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ABSTRACT Fractional order characteristics (FOCs) have been shown to be useful in the predict degradation
trend of rotating machinery. In this paper, a novel prognostics methodology based on improved R/S statistic
and fractional Brownian motion (FBM) for rolling bearing degradation process is proposed. Due to the
fact that bearing health indicators, such as equivalent vibration intensity (EVI), often exhibit non-stationary
and non-Gaussian traits, the FOC methodology normally involves the estimation of a parameter Hurst H;
the improved R/S statistic technique with auto-covariance estimator was introduced to address the issue
that the calculation of the Hurst exponent by classical R/S methods is sensitive to heteroskedasticity and
short-range dependence. Furthermore, a slow degrading process of a rolling bearing can be predicted by a
common FOC model, but the actual sharp transition points (STPs) of the degradation are often very difficult
to track. The main purpose of a rolling bearing degradation prediction is to prognosticate and track the STP’s
trend when the failure occurs between the normal phase and the incipient degradation phase. A method that
combined FBM and Brownian motion is presented when the forecasted points contaminated with STPs,
in which the predicting operator, driven by a new stochastic differential equation and its computationally
efficient algorithm, are explored. The experimental results show that the proposed approach can better predict
the EVI degradation trend than traditional FOC and other time series models.

INDEX TERMS Fractional Brownian motion (FBM), stochastic differential equation (SDE), Hurst
exponent (HE), improved R/S statistic model, degradation trend prognostics.

I. INTRODUCTION
Prognostics and health management (PHM) is of the sig-
nificance to guarantee safety, reliability and efficiency
of mechanical equipment, and has been implemented in
various applications such as rolling bearings [1], [2],
gear-box [3]–[5], and rotor machinery system [6], [7].

Rolling bearings used in rotating machinery are subjected
to harsh working environments, including vibration, corro-
sion, high temperature and shocks under varying speed, they
gradually degrade from a normal/health condition to a failure
condition. Usually, the degradation process over the whole
lifetime of the bearings can be classified into two phases:
(1) phase I-normal phase and (2) phase II-significant degra-
dation phase. For example, the bearing health indicator for

processing three sets of accelerated bearing degradation data
is plotted in Fig. 1, where it is observed that different bearings
have different degradation rates and failure times.

In phase I, the bearing health indicator has very small
amplitudes and stays at a stable level, which reflects that a
bearing is in a normal/health condition. In phase II, the bear-
ing health indicator exhibits an exponential degradation trend
with amplitude. In recent years, several time-frequency fea-
tures such as root-mean-square (RMS), Kurtosis, crest value,
RMS entropy estimator (RMS-EE) [8] and frequency spec-
trum partition summation (FSPS), etc., extracted from vibra-
tion signals for bearing degradation tracking were reported
in the previous researches. Based on the obtained health
indicators, various prediction models were also proposed for
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FIGURE 1. Typical bearing degradation trends described by the bearing
health indicator.

estimating the health status of the rolling bearings. Current
existing prediction approaches can be classified into three
categories: physics-based models, knowledge-based methods
and data-driven prediction models.

For physics-based models, for example, Fatigue crack
growth (FCG) model [9] and Fatigue spall progression
life (FSPL) model [10], which describe the evolution of
structural damage according to the physical mechanisms.
However, the limitation in developing physics-based predic-
tionmodels is that they require extensive historical defect data
collected by sensors beforehand. Besides, once a physics-
based model is established, the relevant model parameters
cannot be adjusted, which means that the actual degenera-
tion in running states as reflected in the measured signals
will not be utilized in real time [11], [12]. In compari-
son, the knowledge-based prediction methods such as neural
network [13], deep learning [14], [15], expert system [16],
etc., which take advantages of prior empirical knowledge.
Although the forecasting accuracy is greatly improved in
terms of probabilistic distributions, those approaches still
need require a larger number of historical samples to
form a training model. On the other hand, state-of-the-art
knowledge-based prognostic techniques typically rely on
empirical knowledge and more suitable for qualitative eval-
uation, the quantitative prediction in practical applications
still needs to be improved [17]. Data-driven prediction mod-
els such as hidden Markov model (HMM) [18], time series
model [19], [20], support vector machine (SVM) [21], [22],
etc., which are not establish complex prediction equations at
the initial analytical stage, and the model parameters can be
adjusted to capture the degradation trend of vibration signals.
In addition, both quantitative results and probabilistic distri-
butions of the predicted data can be obtained by data-driven
methods, meanwhile, different kinds of physical knowledge
of the system cannot be integrated. A disadvantage associ-
ated with these data-driven techniques is that they may be
applicable to the mechanical system under specific operation
condition, might not work when the operating conditions of
the system are changed [23], [24].

Over the past years, the self-similarity (SS) and frac-
tional order characteristic (FOC) of health indicators series

aroused great interest and have become increasingly popular
in the field of forecast applications. For example, in [25],
Li et al. proposed a long range dependence (LRD) prediction
approach called adaptive fractional autoregressive integrated
moving average (f -ARIMA) to investigated the running ten-
dency of rolling bearing based on equivalent vibration inten-
sity (EVI) health factor. Li and Li [26], [27], demonstrated
the suitability of prediction method based on long range
dependence and short range dependence (SRD) and fractal
time series of fractional system. Song et al. [28], developed
a minimum entropy deconvolution and fractional Brownian
motion degradation model to predict the bearing running
tendency during a serious fault condition. Although self-
similarity and FOC property can be observed in a wide range
of mechanical operation systems, and some good prediction
results were obtained by the fractional models, however, there
are two potential problems related the above literatures still
remained unresolved.

(1) In self-similarity and FOC domain, the Hurst expo-
nent (HE) plays a significant role in the prediction of frac-
tional systems. There are many methods to estimate the HE,
including the maximum likelihood estimation and rescaled
range analysis (R/S), local Whittle’s estimator (LWE),
wavelet based method [29]–[31], etc. However, the calcu-
lation of HE by classical estimator technique is sensitive to
the length of the profile, non-stationary characteristic and
noise, for example, the R/S statistic model was shown to be
sensitive to heteroskedasticity and short-range dependence
in the underlying process, leading to the prediction accuracy
reduced dramatically if the Hurst exponent lack of the optimal
solution.

(2) For the case that some sharp transition points
(STPs, or abrupt change points) are contained in the health
indicator time series, especially the time series at the junc-
tion between the phase I and phase II, as shown in Fig.1,
if we applying the conventional fractional systems models to
process those special points/sequences, the accuracy of the
prediction will be fallen dramatically.

To overcome these unresolved limitations and improve
prediction accuracy, in this paper, a novel approach based
on improved R/S statistic model and fractional Brownian
motion (FBM) for rolling bearings degradation prognostics
is proposed. The sensitive issue related to heteroskedasticity
and short-range dependence in the underlying process will be
addressed by the improved R/S statistic technique with auto-
covariance estimator. The STPs problemwill be solved by the
new stochastic differential equation (SDE) which combined
FBM with Brownian motion. Further, we show how to calcu-
late the drift and volatility parameters of the SDE predicting
operator to obtain a reliable prediction result. Results of
accelerated life test indicate that significant improvements
in prediction accuracy are obtained with the proposed model
compared to the persistence methods.

The layout of this paper is organized as follows.
Section 2 introduces the algorithm and theoretical deriva-
tion of the fractional Brownian motion and stochastic

21104 VOLUME 5, 2017



Q. Li, S. Y. Liang: Degradation Trend Prognostics for Rolling Bearing Using Improved R/S Statistic Model and FBM Approach

differential equation. Section 3 describes the model of
improved R/S statistic technique. In section 4, the bearing
degradation process prognostic results and discussion of the
proposed algorithm with other approaches previously are
investigated. Conclusions are presented in Section 5.

II. FRACTIONAL BROWNIAN MOTION AND STOCHASTIC
DIFFERENTIAL EQUATION
A. RANDOM WALK AND BROWNIAN MOTION
Let X (t) be a stochastic process (random process) and its
collection is {X (t)}, the mean of the process is as follows:

µ(t) = E[X (t)] (1)

and the auto-covariance of the stochastic process can be
defined as,

r(s, t) = Cov[X (s),X (t)]

= E[(X (s)− E(X (s)))(X (t)− E(X (t)))] (2)

Furthermore, for a stochastic process X (t), divide the time
into n intervals with a fixed-length1t , correspondingly, if we
divide a space into n intervals with a fixed-length, we have,

1x = σ
√
1t (3)

Assign a random variable ξ is ±1 with probabilities 0.5,
i.e., p(ξ = −1) = 0.5 = p(ξ = 1), for t = 1t , the random
walk Wt can be defined by,

Wt = ξ11x + ξ21x + · · · + ξn1x (4)

If n → ∞, and thus 1t → 0 with t = n1t is fixed,
the result is called the Brownianmotionmodel (BM), denoted
asB(t).Mathematically, randomwalkWt has zeromean value
and its variance is n(1x)2 = σ 2t . It is easy to find that
B(t) has zero mean value and its variance σ 2t . Generally, for
a stochastic process X (t) which satisfies E[X (t)] = 0 and
Var(X (t)) = σ 2, the random walks can be embedded into
Brownian motion. The idea is that, if we define a sequence
t1 <t2 < . . . <tn of stopping times, the random walks
sequence {Wn, n > 1} can be expressed as Wn = B(tn) with
increments distributed like stochastic process X (t). Further-
more, the trajectories of randomwalk converge in distribution
to Brownian motion trajectories (it is the result of the invari-
ance principle [32]), which states that, for the random walk
sequence {Wn, n > 1} with zero mean value and variance
Var(X (t)) = σ 2, then the BrownianmotionB(tn) definedwith

B(tn) = 1
σ
√
n

n∑
k=1

Wk [33]. The auto-covariance between B(t1)

and B(t2) is E[B(t1)B(t2)] = min(t1, t2), which can be derived
as follow:

For Brownian motion B(t), the probability of the sequence
{B(t1),B(t2), · · · ,B(tn)} is given by [34],

Pn(X ) = [(2π )nt1(t2 − t1)(t3 − t2) · · · (tn − tn−1)]−
1
2

×

∫
X

e
−

1
2 [

x21
t1
+

(x2−x1)
t2−t1

+···+
(xn−xn−1)
tn−tn−1

]
dx1 · · · dxn (5)

Suppose t < s, then the inverse of the auto-covariance matrix
satisfies,

(3x, x) =
x21
t
+

(x2 − x1)2

s− t
(6)

where the matrix 3 is 3 =

∣∣∣∣∣ s
(s−t)t

−1
s−t

−1
s−t

1
s−t

∣∣∣∣∣, and m = 3−1 =∣∣∣∣ ttts
∣∣∣∣, i.e., for t < s, it satisfies m(t , t) = t , m(t , s) = t ,

m(s, t) = t , m(s, s) = s. Thus, for all t > 0 and s > 0, we get
m(t , s) = min(t , s).

B. FRACTIONAL BROWNIAN MOTION (FBM)
If the walks in which the steps are not independent, and each
step depends on the previous steps (long-term or short-term
historical steps), which called semi-randomwalks. Therefore,
the fractional Brownianmotion (FBM) is introduced by semi-
random walks [35]–[39].

The fractional Brownian motion can be defined using
the stochastic integral representation (Mandelbrot and Van
Ness 1968),

BH (t) = CH

{∫ 0
−∞

[(t − s)H−
1
2 − (−s)H−

1
2 ]dB(s)

+
∫ t
0 (t − s)

H− 1
2 dB(s)

}
(7)

where B(t) is a standard Brownian motion, H (0 < H < 1)
is Hurst exponent (the detailed calculation processes of HE
are given in section 3), and BH (t = 0) = 0. The coefficient
CH =

√
2H sin(Hπ )0(2H )
0(H+1/2) , in which 0(x) =

∫
∞

0 exp(−x)dx
is the Gamma function. For a FBM process, BH(t) has the
following properties:

(1) BH(t) has continuity trajectory;
(2) BH(t) is a Gaussian process and for all t≥0, 0<H<1,

we have E[(BH(t))2] = t2H;
(3) For all t≥0, BH(0) = 0 and E[BH(t)] = 0;
It should be noted that the Brownian motion is a spe-

cial case of FBM with Hurst parameter H = 1/2. The
FBM is a time-varying process, but its increment process
BH (t2) − BH (t1) of FBM are a stationary process, which
obeys a fractional Gaussian noise distribution. The increment
BH (t2) − BH (t1) is Gaussian distributed with the following
properties:

(1) Increment BH (t2)− BH (t1) is normal;
(2) E[BH (t2)− BH (t1)] = 0;
(3) [E(BH (t2)− BH (t1))]2 = σ 2c |t2 − t1|2H ;
where c=[1/2H[0(H + 1

/
2)]2]2H is the proportionality

constant. In addition, the covariance between BH (t2) and
BH (t1) is as follows:

cov(BH (t2),BH (t1)) = σ 2(c
/
2)(t2H2 + t

2H
1 − |t2 − t1|

2H )

(8)

C. PREDICTING OPERATOR DRIVEN BY STOCHASTIC
DIFFERENTIAL EQUATION (SDE)
In this section, the prognostics problem of solution of stochas-
tic differential equation (SDE) with fractional Brownian
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motion is presented. Let{X (t), t ≥ 0} be a stochastic process
in complete probability space (�, F, p), which is the solution
of the following formula,dX (t) = a(t)X (t)dt + dBH (t)

X (0) = x0
(9)

where x0 ∈ R, and a is bounded, BH (t) is a standard FBM,
0 < H < 1. It’s easy to calculate that X (t) is given by,

X (t) = e
∫ t
0 ax0 +

∫ t

0
e
∫ t
s adBH (s) (10)

The following proposition, lemmas and their derivations are
the prediction for BH (t), which are given by,

Proposition 1: Let {X (t), t ≥ 0} be the stochastic
process given by Eq.(10), which is the solution of Eq.(9). For
t > 0 and s ∈ (0, t) be fixed, we have the following equality,

E[X (t) |X (r) , r ∈ [0, s]]

= e
∫ t
s aX (s)+

∫ s

0
u
−(H− 1

2 )

×(I
−(H− 1

2 )
−s (I

H− 1
2

−t uH− 1
2
· v · 1[s,t)))dBH

= e
∫ t
s aX (s)+

∫ s

0
u
−(H− 1

2 )

×(I
−(H− 1

2 )
−s (I

H− 1
2

−t uH− 1
2
· v · 1[s,t)))d(X − aXdr) (11)

where ua(r) = r (a) and v(r) = e
∫ t
r a.

Lemma 1: If 0 < s < t , and c is an element of L2H , we have,

E
[∫ t

s
cdBH

∣∣∣BH (r), r ∈ [0, s]
]

=

∫ s

0
u
−(H− 1

2 )
(I
−(H− 1

2 )
−s (I

−(H− 1
2 )

−t uH− 1
2
c))dBH (12)

Proof: For t > 0 and s ∈ [0, t], by the result in Pipiras and
Taqqu [40],

E
[
BH (t)

∣∣∣BH (r), r ∈ [0, s]
]

= BH (s)+
∫ s

0
u
−(H− 1

2 )
(I
−(H− 1

2 )
−s (I

H− 1
2

−t uH− 1
2
1[s,t)))dBH

(13)

To validate Eq.(12), we assume that c is a step function, and
we have

c(r) =
n−1∑
i=0

ci1[ti,ti+1](r) (14)

For r ∈ [s, t), in which s = t0 < t1 < · · · < tn = t , so the
integral of c(r) is given by,∫ t

s
cdBH =

n−1∑
i=0

ci(BH (ti+1)− BH (ti)) (15)

Furthermore, we have,

E[
∫ t

s
cdBH

∣∣∣BH (r) ]
=

∫ s

0
u
−(H− 1

2 )
(I
−(H− 1

2 )
−s

×(I
H− 1

2
−t uH− 1

2

n−1∑
i=0

ci(1[t0,ti+1) − 1[t0,ti))))dB
H

=

∫ s

0
u
−(H− 1

2 )
(I
−(H− 1

2 )
−s (I

H− 1
2

−t uH− 1
2

n−1∑
i=0

ci1[ti,ti+1)))dB
H

(16)

Then, it follows from Eq. (12) that,

E
[∫ t

0
cdBH

∣∣∣BH (r), r ∈ [0, s]
]

=

∫ s

0
cdBH + E

[∫ t

s
cdBH

∣∣∣BH (r), r ∈ [0, s]
]

(17)

where c ∈ L2H , and the error variance (EV) for the prediction
of
∫ t
0 cdB is given

EV =
∫ t

s
(u
−(H− 1

2 )
)(r)(I

H− 1
2

−t uH− 1
2
c1[s,t](r))2dr (18)

As a matter of fact, the above EV follows the fact that
E[(
∫ t
0 cdB

H )2] = |c|2H . The above lemma 1 provides a pre-
diction result for the solution Eq.(10) of Eq.(9).

In addition to the stochastic differential equation (SDE)
in Eq.(9), many improved and optimized SDE models were
proposed, for example, the stochastic Langevin differential
equation [41], as follow,{

dX (t) = a(t)X (t)dt + b(t)dBH (t)
X (0) = x0

(19)

and geometric fractional Brownian motion [42]:{
dX (t) = X (t)(a(t)dt + b(t)dBH (t))
X (0) = x0

(20)

where a(t) and b(t) denote the drift and volatility parameters
of the underlying, respectively.

The aim of this section is to obtain the predicting oper-
ator formulas for sharp transition points (STPs) based on
stochastic differential equation, in the paper, a new stochastic
differential equation is introduced, that is,{

dX (t) = aX (t)dt + bX (t)d[εB(t)+ BH (t)]
X (0) = x0

(21)

where parameter ε denote constant, BH (t) is a standard FBM,
B(t) is a standard BM. We rewrite the above equation as,

dX (t) = aX (t)dt + εbX (t)dB(t)+ bX (t)dBH (t) (22)

Lemma 2: Parameter α and σ are constant, the stochastic
differential equation,

dX (t) = αX (t)dB(t)+ σX (t)dt (23)
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Its solution can be given by:

X (t) = X (0) exp[αB(t)+ (σ −
α2

2
)t] (24)

Proof: Rewrite the Eq. (23) as,

dX (t)
X (t)

= αdB(t)+ σdt (25)

Taking integration on the both sides of Eq. (25), we can get,∫ t

0

dX (t)
X (t)

=

∫ t

0
αdB(t)+

∫ t

0
σdt = αB(t)+ σ t (26)

According to the Ito’s formula [43], we have,

df (t,X (t)) =
∂f
∂t
f (t,X (t))dt +

∂f
∂x
f (t,X (t))dX (t)

+
1
2
∂2f
∂x2

f (t,X (t))(dX (t))2 (27)

Taking f (t, x) = f (x) = ln x, then, f ′(x) = 1
x , f
′′(x) = − 1

x2
.

Then,

d ln(X (t)) =
1

X (t)
dX (t)−

1
2

1
X2(t)

(dX (t))2

=
1

X (t)
dX (t)−

1
2
α2dt (28)

i.e.,

ln(X (t))− ln(X (0)) =
∫ t

0

dX (u)
X (u)

−
α2t
2

(29)

Let combine Eq. (29) and Eq. (26), we have,

ln(
X (t)
X (0)

)+
α2t
2
=

∫ t

0

dX (u)
X (u)

= αB(t)+ σ t (30)

Thus the solution of Eq. (23) can be obtained, i.e., X (t) =
X (0) exp[αB(t)+ (σ − α2

2 )t].
Lemma 3: Parameter α and σ are constant, the stochastic

differential equation,{
dX (t) = αX (t)dB(t)+ σX (t)dBH (t)
X (0) = x0

(31)

and its solution can be given by:

X (t) = X (0) exp(αB(t)+ σBH (t)−
1
2
α2t) (32)

Let’s return Eq. (21) and Eq. (22), taking integration on the
both sides of Eq. (22), we can get,

X (t) = X (0)+
∫ t

0
aX (s)ds+εb

∫ t

0
X (s)dB(s)+b

∫ t

0
X (s)dBH(s)

(33)

where parameter ε and b denote constants. Let the coefficients
of Eq. (31) satisfy assumption [43, Th. 3.2.3], according to the
results of Lemma 2 and Lemma 3, the solution of Eq. (21) can
be coarsely expressed as,

X (t) = X exp[at + b(BH (t)+ εB(t))] (34)

where definite Y(t)=at+b(BH (t)+εB(t)). Since the dB(t) =
ω1(t)dt, dBH (t) = ω2(t)(dt)H , and if the time [0, T ] is
divided into N equal interval, i.e., t0, t1, t2,. . . ,tN , the interval
length is h = T/N , thus the increment in Eq. (21) can be
discretized as

dX (t) = aX (t)dt + bX (t)dεB(t)+ bX (t)dBH (t)

⇒ 1X = a · X (t) ·1t

+ b · X (t) · ε · ω1(t) ·1t + b · X (t) · ω2(t) · (1t)H

(35)

where 1X = X (tj+1)− X (tj), j = 1, 2, ...,N .
If we assuming the interval is h, thus t = (h, 2h, ...,Nh)′,

B(t) = [Bh(t),B2h(t), ...,BNh(t)]′ andBH (t)= [BHh (t),B
H
2h
(t),

...,BH
Nh
(t)]′. Thus the joint probability density function

(JPDF) of Y can be expressed by,

g(Y ) = (2πb2)−
N
2 |3Hε|

1
2

× exp
(
−

1
2b2

(Y − at)′ ·3−1Hε · (Y − at)
)

(36)

where

3Hε

=

[
cov[BHih(t)+ εBih(t),B

H
jh(t)+ εBjh(t)]

]
i,j=1,2,...,N

= ε2h(i ∧ j)i,j=1,2,...,N+
1
2
h2H (i2H+j2H−|i−j|2H ))i,j=1,2,...,N .

Then we get the Logarithmic likelihood function of g(Y ) is,

ln g(Y ) = −
N
2
ln(2πb2)−

1
2
ln |3Hε|

−
1
2b2

(Y − at)′(Y − at)′ (37)

The maximum likelihood estimating function of a and b can
be calculated by taking the partial derivatives, we have,

∧
a =

t ′3−1HεY

t ′3−1Hεt
(38)

∧

b =
1
N
·
(Y ′3−1HεY )(t

′3−1Hεt)− (t ′3−1HεY )
2

t ′3−1Hεt
(39)

III. IMPROVED R/S STATISTIC MODEL
The HE plays a significant role in the prediction of fractional
Brownian motion. Hurst exponent, 0 <H< 1, which is
used for testing long-range dependence characteristic for a
stochastic process an autocorrelation function ρ(k) decaying
as ρ(k) ∝k2H−2 with a lag k→ ∞, and higher Hurst value
indicating a smoother trend, less volatility, and less rough-
ness. There are many methods to estimate the HE, including
the maximum likelihood estimation and rescaled range anal-
ysis, local Whittle’s estimator, wavelet based method, etc.
Generally, the Hurst exponent directly determines the path
trajectory of the FBM, and thus the value of Hurst exponent
reflects the types of bearing degradation tendency which can
be characterized by corresponding FBM model. However,
the estimation algorithms of Hurst exponent are usually either
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biased or exhibits fluctuate substantially for finite samples
as shown in previous researches [44]–[46]. For example, the
rescaled range analysis (R/S) statistic estimator is a classical
method for Hurst exponent [29]–[31]. Although the R/S
statistic estimator has been successfully applied to a number
of time series such as economic time series, geological events
and long-term weather records, etc., however, the calculation
of HE by R/S statistic estimator technique is sensitive to the
length of the profile, non-stationary characteristic and noise.
For a stochastic process X (t), the R/S statistic estimator can
be expressed by,

R(n)
S(n)
=

1
S(n)


max

n∑
i=1

[X (ti)− 1
n

n∑
i=1

X (ti)]

−min
n∑
j=1

[X (tj)− 1
n

n∑
j=1

X (tj)]

 (40)

where R(n) is the range in each segment and S(n) is the

standard deviation, i.e., S(n) =

√
1
n

n∑
i=1

(X (ti)− 1
n

n∑
i=1

X (ti))2.

The Hurst exponent H is deduced from the fitted straight line
of log(R(n)

/
S(n))vs log(S(n)). Generally speaking, we have

the following conclusions:
In particular, (1) the case 0 <H< 0.5, yields negatively

correlated increments, the time series X(t) belongs a short-
range dependence (SRD) process, the self-similar correlation
shows anti-persistent behavior; (2) the case H=0.5, yields
the standard Brownian motion, the self-similar correlations
are random and uncorrelated; On the other hand, (3) the case
0.5 <H< 1, yields positively correlated increments, the time
series X(t) exhibits a long-range dependence process, the self-
similar correlation shows persistive correlations behavior,
i.e. trend reinforcing. The FBM with such H is used when
slowly decaying effects are observed, in which the past events
have a decaying effect on the future.

Due to the vibration signals of rotating machinery belong
to non-stationary and non-Gaussian time series, the classical
R/S statistic estimator may generate great fluctuation, espe-
cially during the serious failure status of rotating machin-
ery. Meanwhile, the R/S statistic model was shown to be
sensitive to heteroskedasticity and short-range dependence
in the underlying process [47]. In this paper, the improved
R/S (IR/S) statistic model is proposed to address this issue.

The improved R/S statistic model differs in the definition
of the standard deviation S(n), and the estimator S2(n) is
defined as follows,

S2(p) =
1
n

n∑
i=1

[X (ti)−
1
n

n∑
i=1

X (ti)]2

+
2
n

p∑
i=1

ωi(p)


n∑

i=j+1

[
X (ti)−

1
n

n∑
i=1

X (ti)

]

×

[
X (ti−j)−

1
n

n∑
i=1

X (ti)

]}

=

n∑
i=1

[X (ti)− X (ti)]2

+
2
n

p∑
i=1

ωi(p)

 n∑
i=j+1

[X (ti)−X (ti)][X (ti−j)−X (ti)]


= S2(n)+ 2

p∑
j=1

ωi(p)γj (41)

where ωj(p) = 1− j
p+1 , p < n, and γj is the auto-covariance

estimator of X (t).
Thus, it should be noted that the classical R/S statistic

model is a special case of improved R/S statistic approach
with p = 0. The estimator S2(n) involves not only sums of
squared deviations of X (ti), but also includes its weighted
auto-covariance estimator γj. Thus, the complete expression
of the improved R/S statistic model is as follows:

IRS =
R(n)
S(p)
=

1√
S2(n)+ 2

p∑
j=1
ωi(p)γj

max
n∑
i=1

[X (ti)− 1
n

n∑
i=1

X (ti)]

−min
n∑
j=1

[X (tj)− 1
n

n∑
j=1

X (tj)]

 (42)

It should be noted that the classical R/S statistic model is a
special case of improved R/S statistic approach with p = 0.
The different part between R/S model and IR/Smodel mainly
focus on denominator. Next, the relationship between R/S
and IR/S will be illustrated by the distribution V of a Brow-
nian bridge [48]. For a stochastic process X (t), we have the
following definition,

Bn(τ ) =
1

S(p)
√
n
S[nτ ], τ ∈ [0, 1] (43)

whereS[nτ ] denotes the sum of zero mean random variable,

i.e., S[nτ ] =
n∑
i=1
εi, and [nτ ] represents the value [nτ ] less

than or equal to nτ , and Bn(τ ) is Brownian motion. For a
stochastic process X (t), we have the following theorem:

(a)
{
max
1≤i≤n

1
S(p)
√
n

n∑
i=1

[X (ti)− X (ti)]
}
⇒ max

0≤τ≤1
Bo(τ ) =

Mo

(b)
{
min
1≤i≤n

1
S(p)
√
n

n∑
i=1

[X (ti)− X (ti)]
}
⇒ min

0≤τ≤1
Bo(τ ) =

mo

(c) 1
√
nRS ⇒ Mo

− mo = V
The proofs for the above theorems are displayed in the [49]

and [50]. Therefore, if the lim
n→∞

E[
n∑
i=1

εi
n ] is finite and positive,
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and 1
√
nRS ⇒ Mo

− mo = V , then 1
√
n IRS ⇒ ζV , where,

ζ =

√√√√√√√√
lim
n→∞

E[ 1n (
n∑
i=1
εi)2]

lim
n→∞

E[ 1n
n∑
i=1
ε2i ]

(44)

The crucial issue of the new standard deviation measure is
the number of lag p which is used for improved R/S statistic
estimation, however, the lag p cannot by chosen too much
lower because the auto-covariance estimator γj may beyond
the lag p substantially and the estimates of rescaled ranges
and Hurst exponent are still biased; if the chosen lag is much
higher, the estimates of the rescaled range differ significantly
from the true values. In this paper, the optimal lag p can be
calculated by first-order autocorrelation coefficient ρ(1) of
the sub-interval. That is,

p∗ =
⌊
(
3h
2
)
1
2 (

2ρ(1)
1− ρ(1)

)
2
3

⌋
(45)

where symbol bc is the nearest lower integer operator and h is
the length of each sub-interval.

In this paper, a novel prognostics technique by using
improved R/S statistic model and fractional Brownian motion
approach is proposed for rolling bearing degradation trend
analysis. The procedures of prognostics technique can be
divided into six steps:

(1) Collect the vibration data of bearing whole life-cycle.
(2) Calculate bearing health indicators including RMS

and EVI exponent of whole life-cycle, using the fol-

lowing formulas: Vrms =

√
1
N

N−1∑
0
v2(n) and vs =√

(
∑
vx

Nx
)2 + (

∑
vy

Ny
)2 + (

∑
vz

Nz
)2. Based on time-domain

amplitude, the degenerate running trends can be
divided two phases, i.e., normal phase and significant
degradation phase.

(3) Randomly choose any health factor, for example, EVI
exponent of whole life-cycle, which will be used as
predicting samples.

(4) Apply the improved R/S statistic technique to calculate
the Hurst exponents of bearing whole life-cycle. Mean-
while, watch the range of obtained Hurst exponents
from the normal/health condition to incipient failure
stage.

(5) If 0.5 < H < 1, the predicting samples time series
exhibits a long-range dependence process, the stochas-
tic differential equation of FBM pedicting operator
with such H is used for rolling bearing degradation
prognostics.

(6) Comparative analysis with other start-of-the art
methods.

The flow chart of the proposed bearing degradation trend
prognostics technique is illustrated in Fig. 2.

FIGURE 2. Flow chart of the proposed method for bearing degradation
trend prognostics.

IV. EXPERIMENTAL EVALUATION
In order to validate effectiveness of the proposed method,
experimental data from bearing accelerated life test were
applied, as shown in Fig.3, The vibration data were collected
by the IEEE prognostic and health management associa-
tion [51]. The experimental platform including AC motor,
tested bearing, speed sensor, accelerometers, torque-meter,
thermocouple and NI-DAQ signal acquisition card, etc. For
the vibration signals, the sampling frequency was set to
25.6 kHz, and 2560 sample points (i.e., 0.1s) were recorded
each 10seconds. The authors analyzed the vibration acceler-
ation data that this accelerated life test was carried out suc-
cessively until the amplitude of vibration signal overpassed a
certain level 20g. As shown in Fig.3, the severe wear failure
in bearing ball and the spalling failure in inner race were
observed after teardown.

Generally, the bearing degradation trend can be repre-
sented by some time-domain health indicators such as peak
value, root-mean-square (RMS), vibration intensity (VI),
Kurtosis and equivalent vibration intensity (EVI), etc.,
where the vibration intensity (VI) can only be partly
described the running condition with one channel data,
further, the EVIs could be calculated via three directions,
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FIGURE 3. Overview of experimental setup and normal and degraded
bearings [51]. (a) Overview of experimental setup; (b) Normal and
degraded bearings.

i.e., axis X-Y-Z, respectively. The EVI is defined as:

vs =

√
(
∑
vx

Nx
)2 + (

∑
vy

Ny
)2 + (

∑
vz

Nz
)2, here Vx, Vy, and Vz are

vibration intensity in axis X, Y, Z. In this paper, the RMS and
EVI are discussed for further analysis. Fig.4 shows the root-
mean-square (RMS) and equivalent vibration intensity (EVI)
curves over the whole life-cycle of rolling bearing with
1428 points, and shows that there was a long time in stable
or normal operation and the period in fault occurrence and
severity is quite short. In this research, the health indicator
EVI collected at incipient fault and serious failure stages
was chosen as the target for degradation trend prognostics
of rolling bearing. The evolution of EVI curve shows several
areas of fluctuation which raises challenges for the prognostic
task.

Fig. 5(a) and 5(b) show the curves of the lags p and the
distribution of HE that calculated by improved R/S statistic
model. From Fig. 5(b), it can be found that the self-similarity
characteristic of EVI is strong in normal phase because the
Hurst exponent are occurred between 0.6 and 1, i.e., 0.5 <
H < 1, and then the Hurst exponent values decline dramati-
cally with the deterioration of the multiple faults. Moreover,
it can be seen that the Hurst-based degradation curve has
an opposite trend with the EVI curve, the fluctuation in the
bearing degradation area (from incipient failure to serious
failure) is also very large, resulting in that the prediction of
EVI becomes more challenging.

In this work, the main concern for bearing prediction
is that those degenerate trend points are covered from the

FIGURE 4. Time-domain health indicator feature waveforms of the rolling
bearing. (a) RMS plot over whole lifetime; (b) EVI plot over whole lifetime.

normal/health condition to incipient failure stage, i.e., from
phase I to phase II. From Fig.4 (b), it should be noted
that some sharp transition points (STPs, which mean their
vibration amplitudes are mutated sharply, e.g., point 1090 in
Fig.4(b), or the Hurst exponent values are mutated rapidly,
e.g., point 1090 in Fig.5(b)) are contained in the EVI
time series, i.e., from 950 point to 1150point. The predic-
tion from 950 point to 1150 point is divided into A to D
stage, i.e., A: [950:1000], B: [1000:1050], C : [1050:1100],
D: [1100:1150].The prediction curves of each stage for
rolling bearing are illustrated in Fig. 6. The prediction data
of different stages are integrated and compared with the
original vibration data, the overall prediction results are
shown in Fig. 7. As can be seen in Fig. 7, prediction data
generated by FBM model is able to reasonably track the
variation trend of original EVI.

In order to investigate the superiority of the proposed
method, time series prognostics model ARMA and the
f -ARIMA model that used in ref. [25] were employed to
process and forecast the above tested data. The actual degra-
dation data, prediction data generated by ARMA and the
prediction data generated by f -ARIMA are presented in
Fig. 8. As shown in Fig. 8, the ARMA and f -ARIMA pre-
diction curves cannot exactly track the trend of degradation
EVI points and has low estimation precision. The quanti-
tative evaluations of the prognostic results using different
methods are summarized in Table 1. It can be observed
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FIGURE 5. The results of improved R/S statistic method. (a)The curve of
the number of lags p calculated by improved R/S statistic method;
(b) Hurst curve over whole lifetime with improved R/S statistic method.

TABLE 1. The quantitative evaluations of the prognostic results using
different methods.

from Table 1 that five quantitative indicators recorded by
FBM approach are less than their corresponding values by
other two methods. The comparison results indicate that the
proposed FBM method can significantly improve the effec-
tiveness and accuracy for bearing degradation trend tracking.

Here x(k) and
∧

x(k) are actual data and predicted data,
respectively.

FIGURE 6. The prediction results by FBM in different sections. (a) The
prediction result in stage A; (b) The prediction result in stage B; (c) The
prediction result in stage C; (d) The prediction result in stage D.

Since the proposed prognostic algorithm considers the
Hurst values are in range of 0.5 and 1, what has to be fur-
ther discussed is what kind of Hurst scope is valid in FBM
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FIGURE 7. The actual data and the predicted data based on the FBM.

FIGURE 8. The actual and predicted data based on the ARMA model and
the method in [25].

FIGURE 9. The EVI plot of the contrastive rolling bearing whole lifetime.

prognostic approach. Therefore, one of the most important
boundary conditions, H=0.5 and H=0.5, should also be
considered. For this purpose, another accelerated life test
dataset of rolling bearing under the same operation was used.
The whole life EVI results of contrastive (another) bear-
ing is shown in Fig. 9. The corresponding Hurst exponents
curve calculated by improved R/S statistic model is shown
in Fig. 10, as can be seen, most of the Hurst exponents are
lower than 0.5 from the phase I to phase II. Here, the time
series from 1651 point to 1750 point is selected as a predicted
sample. It can be seen from 1651 point to 1750 point that, lots
of sample points less than or equal 0.5 are covered.

Accordingly, the FBM prediction results for [1651, 1700]
and [1701, 1750] are shown in Fig. 11 (a) and 11(b), respec-
tively. It is clear that the prediction accuracy of the pro-
posed method is reduced greatly, it is also noted that most of

FIGURE 10. The Hurst curve of contrastive rolling bearing whole lifetime
based on improved R/S statistic method.

FIGURE 11. The actual data and the predicted data based on the FBM.
(a) The prediction result for region [1651-1700]; (b) The prediction result
for region [1701-1750].

predicted values deviate from the true values. Overall predic-
tion performances are not satisfactory for bearing degradation
trend, these results demonstrate that the proposed method
cannot be applied efficiently for the time series with lower
Hurst values, i.e., H<0.5 and H=0.5.

V. CONCLUSIONS
In this paper, a novel prognostics method based on fractional
Brownian motion combined with improved R/S statistic tech-
nique is proposed for bearing degradation trends prognostics.
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This research provides a good application direction based
on self-similarity and fractional order characteristic theory.
The proposed generalized R/S statistic model was applied
to address the sensitive problems, i.e., the heteroskedasticity
and short-range dependence of classical R/S statistic model.
We introduced a new stochastic differential equation pre-
dicting operator combined Brownian motion with fractional
Brownian motion. We also derive a computationally efficient
algorithm using the maximum likelihood estimating tech-
nique for drift and volatility parameters of the SDE. Through
analysis and validation the developed method can be effec-
tively used for tracking bearings degradation related multiple
faults in accelerated life test, the fault degradation from nor-
mal condition to incipient fault was considered particularly,
and achieve a high prognostic accuracy.

The prognostic results show that the degradation ten-
dency of rolling bearing can be effectively tracked, and some
schemes similar to rolling bearing failure could be addressed
by the proposed method. However, in practical application,
some problems are also exposed: (1) the proposed algo-
rithm is designed for detecting the bearing fault with the
case of 0.5 <H< 1, thus the Hurst values of vibration
data, which are not covered in this range might failed in
terms of prediction accuracy. (2) Acceleration sensor with
one point location was designed and analyzed in this paper,
in practical application, the degradation tendency of rolling
bearing should be detected by multiple sensors with multi-
point location, and each sensor should be supervised by a
separate fractional Brownian motion model. (3) the proposed
methodology is only applicable for accelerated life test of
the bearings under constant operating conditions, the variable
conditions such as variable speed, torque and variable harsh
working environments should be considered in the future
which may help generalizing the proposed method, and hope
to enable further application to the preventive maintenance of
other mechanical systems for preventive maintenance in the
industries such as coal mining, well drilling and high-speed
train, etc..
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