considers a reconfigurable real-time system that processes
periodic and probabilistic tasks. In order to compare with
this approach, we consider that the system processes only
periodic tasks. Since the gains of the four proposed solu-
tions in [30] are independent of the considered scenarios,
Solution A is selected in the performed experimentation.
Fig. 10 presents the percentage of energy gain when a set
of reconfiguration scenarios is applied repeatedly during the
execution time of both solution A from [30] and the proposed
heuristic RH.

FIGURE 10. Percentage of energy gain.

C. COMPARISON OF NUMBER OF
EXCHANGED MESSAGES
The rate of exchanged messages is an important criterion
to guarantee an acceptable level of safety and robustness in
real-world industry such as distributed applications. First of
all, we compare the inter-subsystem communication protocol
defined to treat the Decomposition-Migration reconfigura-
tion and the intra-subsystem communication protocol defined
to perform the DH and RH strategies. We compare the pro-
posed work with the research reported in [28] in terms of the
number of exchanged messages. Fig. 11 shows that the DMH
outperforms all the other heuristics. In fact, when the number
of concurrent reconfiguration requests is equal to 100, DMH
provides 10600 exchanged messages, whereas the DH and
RH heuristics provide similar results and the corresponding
number of the exchanged messages exceeds 20000.

FIGURE 11. Number of exchanged messages in the inter-subsystem and
intra-subsystem communication protocol.

In order to show the performance of the proposed com-
munication protocol, we perform a simulation to compare it
with the one reported in [28]. Let us assume that Sys is a

2080 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

TABLE 3. Comparative study.

networked reconfigurable system based on energy harvesting
and has n subsystems and a coordinator. Then, in order to
evaluate the performance of the system, we consider the
worst case where n subsystems need to perform reconfigura-
tion scenarios. We admit that the concurrent reconfiguration
requests are accepted in n steps such that only one request is
accepted in each step. According to the communication pro-
tocol proposed by Zhang et al. [28], the number of exchanged
messages is equal to 3*n*(n + 1). Besides, the number of
exchanged messages in the proposed communication proto-
col in this paper is equal to n*(n+2).

Fig. 12 shows clearly that the proposed communication
protocol outperforms the one reported in [28]. Especially
when the number of concurrent reconfiguration requests
exceeds ten, the gap increases considerably. Hence, the num-
ber of exchanged messages exceeds 2700 when the number
of concurrent reconfiguration requests is equal to 30, whereas
it is equal to 960 when we perform the proposed protocol
in this paper. The results of this experimentation show that
the proposed communication protocol reduces the number of
exchanged messages by 64.44% than that the work reported

FIGURE 12. Number of exchanged messages.

in [28]. This is justified by the fact that in the related work
the authors assume that the rejected subsystems during a
distributed reconfiguration process will send again the same
requirements to the coordinator until they are accepted in
the future and no new reconfiguration requirements arise

VOLUME 6, 2018 2081

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

before all the requirements are accepted. On the contrary,
in the current work we assume that all the reconfiguration
requirements are sorted in R(t) and treated according to their
emergency calculated in function of the degree of criticality
of migrated tasks. Therefore, a subsystem will only send one
message for a reconfiguration requirement which will reduce
the number of exchangedmessages comparedwith the related
work.

D. SCHEDULING OVERHEADS ANALYSIS
To compare scheduling overhead between UTB, EDH, SDA
and the proposed approach, we executed the scheduling pro-
cedures of these schemes on the gem5 simulator [37] with
a single thread at 1 GHz to observe average execution time
overhead averaged over all task instances when managing a
8 subsystems that run 160 periodic tasks with a scheduling
granularity of 1 ms. The results of this paper are shown
in Fig 13. It can be seen that the obtained execution time and
energy overheads are lower than overheads for UTB, EDH,
and SDA. This result is consistent with the time complexity
of EDH in the worst-case which is pseudo-polynomial and
might be a serious drawback in practice. The complexity
of EDH comes mainly from slack-time and slack-energy
computations. The main reason for the lower overhead with
the proposed approach is that it is based on the intelligent
multiagent architecture which avoids computation overheads.

FIGURE 13. Comparison of scheduling overhead.

Table 3 compares the proposed approach in this paper
with related works. The originality lies in treating a more
challenging problem that combines different and independent
problems in the related works. In fact, this paper is the first
to deal with the adaptive scheduling of real-time DAG tasks
with energy harvesting. The technical solution based on the
migration of probabilistic branches as well as the proposed
multiagent architecture is original. The discussed approach
develops a new efficient solution to resolve the encountered
problem.

VIII. CONCLUSION AND FUTURE WORK
This paper developed a new intelligent distributed multia-
gent architecture for networked distributed reconfigurable

systems based on energy harvesting. The agents are clas-
sified into two categories: i) coordinator agent associated
with the whole distributed system to coordinate between the
networked reconfigurable subsystems and to treat all con-
current reconfigurations, and ii) local agents associated with
each subsystem in order to keep feasible executions after any
external reconfiguration scenario. A reconfiguration manager
agent is proposed to perform the proposed solution with
three adaptation strategies: DecompositionMigration Heuris-
tic, Degradation Heuristic, and Branch Removal Heuristic in
order to reestablish feasible executions. Two communication
protocols are proposed: i) an intra-subsystem communication
protocol to manage the communication between agents in the
same subsystem, and ii) an inter-subsystem communication
protocol to manage concurrent reconfigurations between sub-
systems. Extensive simulation experiments show the effec-
tiveness of the proposed intelligent multiagent distributed
architecture compared with a previous work in terms of the
percentage of succeeded deadlines. Indeed, the experimen-
tal results show that when we apply the intelligent multia-
gent distributed architecture, the percentage of the succeeded
deadlines increases from 52% to 73% when the number of
concurrent reconfiguration requests is equal to 35. Moreover,
the results prove the effectiveness of the multiagent archi-
tecture and communication protocols compared with related
works from the state of the art in terms of the number of
exchanged messages and energy saving.

The authors are now working on an extension of the cur-
rent research by implementing the proposed approach in a
practical distributed system based on multiagent architecture.
We will also deal with the hardware aspect by proposing
a software-hardware solution based on the XILINX FPGA
technology [38].

REFERENCES
[1] J. A. Stankovic, ‘‘Real-time computing system: The next generationcoins,’’

Dept. Comput. Inf. Sci., Univ. Massachusetts, Amherst, MA, USA,
Tech. Rep. 88-06, 1988.

[2] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[3] F. Yao, H. Wu, Y. Chen, Y. Liu, and T. Liang, ‘‘Cluster-based collaborative
spectrum sensing for energy harvesting cognitive wireless communication
network,’’ IEEE Access, vol. 5, pp. 9266–9276, 2017.

[4] J. Liu, K. Xiong, P. Fan, and Z. Zhong, ‘‘RF energy harvesting wire-
less powered sensor networks for smart cities,’’ IEEE Access, vol. 5,
pp. 9348–9358, 2017.

[5] M. Ashraf, A. Shahid, J. W. Jang, and K.-G. Lee, ‘‘Optimization of the
overall success probability of the energy harvesting cognitive wireless
sensor networks,’’ IEEE Access, vol. 5, pp. 283–294, 2017.

[6] B. Buchli, F. Sutton, J. Beutel, and L. Thiele, Towards Enabling Uninter-
rupted Long-Term Operation of Solar Energy Harvesting Embedded Sys-
tems (Lecture Notes in Computer Science). Cham, Switzerland: Springer,
2014, pp. 66–83.

[7] G. Gatti, M. J. Brennan, M. G. Tehrani, and D. J. Thompson, ‘‘Harvesting
energy from the vibration of a passing train using a single-degree-of-
freedom oscillator,’’Mech. Syst. Signal Process., vols. 66–67, pp. 785–792,
Jan. 2016.

[8] M. G. Valls and P. B. Val, ‘‘Comparative analysis of two different
middleware approaches for reconfiguration of distributed real-
time systems,’’ J. Syst. Archit., vol. 60, no. 2, pp. 221–233,
2014.

2082 VOLUME 6, 2018

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

[9] A. Gharbi, M. Khalgui, andM. A. Khan, ‘‘Functional and operational solu-
tions for safety reconfigurable embedded control systems,’’ in Embedded
and Real Time System Development: A Software Engineering Perspective.
Berlin, Germany: Springer, 2014, pp. 251–282.

[10] R.M. da Silva et al., ‘‘Modeling of mechanisms for reconfigurable and dis-
tributed manufacturing control system,’’ in Technological Innovation for
Cloud-Based Engineering Systems. Cham, Switzerland: Springer, 2015,
pp. 93–100.

[11] X. Wang, Z. Li, and W. Wonham, ‘‘Dynamic multiple-period reconfigura-
tion of real-time scheduling based on timed des supervisory control,’’ IEEE
Trans. Ind. Informat., vol. 12, no. 1, pp. 101–111, Jan. 2016.

[12] Y. Chen, X.Mao, F. Hou, Q.Wang, and S. Yang, ‘‘Combining re-allocating
and re-scheduling for dynamic multi-robot task allocation,’’ in Proc. IEEE
Int. Conf. Syst., Man, Cybern (SMC), Oct. 2016, pp. 000395–000400.

[13] H. Grichi, O. Mosbahi, M. Khalgui, and Z. Li, ‘‘RWiN: New methodology
for the development of reconfigurable WSN,’’ IEEE Trans. Autom. Sci.
Eng., vol. 14, no. 1, pp. 109–125, Jan. 2017.

[14] M. Gasmi, O. Mosbahi, M. Khalgui, L. Gomes, and Z. Li, ‘‘New
pipelined approach for an effective reconfigurable wireless sensor
node,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published,
doi: 10.1109/TSMC.2016.2625817.

[15] S. B. Meskina, N. Doggaz, M. Khalgui, and Z. Li, ‘‘Multiagent framework
for smart grids recovery,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 47,
no. 7, pp. 1284–1300, Jul. 2017.

[16] N. Luo, W. Zhong, F. Wan, Z. Ye, and F. Qian, ‘‘An agent-based service-
oriented integration architecture for chemical process automation,’’ Chin.
J. Chem. Eng., vol. 23, no. 1, pp. 173–180, 2015.

[17] G.Michalos, P. Sipsas, S.Makris, and G. Chryssolouris, ‘‘Decisionmaking
logic for flexible assembly lines reconfiguration,’’ Robot. Comput.-Integr.
Manuf., vol. 37, pp. 233–250, Feb. 2016.

[18] E. M. Shakshuki, H. Malik, and T. Sheltami, ‘‘WSN in cyber physi-
cal systems: Enhanced energy management routing approach using soft-
ware agents,’’ Future Generat. Comput. Syst., vol. 31, pp. 93–104,
Feb. 2014.

[19] M. Chetto and A. Queudet, ‘‘A note on edf scheduling for real-time energy
harvesting systems,’’ IEEE Trans. Comput., vol. 63, no. 4, pp. 1037–1040,
Apr. 2014.

[20] M. Chetto, ‘‘Optimal scheduling for real-time jobs in energy harvesting
computing systems,’’ IEEE Trans. Emerg. Topics Comput., vol. 2, no. 2,
pp. 122–133, Jun. 2014.

[21] H. E. Ghor, M. Chetto, and R. H. Chehade, ‘‘A real-time scheduling
framework for embedded systems with environmental energy harvesting,’’
Comput. Elect. Eng., vol. 37, no. 4, pp. 498–510, 2011.

[22] B. Zhang, R. Simon, and H. Aydin, ‘‘Harvesting-aware energy man-
agement for time-critical wireless sensor networks with joint voltage
and modulation scaling,’’ IEEE Trans. Ind. Informat., vol. 9, no. 1,
pp. 514–526, Jan. 2013.

[23] J. Lu and Q. Qiu, ‘‘Scheduling andmapping of periodic tasks on multi-core
embedded systems with energy harvesting,’’ in Proc. Int. Green Comput.
Conf. Workshops (IGCC), 2011, pp. 1–6.

[24] M. Khalgui, O. Mosbahi, Z. Li, and H.-M. Hanisch, ‘‘Reconfig-
urable multiagent embedded control systems: From modeling to imple-
mentation,’’ IEEE Trans. Comput., vol. 60, no. 4, pp. 538–551,
Apr. 2011.

[25] J. Zhang et al., ‘‘Modeling and verification of reconfigurable and energy-
efficient manufacturing systems,’’ Discrete Dyn. Nature Soc., vol. 22,
Mar. 2015, Art. no. 813476.

[26] S. Ostroumov, L. Tsiopoulos, J. Plosila, and K. Sere, ‘‘Formal approach
to agent-based dynamic reconfiguration in networks-on-chip,’’ J. Syst.
Archit., vol. 59, no. 9, pp. 709–728, 2013.

[27] J. Ye, Z. Li, and A. Giua, ‘‘Decentralized supervision of Petri nets with
a coordinator,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 6,
pp. 955–966, Jun. 2015.

[28] J. Zhang, M. Khalgui, Z. Li, G. Frey, O. Mosbahi, and H. B. Salah,
‘‘Reconfigurable coordination of distributed discrete event control sys-
tems,’’ IEEE Trans. Control Syst. Technol., vol. 23, no. 1, pp. 323–330,
Jan. 2015.

[29] I. Khemaissia, O. Mosbahi, and M. Khalgui, ‘‘New automatic agent-based
solutions for feasible reconfigurable mp-soc architectures,’’ in Proc. 14th
Int. Conf. Appl. Concurrency Syst. Design (ACSD), Tunis, Tunisia, 2014,
pp. 152–158.

[30] X. Wang, I. Khemaissia, M. Khalgui, Z. Li, O. Mosbahi, and M. Zhou,
‘‘Dynamic low-power reconfiguration of real-time systems with periodic
and probabilistic tasks,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 1,
pp. 258–271, Jan. 2015.

[31] S. K. Baruah, ‘‘A general model for recurring real-time tasks,’’ in
Proc. IEEE Real-Time Syst. Symp., Washington, DC, USA, Dec. 1998,
p. 114.

[32] P. Ramanathan, ‘‘Overload management in real-time control applications
using (m, k)-firm guarantee,’’ IEEE Trans. Parallel Distrib. Syst., vol. 10,
no. 6, pp. 549–559, Jun. 1999.

[33] W. Housseyni, O. Mosbahi, M. Khalgui, and M. Chetto, ‘‘Real-time
scheduling of reconfigurable distributed embedded systems with energy
harvesting prediction,’’ in Proc. IEEE/ACM 20th Int. Symp. Distrib. Simu-
lation Real Time Appl. (DS-RT), Sep. 2016, pp. 171–178.

[34] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, ‘‘Cheddar: A flexible
real time scheduling framework,’’ ACM SIGAda Ada Lett., vol. 24, no. 4,
pp. 1–8, 2004.

[35] Y. Xiang and S. Pasricha, ‘‘Run-time management for multicore
embedded systems with energy harvesting,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 23, no. 12, pp. 2876–2889,
Dec. 2015.

[36] R. Idriss, A. Loukil, and M. Khalgui, ‘‘New middleware for secured
reconfigurable real-time systems,’’ in Intelligent Software Methodologies,
Tools and Techniques. Cham, Switzerland: Springer, 2015, pp. 469–483.

[37] N. Binkert et al., ‘‘The gem5 simulator,’’ ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[38] T. H. Pham, S. A. Fahmy, and I. V. McLoughlin, ‘‘An end-to-
end multi-standard ofdm transceiver architecture using FPGA par-
tial reconfiguration,’’ IEEE Access, vol. 5, pp. 21002–21015, 2017,
doi: 10.1109/ACCESS.2017.2756914.

WIEM HOUSSEYNI was born in Tunis, Tunisia,
in 1989. She received the engineering degree in
computer science from Tunis El Manar University,
Tunis, in 2014.

She is currently pursuing the Ph.D. degree with
the Computer Laboratory for Industrial Systems,
National Institute of Applied Science and Technol-
ogy, and the Research Institute of Communications
and Cybernetics.

Her interests focus on real-time scheduling
of reconfigurable distributed embedded systems with energy harvesting
requirements.

OLFA MOSBAHI received the B.S. degree in
computer science and the M.S. degree from Tunis
El Manar University, in 1999 and 2002, respec-
tively, the Ph.D. degree from the French Polytech-
nic Institute of Lorraine, France, in 2008. She did
her Ph.D. thesis in computer science with inria,
France. She was a part time Researcher with inria,
and a temporary Lecturer with Nancy 2 University.
She was also a Researcher with Martin Luther
University, Germany.

She is currently an Assistant Professor in computer science with INSAT,
Carthage University, Tunisia. She is actively involved in several European
projects and also in other interesting international collaborations.

Dr. Mosbahi is a TPC Member of many conferences and different boards
of journals.

VOLUME 6, 2018 2083

http://dx.doi.org/10.1109/TSMC.2016.2625817
http://dx.doi.org/10.1109/ACCESS.2017.2756914

W. Housseyni et al.: Multiagent Architecture For Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks

MOHAMED KHALGUI received the B.S. degree
in computer science from Tunis El Manar Uni-
versity, Tunis, Tunisia, in 2001, the M.S. degree
in telecommunication and services from Henri
Poincaré University, Nancy, France, in 2003,
the Ph.D. degree from the National Polytechnic
Institute of Lorraine, Nancy, in 2007, and the
Habilitation Diploma degree in information tech-
nology (computer science) from the Martin Luther
University of Halle-Wittenberg, Halle, Germany,

in 2012, with Humboldt Grant.
He was a Researcher in computer science with the Institut National

de Recherche en Informatique et Automatique, Rocquencourt, France,
the ITIA-CNR Institute, Vigevano, Italy, the Systems Control Labora-
tory, Xidian University, Xi’an, China, and the KACST Institute, Riyadh,
Saudi Arabia, a Collaborator with SEG Research Group, Patras University,
Patras, Greece, the Director of the RECS Project, O3NEIDA, Canada,
the Director of the RES Project, Synesis Consortium, Lomazzo, Italy,
the Manager of the Cyna-RCS Project, Cynapsys Consortium, France,
and the Director of the BROS and RWiN Projects, ARDIA Corporation,
Germany.

He is currently a Professor with Jinan University, China. He has been
involved in various international projects and collaborations. He is a TPC
member of many conferences and different boards of journals.

ZHIWU LI (M’06–SM’07–F’16) received the B.S.
degree in mechanical engineering, the M.S. degree
in automatic control, and the Ph.D. degree in man-
ufacturing engineering from Xidian University,
Xi’an, China, in 1989, 1992, and 1995, respec-
tively. He was with Xidian University in 1992.

He is currently with the Macau Institute of Sys-
tems Engineering, Macau University of Science
and Technology, Macau, China.

He has listed in the book of Marquis entitled
Who’s Who in the World (27th edition, 2010). He is currently the Founding
Chair of the Xi’an Chapter of the IEEE Systems, Man, and Cybernetics
Society. He serves as a Frequent Reviewer for over 50 international journals,
including Automatica and a number of the IEEE Transactions and many
international conferences.

LI YIN received the B.E. degree in remote sensing
from Wuhan University, Wuhan, China, in 2007,
and the M.S. degree in GIS from the Institute of
Remote Sensing Technology Application, CNNC
Beijing Research Institute of Uranium Geology,
Beijing, in 2014.

He is currently pursuing the Ph.D. degree in sys-
tem control with the Macau University of Science
and Technology, Macau, China.

His research interests include discrete-event
systems and fault-tolerant dynamic systems with applications to
manufacturing.

2084 VOLUME 6, 2018

	INTRODUCTION
	STATE OF THE ART
	REAL-TIME SCHEDULING IN ENERGY HARVESTING BASED EMBEDDED SYSTEMS
	RECONFIGURABLE REAL-TIME EMBEDDED SYSTEM BASED ON MULTIAGENT DISTRIBUTED ARCHITECTURE

	FORMALIZATION OF NETWORKED RECONFIGURABLE SYSTEM
	HARDWARE ARCHITECTURE
	ENERGY CONSIDERATIONS
	REAL-TIME TASKS
	REAL-TIME SCHEDULING
	TIME FEASIBILITY
	ENERGY FEASIBILITY

	DAG MODEL
	MOTIVATION
	DAG TASK MODEL DESCRIPTION

	RECONFIGURATION APPROACH
	RECONFIGURABLE REAL-TIME SCHEDULING
	DECOMPOSITION AND MIGRATION MODULE
	DEGRADATION MODULE
	REMOVAL MODULE

	RECONFIGURATION ALGORITHM

	MULTIAGENT ARCHITECTURE FOR NREEHS
	MOTIVATIONS FOR THE USE OF THE MAS PARADIGM
	CLASSIFICATION OF AGENTS
	SUPERVISOR AGENT
	SCHEDULING AGENT
	RECONFIGURATION MANAGER AGENT
	BATTERY MANAGER AGENT
	COORDINATOR AGENT

	COMMUNICATION PROTOCOL FORMALIZATION
	INTER-SUBSYSTEM COMMUNICATION PROTOCOL
	INTRA-SUBSYSTEM COMMUNICATION PROTOCOL

	COMPLETENESS PROOF OF THE RECONFIGURATION SOLUTION

	CASE STUDY
	EXPERIMENTS
	COMPARISON OF DEADLINE MISS RATE
	COMPARISON WITH AND WITHOUT MAS
	COMPARISON WITH PREVIOUS APPROACHES

	COMPARISON OF ENERGY GAIN
	COMPARISON OF NUMBER OF EXCHANGED MESSAGES
	SCHEDULING OVERHEADS ANALYSIS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	WIEM HOUSSEYNI
	OLFA MOSBAHI
	MOHAMED KHALGUI
	ZHIWU LI
	LI YIN

