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ABSTRACT Most information technology (IT) equipment found in a data center is air-cooled as electrical
component produces heat, which must be removed to prevent the temperature of the IT equipment from
rising to an unacceptable level. The energy consumption for the data center cooling system is positively
related to the air temperature outside the data center. The difference of data center internal temperature and
the outside air temperature varies from each data center location. If we reschedule the workload of Internet
cloud services to the least temperature difference, the cooling energy consumptionwill be the biggest savings.
The cooling energy-consumption model and query characteristics of cloud services provide the methodology
to formulate the energy consumption and workload rescheduling. However, the cloud service must meet the
tail latency constraint after the rescheduling. We solve this problem by estimating the high-percentile tail
latency and scheduling the cloud service to where can meet the tail latency constraint. At last, a proactive
weather-aware geo-scheduling algorithm, called EC3, is proposed to distribute end-users’ loads among data
centers so as to reduce the cooling energy consumption. The trace-driven experiments on real clouds and data
center workload traces show the effectiveness of our design for reducing data center cooling consumption.

INDEX TERMS Cooling energy, weather-aware, data center, internet cloud service.

I. INTRODUCTION
The data centers for cloud computing has evolved sig-
nificantly during the past decades by adopting more effi-
cient technologies and practices in data center infrastructure
management. Current study results show the U.S energy con-
sumption of data centers has increased dramatically, account-
ing for about 1.8% of the U.S. electricity usage in 2014 and
the data center electricity consumption increased by about 4%
from 2010-2014. Energy use is expected to continue slightly
rising in the near future, increasing 4% from 2014-2020,
the same rate as the past five years. Based on current trend
estimates, U.S. data centers are projected to consume approx-
imately 73 billion kWh in 2020 [1].

The cooling energy consumption is an important issue for
minimizing environmental impact, lowering costs of energy
consumption and optimizing data center operation perfor-
mance. A modern data center has a large room with many
rows of racks filled with a huge number of servers and other
information technology (IT) equipment used for processing,

storing and transmitting digital information, and an amount
of heat is generated by the IT equipment. To maintain the
reliability of the IT equipment in the data center, it is of
importance to maintain proper temperature. This work [2]
presents the results of an investigation of 10 random data
centers. It reveals the representative energy consumption dis-
tribution and the variation, showing a spread between 30%
and 55% of the total energy consumed by cooling the data
center. Cooling and ventilation systems consume on average
about 50% of the total energy used. Therefore, how to reduce
the cooling energy consumption of data center must be taken
into account.

The cooling energy consumption of the data center is more
complicated than the conventional IT equipment since the
energy usage of a cooling system varies with the outside
temperature. Essentially, the hotter the outside temperature,
the more energy it takes to chill a data center. The outside
temperature does not just vary from one location to another,
it varies all the time, and any single day is usually at least

2028
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6414-698X
https://orcid.org/0000-0002-1142-4496


J. Wu et al.: EC3: Cutting Cooling Energy Consumption Through Weather-Aware Geo-Scheduling Across Multiple Data centers

a little bit warmer or colder than the day before it. If we
use the cooling system to keep the data center at a roughly
constant temperature, the amount of energy that the cooling
system uses will vary from one day to the next. Cooling
Degree Days (CDD), are ameasure of howmuch (in degrees),
and for how long (in days), outside air temperature was
higher than a specific base temperature. They are used for
calculations relating to the energy consumption required to
cool buildings [3]. The number of degrees that the average
air temperature is above 23oC and the cooling system starts
to cool the building. To calculate the CDD, take the average of
day’s hour high and low and subtract 23. The cost of weather
derivatives trading is based on an index made up of CDD
values. The settlement cost for a weather futures contract is
calculated by summing the CDD values and multiplying by
unit costs (such as 20).

Cloud Service Provider (CSP) has deployed multiple data
centers worldwide [4]. To save cooling energy consumption,
the workloads can change to running in the data center with
cool weather. However, there are other factors that we must
consider before theworkload rescheduling, such as howmany
workloads should be rescheduled, and whether the Cloud Ser-
vices meet the tail latency constraint after the rescheduling.
Therefore, we are struggling to solve this complex problem
in this paper. Our objective is to optimize the workload dis-
tribution such that the data center cooling energy consump-
tion is reduced. The temperature difference in different data
centers vary widely, and it is related to the local weather.
So, theworkload rescheduling balances end-users’ load based
on the data center outside air temperature to save cooling
energy consumption. We present a comprehensive energy
consumption model to formulate the workload rescheduling.
Through the mathematical model and a novel data-driven
latency estimation approach, we propose an algorithm which
is weather aware for the dynamic workload rescheduling
among multiple data centers.

To summarize, our contributions in this paper include:
• Wedevelop a cooling energy consumptionmodel. It con-
siders the energy use to reduce the heat conducted with
outside world and the heat generated by the IT equip-
ment. To do this, we follow the CDD to calculate tem-
perature difference and formulate the cooling energy
consumption. In particular, we construct an optimization
function by binding the high-percentile tail latency with
SLA [5].

• We novelty propose EC3 to make scheduling decisions
for the Cloud Services. It dynamically schedules the
workloads to data center with least internal-outside tem-
perature difference while meeting the tail latency SLA
requirements. To our best knowledge, our work is the
first that takes a holistic approach by covering the cool-
ing energy consumption of the data centers from CDD
to adjust the workloads scheduling in time slot.

• Under a variety of settings, we conduct extensive
simulation-based experiments using real clouds and data
center workload traces. The latency estimation is based

on the historical Cloud Service’s request. The estimation
of cooling energy consumption is achieved by the corre-
lation of data center energy bill and CDD. The experi-
mental result turns out that with workload rescheduling
the cooling consumption is reduced more than 40%
while Cloud Service can still meet the tail latency SLA
constraint.

FIGURE 1. A breakdown of energy consumption by different components
of a data center [9].

II. BACKGROUND AND MOTIVATION
A. BACKGROUND
Data center contains large numbers of compute nodes to sup-
port the increasing workloads and provide promising Quality
of Service (QoS) for the Cloud Services. Besides, electronic
components are continually becoming smaller andmore pow-
erful, data centersmust deal with the heat generated by having
a large number of high-power processors tightly packed into
a small space. Increases in energy consumption usually come
in double-helpings in cloud computing, since the amount of
energy required to cool an object is theoretically increasing
as it consumes more energy to support more workloads. The
energy consumption by different components of a data center
is shown in Fig. 1. The power of the ancillary facilities used
to maintain the normal operation of the data center is rising.
Up to 50% of total energy utilized for the data center is wasted
for cooling the data center [6].

The problem of exponentially-growing cooling energy
consumption becomes even more pronounced when consid-
ering global warming [7]. It has reached a point where the
energy required to chill the data centers is a greater finan-
cial burden than the hardware and maintenance costs put
together [8]. So it would seem reasonable that CSPs can
dramatically cut overall energy consumption by creatively
eliminating the data center cooling energy consumptions.

B. MOTIVATION
One solution to save cooling energy consumption would
be to build new data centers in the area that has a cold
climate. This solution is now the direction that the cloud
computing industry is headed. Google recently built a major
$230,000,000 data center in Finland, hoping to leverage the
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FIGURE 2. Mean temperature of days of three Microsoft data center locations in four months. (a) Apr; (b) May; (c) Jun; (d) Jul.

cold temperatures to lower the cooling energy consumption.
Facebook also constructed a new data center near the Arc-
tic Circle in Lulea, Sweden, because of the region’s cold
weather [10]. This move towards colder regions will help
dramatically cut cooling energy consumption associated with
heating.

The other solution is when the CSP has built data centers,
and inside the data center are server utilization-based smart
temperature monitoring [11] and sub-system cooling [12].
For example, an independent cooling system chills only one
sub-cluster and each independent cooling system shutdowns
automatically when the sub-cluster has maintained at target
temperature or is unused. As the data center temperature
needs to be maintained at around 23oC, the cooling costs
are related to the data center load and the outside tempera-
ture [13]. The good news is the replication of data sets among
data centers provides an opportunity to reschedule the Cloud
Services. If the data sets are not replicated, the energy used for
data migration may be more than the cooling energy savings.

In fact, Microsoft has built data centers in Chicago, Quincy
and San Antonio. Fig. 2 shows the mean temperature day
of four months for these cities [3]. The workloads can be
rescheduled to less internal-outside temperature difference
data center, such as from San Antonio to Chicago. The data
center located in San Antonio shutdowns the coolingmachine
for unused clusters to save cooling energy consumption.
There are some other constraints that wemust consider. Some
Cloud Service requires stringent tail latency bounds; different
Cloud Services have varying levels of data consistency; some
CSP prefers those location closed data center which can
quickly provide services. All of these requirements result in
a nonconvex optimization with no efficient solution. Hence,
we propose an efficient and greedy heuristic that dynamically
places workloads to ‘‘better" data centers. It greedily maxi-
mizes the expected reduction in cooling energy consumption
normalized by moving the workloads to least internal-outside
temperature difference data center and closing the unneces-
sary cooling system in the original data center.

III. RELATED WORK
It can be presumed that there is a lot of potential for
energy conservation strategies when providing cooling to data

centers, given the weather conditions in climate zones. How-
ever, the multi-potential of variable cooling solutions has not
been studied in the previous literature.

Tang et al. [14] introduce three heuristic approaches to
minimize the total energy of a data center by schedul-
ing workloads to have a uniform outlet temperature
profile, minimum server power dissipation, or a uniform
workload distribution, respectively. This work [15] is to
maximize reward rate, which mitigates the impact of
co-location interference by maximizing a reward rate objec-
tive function that considers co-location interference. It max-
imizes the reward rate earned by the system while obeying
red-line temperature thresholds and a power constraint on the
whole facility (both compute and cooling power). However,
these works do not consider the tail latency constraint of
Cloud Services.

This work [16] focuses on energy minimization in a data
center accounting for both the IT equipment and the cooling
power usage. In particular, they address the server consolida-
tion concurrently with the task assignment. However, authors
do not consider the temperature difference of the data center
locations. This work [17] propose a unified management
approach with leveraging stochastic optimization tools which
allow the data centers to adaptively respond to a variability
of cooling efficiency under long-term QoS requirements.
However, the proposed algorithm yields a strategy without
knowing the distributions of the independently and identi-
cally distributed.

There are other techniques currently employed to reduce
the energy cost and power density in data centers. For exam-
ple, load balancing [18], [19] can be used to distribute the
workloads of the data center among different servers evenly to
balance the per server workload (and hence achieve uniform
power density). Server consolidation [20], [21], which refers
to assigning incoming tasks to the minimum number of active
VMs in the data center and shutting down unused VMs,
is another approach for power reduction of data centers. Also,
there have been many recent works that consider thermal-
aware resource management (e.g., [22]–[26]). Some do not
consider heterogeneity in their work [22], [23], [26]. Others
do not consider Dynamic Voltage and Frequency Scaling
(DVFS) control [24], [25].
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IV. SYSTEM MODEL
A. ENERGY CONSUMPTION MODEL
1) HEAT CONDUCTION
We know that a closed space will not be heat conduction with
the outside world, and the air temperature of this closed space
thus unchanged.We at first do not consider the heat generated
by the data center IT equipment (e.g., servers, switch), and
the temperature rise because of the heat conduction with
outsideworld. CDDprovides a productiveway to quantify the
cooling energy consumption for reducing the heat conducted
with the outside world. The idea is the amount of energy
needed in any day is directly proportional to the number of
CDD in that day [27]. With this method, we just need to do
the linear regression analysis in each data center and correlate
the energy consumption data with CDD. Besides, this tool [3]
enables us to access CDD data on a variety of timescales.
We can get energy bills from a utility or energy supplier.
Although the occupancy of the data center and the cooling
patterns might vary throughout in every time slot, the patterns
are usually fairly consistent from one time slot to the next.

With the two data sets (energy consumption record and
CDD), we can use common tools, such as Matlab, to do
the linear regression analysis. Let f (c) denote the estimated
linear regression function and parameter c is the CDD for the
specific data center and specific date. The result of f (c) is
the amount of estimated energy needed to cool a data center
without running IT equipment.

f (c) = a ∗ c+ b. (1)

2) HEAT PRODUCTION
To calculate the direct costs associated with running IT equip-
ment, we need to know the direct energy consumption of each
type of IT equipment and the costs associatedwith cooling the
environment where the IT equipment is situated. Let W and
B denote the watt-hour and the British Thermal Unit (BTU)
of one specific configuration IT equipment as this equipment
in full utilization. In particular, BTU is used as a unit for
the power of an air conditioning system and refers to the
amount of thermal energy removed from an area. A BTU is
approximately a third of one watt-hour [28].

Assume we calculate the total energy consumption by
running one IT equipment for h hours (called the operating
hour). The total energy consumption can be split into two
parts, one for running this equipment and second the energy
for reducing the heat produced by this equipment. Let C1 and
C2 denote the energy consumptions for in-service use and
cooling, respectively.
Energy Consumption for In-Service Use: For calculating

the energy consumption and associated costs, we use the
following:

C1 = h ∗W/1000. (2)

Note that the division operation on 1000 is for the conver-
sion of Wh to kWh.

Energy Consumption for Cooling: For calculating the
cooling consumption to keep the IT equipment in normal
operating conditions, we use Eq. (3) where we translate the
BTU to watt-hour, so we get the energy consumption asso-
ciated with reducing the heat the IT equipment emits for h
hours [28].

C2 =
h ∗ B ∗ 0.293
1000 ∗ COP

. (3)

Note that 1000 BTU is approximately 293Wh. COP is
the ratio of useful output to the amount of energy input,
used generally as a measure of the energy-efficiency of cool-
ing or heating devices. COP equals heat delivered in BTU
per hour divided by the heat equivalent of the energy input.
Higher the COP, higher the efficiency of the devices [29].

3) TOTAL ENERGY CONSUMPTION
We can get the energy consumption associated with spe-
cific CDD by summing the cooling for heat conduction, the
in-service use IT equipment and the corresponding cooling
for produced heat. The linear function shown below defines
the calculation.

ej
(
aj
)
= f (c)+

∑K

k=1

(
Ck
1 + C

k
2

)
. (4)

Note that ej
(
aj
)
is the energy consumption of data center

j when total aj workloads placed in data center j · f (c) is the
correlation function of the cooling energy consumption and
CDD, shown as Eq. (1). K denotes the total IT equipment of
data center j.

B. WORKLOAD DISTRIBUTION MODEL
1) CLOUD SERVICE
Geo-distributed Cloud Services need data centers from dif-
ferent regions to accomplish data analysis workloads with
lower tail latency [30]–[33]. A key novelty of our study is
that each Cloud Service request is simultaneously sent to one
data center. That is, each Cloud Service needs a group of
data centers (called data center group) to complete the Cloud
Service’s workloads. For distributed services, non-distributed
services are a special case which is hosted in a single data
center, so our study canmeet the query characteristics of these
Cloud Services.

We assume that one CSP has a set N of data centers. Thus,
there are maximum |N | possible data centers for workloads
of the Cloud Services. Note that this assumes data replication
across the data centers. It is subject to data residency require-
ment. If data is not replicated, we consider each un-replicated
data center as one data center group. The running workload
depends on the data set [30], and the data replication provides
the possibility of the workload migration.

Assume there are S different traffic sources. g is the set of
data centers that can accept requests from the traffic source i.
Note that not all the N data centers can accept request from
traffic source i because of the data set replication constraint.
Thus, we have a workload distribution decision vector Eλi =
{λi1, λi2, . . . , λig}

T , where λij ≥ 0 denotes the amount of
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requests sent to data center j from traffic source i, and 3i =∑g
j=1 λij is the total requests from traffic source i. Hence,

the total workload sent to data center j can be expressed as:

aj =
∑S

i=1
λij. (5)

The workload distribution decision now is to determine
the load distribution Eλi, for all traffic sources. Considering
all the traffic sources, we define the load distribution matrix
Eλ = {Eλ1, Eλ2, . . . , EλS}, which is the main decision variable
in the optimization problem. Thus, the problem of deciding
the workload distribution to each data center generalizes the
existing global load balance literature [18], [34] that only
decides workload distribution to each single data center.

2) TAIL LATENCY
We now consider the latency performance constraint between
the traffic source and the data center. In this paper, the front-
end gateway denotes the concentrated traffic source of Cloud
Service requests. Specifically, the high-percentile latency of
requests originating from each traffic source must be no
greater than the corresponding threshold. For example, if x%
is the percentile latency requirement, then at least x% of the
requests must have latency not exceeding the threshold.

A key challenge is how to determine the tail latency for
each Cloud Service. We need to examine each route/path
between a traffic source and a data center. Since we have S
traffic sources andN data centers, there is a maximum of R =
S×N routes, each representing a network path from a traffic
source location to a data center location. We account for the
route from traffic source i to data center j by rij. In this paper,
we primarily focus on data center-level workload scheduling
decisions, while treating the scheduling decisions within each
data center as irrelevant decisions. As such, the decision
under consideration that affects a data center latency is equiv-
alently the total amount of workloads sent to this data center.
Hence, let prouteij (aj, rij) denote the probability that the latency
is less than Di for route rij, given workload aj at data center j.
Each Cloud Service needs to be processed in a group of

data centers. We observe that the latency of Internet requests
sent along one route is independent of that along with another
route. The reason is that each Cloud Service request is small
which taking no more than a few seconds to complete. These
facts, combined with performance interference from other
workloads, lead to the consequence that the tail latencies
incurred in different data center group can be viewed as
uncorrelated and independent. So, we combine the response
time probabilities along different routes to express λij ∗
prouteij (aj, rij) for requests from traffic source i to data center j.
Further, since requests from traffic source i are distributed
among the data center groups, the latency probability for
requests from traffic source i should be averaged across the
data center groups.

pi(Eλ) =
1
3i
∗

∑g

j=1
λij ∗ prouteij (aj, rij). (6)

We use pi(Eλ) to emphasize that the latency threshold sat-
isfaction probability is the critical function of the workload
distribution decision.

V. THE DESIGN OF EC3

We now present the design of the dynamic weather-aware
scheduling architecture, which reduces cooling consumption
for data centers with a tail latency SLA constraint. First,
we will define the formulation to account for workload distri-
bution in Section V-A. Then, we discuss the latency profiling
technique in Section V-B. At last, we outline the overview of
EC3 in Section V-C.

A. PROBLEM FORMULATION
Mathematically, the operator has the following workload
rescheduling optimization function to save cooling energy
consumption:

Minimize
∑N

j=1
ej
(
aj
)

(7)

subject to pi
(
Eλ
)
≥ PSLAi , ∀i ∈ 1, 2, . . . , S (7a)∑g

j=1
λij = 3i, ∀i ∈ 1, 2, . . . , S (7b)

aj ≤ Uj, ∀j ∈ N . (7c)

The optimization function (7) is the total energy con-
sumption across all the N data centers. The constraint (7a)
expresses the tail latency performance constraint set by the
SLA, and PSLAi is the tail latency SLA requirement for traffic
source i. The constraint (7b) ensures that all the Internet
requests from each traffic source can be processed. The con-
straint (7c) ensures that the total workloads sent to a data
center must not exceed the data center capacity.

B. LATENCY PROFILING
Up to this point, we have decomposed pi(Eλ), the probability
that the tail latency is less than the threshold for all Internet
requests from traffic source i, into Eq. (6). In order to solve
this optimization function (7), we still need to determine
prouteij (aj, rij), the probability that the latency for requests
along the route from traffic source i to data center j is less
than the corresponding latency threshold Di.

There is a lot of research results in the context of queuing
performance in high load data centers (e.g., [18], [35] and the
references therein). In particular, a central limit theorem for
heavy traffic queuing systems states that for a G/G/m queue
under heavy traffic load, the waiting time distribution could
be approximated by an exponential distribution.

This theorem applies to the tail latency distribution as well,
since the tail latency distribution converges to the waiting
time distribution as the requests send to data center increases.
The intuition behind this approximation is that in the high
load data center, the long queuing effect helps effectively
smooth out processing time fluctuations (i.e., the law of
large numbers), which causes the waiting time or latency to
converge to a distribution closely surrounding its mean value,
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i.e., the short-tailed exponential distribution, regardless of the
actual arrival process and service time distribution. Inspired
by this result, we further postulate that for one Cloud Service
mapped to one data center group, the response time distri-
bution FGE (x) for any arrival process can be approximated
as a Generalized Exponential distribution function [36], [37],
as follows,

FGE (x) =

{
(1− e−µx)α x > 0,
0 otherwise.

(8)

Note that µ and α are the scale and shape parameter,
respectively. The mean E(X ) and variance V (X ) of the Cloud
Service response time are given by [36], [37]

E(X ) =
1
µ
[ψ(α + 1)− ψ(1)], (9)

V (X ) =
1
µ2

[
ψ ′(1)− ψ ′(α − 1)

]
. (10)

Note that ψ(.) and its derivatives are the digamma and
poly-gamma functions.

From Eq. (9) and Eq. (10), we can know that the dis-
tribution in Eq. (8) is completely determined by the mean
and variance of the historical requests’ latency. The reason
behind the use of this distribution, instead of the exponential
distribution, is that it can capture both heavy-tailed and short-
tailed task behaviors depending on the parameter settings and
meanwhile, it degenerates to the exponential distribution at
α = 1 and E(X ) = 1/µ. This distribution significantly out-
performs the exponential distribution in terms of tail latency
predictive power for all the cases studied.

The implication of the latency estimation is significant.
It allows not only the tail latency performance of a Cloud
Service mapped to a diverse range of the data centers to
be captured by a unified distribution function, but also the
latency distribution of request and hence the tail latency SLA
for the entire task-partitioning-merging system to be derived.
We know that with all the requests of one Cloud Service send
to data center group g being viewed as black boxes [37], one
effectively transforms the task-partitioning-merging problem
into a split-and-merge model whose distribution function can
be expressed as Fg(x).

Fg(x) =

{∏g
k=1(1− e

−µkx)αk x > 0,
0 otherwise.

(11)

It assumes the Cloud Service response times for requests
mapped to different data centers are independent ran-
dom variables. Now assume the parallel data centers are
homogeneous [37], the distribution function can be further
simplified as:

Fg(x) =

{
(1− e−µx)gα x > 0,
0 otherwise.

(12)

With Eq. (12), it can be easily realized that the p-th per-
centile request response time Di for traffic source i can be

written as [37]:

Di = −
1
µ
log

(
1−

( p
100

) 1
gα
)
. (13)

We now consider traffic source i sends W requests to data
center j during each time slot. We define the method of esti-
mating the high-percentile SLA tail latency as the following
definition: The probability of request does not exceed the
latency threshold can be calculated by the function shown
below.

prouteij =

∑W
w [dij ≤ Dij]w
|W |

. (14)

Note that di is the expected/measured latency of each
request. Note that operation [di ≤ Di] represents a statistical
method, and when di ≤ Di the result is 1, otherwise 0.
According to the law of large numbers, the average of the
latency obtained from a large number of latency traces should
be close to the expected value. The latency estimation will
tend to become more accurate as more traces are considered
in the estimation.

In Eq. (13), sinceDi is a function of µ and α, which in turn
are functions of mean and variance of the Cloud Service tail
latency (according to Eq. (9) and Eq. (10)), a link between any
given tail latency SLA, andE(X ) andV (X ) is established. The
implication of this result is significant. On the one hand, with
any given tail latency SLA, the resulting mean and variance
can serve as the Cloud Service response time budgets for
optimized workload distribution. On the other hand, with
given measured Cloud Service tail latency statistics regarding
mean and variance, we can predict whether the Cloud Service
meets the target tail latency SLA with Eq. (6) and Eq. (14).

C. SYSTEM OVERVIEW
We show the overview of the weather-aware geo-scheduling
architecture in Fig. 3. These are three main components in
the optimizer: The cooling energy correlation component,
the SLA tail latency estimation component and the GLB com-
ponent. The inputs of the correlation component include the
data center energy bill and CDD in each data center location.
It outputs the cooling energy consumption for reducing the
heat conducted with the outside world with specific CDD.
The inputs of the SLA tail latency estimation component
include the profiled tail latency of the Cloud Services and
the estimated workload arrival at each traffic source during
the current time slot. It outputs the percentile tail latency of
each Cloud Service. Then the GLB component solves the
optimization function (7) and outputs the optimized workload
distribution decisions that split the incoming workloads at
each traffic source to different data center groups to reduce
the cooling energy consumption.

We present the general procedure for reducing cooling
energy consumption as Algorithm 1. A key component of the
proposed architecture is the latency profiler that determines
the tail latency performance. It solves the problem using a
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FIGURE 3. System overview of EC3: The weather-aware geo-scheduling architecture for multiple data centers.

Algorithm 1 Procedure for Workload Rescheduling
Algorithm EC3

Step 1: For each data center location, initialize f (c) with
correlation of energy bill and CDD.
Step 2: Calculate E(x) and V (x) for each request in all possi-
ble data center running a scheduling policy, at desired request
rate λij;
Step 3: For each data center group, get α and µ with Eq. (8)
by plugging in the measured E(X ) and V (X ) into Eq. (9) and
Eq. (10), respectively;
Step 4: Estimate the SLA latency threshold Di based on
Eq. (13).
Step 5: Choose the data center group recursively.
Recursion(S):
e = INF
for g in G then:
for i in S then:
for j in g then:
if prouteij ≤ pSLAi and aj + i ≤ Uj then:
ej(aj) + = ex
else
f = false
break

if f ! = false then:
e = min(e, Recursion(next S)+ ej(aj))

return e
Note: g denotes the candidate data center group. ex denotes
the added energy consumption with workload i assigned to
data center j.

numerical optimization method [38] and outputs the opti-
mized workload distribution decisions.

VI. EVALUATION
In this section, we used real clouds and data center work-
load traces to evaluate the performance of EC3. At first,
we describe the experimental setup, in particular the real-

world clouds, data center workload traces and CDD. Then,
we explain how our latency estimation theorem works with
real-world data center workload traces. At last, we evaluate
the reduction of cooling energy consumption formultiple data
centers.

A. SETTING
1) REAL-WORLD CLOUDS
We conducted some trace-driven experiments on data centers
of Microsoft Azure [39]. These data centers are located in
three places: Chicago, Quincy and San Antonio. The full
power of the IT equipment, denoted as W , can be calcu-
lated from the product specifications. The BTU of each
IT equipment can be calculated with conversion function
B = 0.293 ∗W [28].

2) DATA CENTER WORKLOADS AND LATENCY ESTIMATION
We consider the data center with workload arrival rates that
can be predicted over a decision time slot [40]. Each Cloud
Service includes several workloads which will be scheduled
to different data centers. We take the data center workload
traces as the basic trace-driven experimental data.

3) GETTING THE ENERGY CONSUMPTION DATA AND CDD
We get the records of energy consumption with energy bills
from a utility or energy supplier. Most data centers follow
a daily routine, which means that daily energy-consumption
data is typically a good option for regression analysis. The
occupancy of the data center and the cooling patterns are
usually fairly consistent from one day to the next in the data
center. Besides, the estimation of cooling energy consump-
tion needs CDD of time slots. This tool [3] provides a way
for us to get the CDD.

B. LINEAR REGRESSION ANALYSIS
We use the CDD and cooling energy consumption to plot an
X-Y scatter chart of CDD against the consumption for the cor-
relation. There are two notable extras that we can get from the
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FIGURE 4. Cooling energy predictions with linear regression models and CDD [27]. The result of the correlation fits to the linear function shown in
Eq. (1).

FIGURE 5. (a) to (d): The CDD of three Microsoft data center locations in four months: Apr, May, Jun, Jul. (e) and (f): Cumulative distribution of mean
E(x) and variance V (x) for the requests’ latency. (g): Cumulative distribution of latency threshold with PrSLA = 0.95.

correlation: an equation and the R2 value. Linear function (1)
represents the correlation of cooling energy consumption and
CDD. The R2 is a measure of how good the correlation is.
A good correlation between CDD and energy consumption
indicates that the methodology is sound. In other words,
the higher the R2, the better.
Fig. 4 shows the cooling energy predictions with linear

regression models and CDD [27]. Using Fig. 4(a) as an
example, the linear function is f (c) = 1677.5 ∗ c + 14605.
The ‘‘f (c)’’ corresponds to the energy consumption. The ‘‘c’’
corresponds to the specific value of CDD. The parameter
that multiplies the c represents the gradient of the trend
line. The constant at the end is the intercept. In theory,
this should represent the ‘‘baseload energy consumption’’.
Most importantly the equation enables us to estimate cooling
energy consumption from CDD. By plugging a known CDD
into the equation, we can calculate the predicted cooling

energy consumption for the time slot that the CDD covered.
Fig. 5(a), (b), (c), (d) show the CDD of three data center loca-
tions in four months, respectively. These CDD data will serve
as the parameter in VI-C for predicting energy consumption
for reducing heat conducted with outside world.

C. EXPERIMENTAL RESULTS
We analyze the latency mean E(x) and variance V (x) of
each request. Fig. 5(e) and (f) show the cumulative distribu-
tion of E(x) and V (x). The latency is based on millisecond,
the average latency of more than 80% requests are less than
50 milliseconds and up to 90% requests have a better degree
of aggregation. The value of µ and α can be obtained by
solving functions (9) and (10). µ and α can be used for
latency threshold estimation with Eq. (13). Fig. 5(g) shows
the cumulative distribution of the estimated latency threshold
with p = 0.95. In Fig. 5(g), the latency is based on second,
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FIGURE 6. The total saving electric energy of three data centers in different correlation situations; (a) a=1677.5, b=14605; (b) a=1500,
b=14000; (c) a=1297.2, b=12305; (d) a=1000, b=11000.

more than 95% requests are less than 0.15 second, which is
consistent with Fig. 5(e). The three CDF graphs show that our
theory for SLA latency estimation is feasible.

With SLA tail latency constraint and latency distribution of
Cloud Services, we implement the prototype version of our
design with dynamic programming, and continue the trace-
based simulation by replaying the request of Cloud Services.

1) ENERGY CONSUMPTION
With the correlation of the cooling energy consumption and
the CDD, we obtain the linear function f (c). A set of a
and b is used to simulate how our algorithm reschedules
the workloads to target data center group. The situation of
total saving electric energy for three data centers are shown
in Fig. 6(a), (b), (c), (d). In each sub-figure, the saving is
the summation of four months: Apr, May, Jun and Jul. The
performance is related to the linear equationwhichmeans that
the cooling energy consumption is in varying degrees with
different correlation result. In fact, under workload reschedul-
ing, the real-world data centers used in the simulation can
save more than 40% cooling energy consumption.

2) TAIL LATENCY SLA REQUIREMENTS
One important feature of our design is that Cloud Service pro-
vides high-percentile tail latency. High-percentile tail latency
enables our design to reduce the cooling energy consumption
while Cloud Services can meet the tail latency requirements.

The value of PrSLA represents the tail latency satisfaction
levels. If we set a higher value of PrSLA, the customer will be
satisfied, but the cooling energy consumption of the data cen-
ter will increase because the choice of data center becomes
narrow. If we set a lower value of PrSLA, then the cooling
energy consumption can be maintained a low-level, but QoS
of Cloud Services will not be guaranteed which reflected in
the decrease of the percentile that service latency does not
exceed the latency threshold.

We changed the value of PrSLA from 0.93 to 0.99. The
reduction is shown in Fig. 6(a), (b), (c), (d). As an example,
Fig. 6(a) shows the relationship between tail latency per-
centile and saving electric energy. The saving is decreased if

the Cloud Services have loosed tail latency constraints. If the
Cloud Services have strict latency requirement, the Cloud
Services can only be scheduled to a limited number of data
centers. It means that if Cloud Services choose the data
center group with least internal-outside temperature differ-
ence, we must realize the unexpected risk of not meeting the
expected tail latency.

D. LATENCY PREDICTION ERROR ANALYSIS
Our design expects to schedule the Cloud Service to the
lowest price data center as many as possible. However, since
it does not take data center capacity and interference into con-
sideration, a data center may become overloaded and hence
may not meet the high-percentile tail latency constraint. The
data center utilization can influence the performance of Cloud
Services. If the data center utilization keeps at low, the error
ratio of the probability tail latency estimation can tolerate.
Otherwise, the error ratio will increase and as a result reduces
the precision of workload rescheduling. It finally causes the
added energy consumption. Fig. 6(a), (b), (c), (d) present dif-
ferent degrees of error caused by the latency estimation error.
Hence, our design attempts to reschedule the workloads to
data centers with least internal-outside temperature difference
and with possible low utilization. If the data center is in high
utilization, then the interference may enlarge the error ratio
of the tail latency prediction.

VII. CONCLUSION
This work aims to reduce the cooling energy consumption
of multiple data centers while guarantee the Cloud Service’s
SLA tail latency. The cooling energy of one data center is
used to reduce the heat conducted with the outside world
and the heat produced by the data center IT equipment.
We correlate the historical energy bill and CDD, and work
out the cooling energy consumption model by plugging in
the energy utilization for reducing the heat generated by the
IT equipment. We proposed a novel data-driven approach to
determine the tail latency for different workload scheduling
decisions, by profiling latency with G/G/m queue theorem at
a low complexity. Aweather-aware geo-scheduling algorithm
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is proposed, which proactively places workloads in data cen-
ters that with less temperature difference. The performance
evaluation has been conducted with numerical studies and
simulations. The result shows that our design can save more
than 40%of the cooling energy consumption formultiple data
centers while ensures the tail latency of Cloud Service meets
the SLA constraint.
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