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ABSTRACT The line junction detection is a fundamental step in many computer vision applications,
especially in biomedical image analysis. Most of the existing studies determine the junction position
after delineating curvilinear structure, thus the detection accuracy relies heavily on the previous steps for
curvilinear extraction, such as image segmentation and skeletonization. In this paper, we treat the detection
of line junctions as an independent task without prior knowledge of curvilinear structures. We present
the mathematical definition and properties of line junctions, and propose a new method called Junction
Recognition (JUNR). It first maps the raw images into score matrices (or called score images) by the
measurements based on line junction properties, then detects and screens blobs from the score images for
identifying the regions covering junction points. Finally, it refines the locations of line junctions as well
as their branch properties. A distinct advantage of JUNR is that it can be directly applied to raw images
without knowing curvilinear structure beforehand. Besides, since JUNR is a rule-based method, it requires
no training data and avoids the labor-intensive labelingwork.We conducted experiments on two typical kinds
of biomedical images, including both simulated and real images with curvilinear structures. Both qualitative
and quantitative results demonstrate its good performance for junction detection and characterization.

INDEX TERMS Biomedical image processing, blob screening, line junction detection.

I. INTRODUCTION
The extraction of line junctions in images is a crucial task
in many complex computer vision applications, especially in
biomedical image analysis. For instance, in neuron images,
the detection and localization of critical points, e.g., junctions
and terminations, is a key step in many neuron reconstruction
studies [1]; in retinal fundus images, the vascular junction
information can assist in diagnosing complex diseases, such
as diabetic retinopathy and angiomatosis [2]–[4].

Generally, junctions fall into two categories, i.e., general
junctions and line junctions. A general junction is the place
where two or more sector regions meet, which is often simply
regarded as corner in some literatures [5]–[8]; while a line
junction is usually considered as the line bifurcation which
has two or more distinct branches, or the intersection point
where two or more lines crossover each other. To avoid
ambiguity, in this paper, we call general junctions that are not

line junctions as natural junctions. Fig. 1 shows some exam-
ples of natural junctions and line junctions. According to the
number of branches, both the two kinds of junctions can be
categorized into L-, Y- (or T-), X-junctions and even higher-
order junctions. Inmost real images, the L-line junctions have
little significance, thus we do not distinguish them from high-
curvature line points.

Natural junction is one of the most basic elements in nearly
all kinds of images. A lot of approaches for the identification
of natural junctions have been proposed, which have laid
theoretical foundation for the development of line junction
detection methods. These approaches can be divided into
three major types, which are based on signal-intensity, con-
tour and template, respectively. The signal-intensity based
methods detect changes of local signal intensity in the images.
They mostly function as a corner detector, i.e., searching
the corner region which has locally peak value with respect
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FIGURE 1. Examples of different junction types. (a), (c) and (f) are L-, Y-,
X-natural junctions, and (b), (d) and (f) are L-, Y-, X-line junctions.

to a certain criterion. Representative works include Harris’s
method [9], SUSAN (smallest univalue segment assimilating
nucleus) [10], the FAST (Features from Accelerated Segment
Test) corner detector [11], [12], etc. Contour based meth-
ods basically aim to estimate contours and then localize the
junctions, such as Maire’s method [13], JUDOCA (JUnction
Detection Operator Based on Circumferential Anchors) [8],
andXia’s contrary detection theory [6]. Template basedmeth-
ods construct template models to represent the junction struc-
tures and perform template matching [5], [7]. And the natural
junction detection is widely used in some complex visual
applications, such as dental identification [14] and key point
extraction in RGB-D images [15].

Different from detecting natural junctions, the identifica-
tion of line junctions is often regarded as a post-processing
step of curvilinear structure analysis [16]–[20], thus its per-
formance relies heavily on the quality of image segmentation,
skeletonization and other previous steps for line recognition
(as shown in Fig. 2). A representative and general-purpose

method was proposed by Deschenes et al. [21], [22], in which
line junctions and terminations are identified based on the
estimation of line curvature. Azzopardi and Petkov [18], [23]
presented a new filter called combination of shifted filter
responses (COSFIRE).

Actually, in many real applications, identification of the
curvilinear structure from background is not an easy job.
Thus, the methods of line junction detection directly working
on raw images are relatively few. Chen et al.’s method is an
example [24], they extended 2-D image into a 3-D space with
the third element denoting the orientations. This approach
effectively captures junction region and specifies junction
branches, but it is unable to provide the precise location of
junction centers. Su et al.’s method [25], [26] also shows
good performance and wide applications on different images,
but their quantitative results seem not sufficient. Besides, a
lot of methods were designed for certain types of images,
like binary images, or for specific applications, such as the
identification of line-drawing junctions [27], hand-written
characters [28] and vessel or nervus [16], [29]–[31].

Considering that independent methods for line junction
detection have less restriction and more flexibility, we focus
on exploring new robust and versatile methods to deal with
complex junction structures. Here, we propose a new line
junction detection protocol called JUNR (JUNction Recog-
nition), which directly works on raw images and needs no
curvilinear structure knowledge. JUNR aims to identify the
line junction centers and also obtain their properties, such
as the number of junction branches and their directions.
First, it constructs a measurement to evaluate the potential
to be a line junction center for each point, thus generating a
score matrix for each image. Then, it considers the matrix
as a special image, and exploits blob detection to identify
the regions where the junction centers locate. By screen-
ing for the most possible blobs which cover line junction
centers, JUNR determines the line junction center location
via a combined measurement. After that, JUNR specifies
junction branch characteristics through finding adjacent fil-
ter responses. Our experimental results show that the new
method has good performance on various images, including
synthesized neuronal and real retinal fundus images. In a
quantitative analysis on both synthesized and real biomedical
datasets, it achieves better or comparable performance to the
state of art methods specialized for those datasets.

The rest of this paper is organized as follows: Section 2
introduces the line junction definition and summarizes sev-
eral important properties; Section 3 describes the proposed
algorithm JUNR in details; Section 4 presents the qualitative
and quantitative experimental results of JUNR, and compares
it with the state-of-the-art methods for line junction detection;
and the last section concludes the paper.

II. LINE JUNCTION DEFINITION AND PROPERTIES
In this paper, we treat the detection of line junction as
an independent task rather than an add-on procedure after
the identification of curvilinear structure. Therefore, it is
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FIGURE 2. Typical flowchart of line junction detection.

necessary to use formal definitions and mathematical proper-
ties to describe the task. Inspired by the definitions of natural
junctions [6], [7], here we give the formal definitions of line
junction and branch line.
Definition 1 (Line Junction): In an image which contains

complex linear or curvilinear structures, a junction is the
region which locates at the line bifurcation or line intersec-
tion, and consists of four elements as shown in Eq. ((1)),

J : {c, r, θMm=1,L(θm)}, (1)

where c is the junction center point with the coordinate (x, y),
r denotes the radius of junction region centered at c, θMm=1 is
the junction branch set with M elements, and L(θm) denotes
the line with the dominant orientation of the m-th branch.
Definition 2 (Branch Line):A branch line L is a local linear

structure adjacent to a junction. It can be represented by four
elements,

L(θm) : {c(θm), p(s),w, l}, (2)

where c(θm) denotes the centerline of the line with the dom-
inant orientation of θm, p(s) represents the profile of the line
structure, w is the effective width of the profile, and the last
term l is the length of line segment in local region, supposing
that the line in local region is straight. For a general gray
image, the line profile is usually approximated as a Gaussian
curve or parabola curve [24], [32], [33]. In this paper, we
adopts the Gaussian model as defined in Eq. ((3)),

p(s) =


1

√
2πσ

exp(−
(s− µ)2

2σ 2 ) −
w
2
6 s 6

w
2

0 others,
(3)

where µ and σ are the mean and standard deviation of the
Gaussian curve, respectively. To limit the width of the line
profile, we narrow the original Gaussian curve in the range
of [−w

2 ,
w
2 ], where w ≤ 2σ .

Given these definitions, we introduce three properties
of line junctions as follows. Here we consider an ideal
image which contains the curvilinear structure as defined in
Eq. ((3)), and the background is homogeneouswith low noise.
Without loss of generality, we just consider bright lines in
the dark background, and it is easy to extend to the opposite
situation. Regardless of the effect of edge or blob, points in
an image can be divided into three subsets, the line junction

point set SJ , the curvilinear structure point set SL , and the
background point set SB.
Property 1 (The Intensity Distribution Property): Assume

that a set of concentric rings are centered at an arbitrary
point p, the intensity distribution of the points within the
rings varies with the position of p. If p is a line junction
center (i.e., p ∈ SJ ), as the radius r increases, the intensity
distribution of the points in the annulus (centered at p, with
the inner radius r and outer radius r + dr) will first change
dramatically (the mean of intensity µI decreases and the
variance σI increases), and then become stable. If p ∈ SL ,
as r increases, the intensity distribution has the same change
tendency. The only difference with junction points is that
the number of peak branches is less than 3. If p ∈ SB, as
r increases, the intensity has no obvious change, and intensity
distribution remains nearly flat with no significant peak.
Property 2 (TheOrientation Flux Property):The definition

of orientation flux was proposed in [34]. For a point p in
image I with local circle region Cr , the oriented flux along
direction v is computed by the image gradient projection, i.e.,

f (p, v; r) =
∫
∂Cr

(∇(G ∗ I (p+ h) · v)v) ·
h
|h|

da, (4)

where h denotes the position normal vector of Cr , da is the
infinitesimal length on ∂Cr , r is the radius of local inclosed
circle region, andG is a Gaussian function with a scale factor
of an individual pixel. It is easy to calculate the flux f (p, v; r)
using a convolution by the divergence theorem,

f (p, v; r) = vT {(ψpG) ∗ bCr ∗ I }v

= vTQp,rv, (5)

where ψpG is the second derivatives of Gaussian function G
and bCr is the indicator function of the local circle, and we
use a matrix Qp,r to denote {(ψpG) ∗ bCr ∗ I }. Here, f (p, v; r)
should be minimized to find the line direction and estimate
the local line width. And this minimization problem can be
transformed into a generalized eigenvalue computation prob-
lem of the matrix Qp,r [34]. Suppose that λ1(p, r), λ2(p, r)
are the two eigenvalues of Qp,r , and λ1(p, r) is the bigger
one. If p ∈ SL , then the outward flux is dominated along
the curvilinear direction at this point, thus |λ1(p, r)|would be
much larger than |λ2(p, r)|; if p ∈ SB, since it has no distinct
difference with adjacent points, the outward flux is similar in
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FIGURE 3. The flowchart of JUNR.

every direction, i.e., λ1(p, r) ≈ λ2(p, r) ≈ 0; if p ∈ SJ , it is
hard to estimate the magnitude of outward flux, because the
junction has several dominant directions along the branches.
Property 3 (The Direction Filter Response Property):

When an image is convolved with a directional filter, the
responses for the junction, the line structure and the back-
ground are different. With an appropriate scale, considering a
local region IθI (x, y) filtered with a directional filter Fθ (x, y),
the response can be formulated as,

Rθ (x, y; θI ) = IθI (x, y) ∗ Fθ (x, y). (6)

Let the valid angle range of the filter be [θ − ς, θ + ς ].
According to [24], for a typical line structure, the response
follows the properties below:
• If the line direction is equal to the filter direction, i.e.,
θL = θ , then Rθ (x, y; θL) = max(LθL (x, y) ∗ Fθ (x, y));

• The response of the line direction in the valid angle
range is much larger than that out of the range, i.e.,
Rθ (x, y; θL1)� Rθ (x, y; θL2) where θL1 ∈ [θ−ς, θ+ς ]
and θL2 /∈ [θ − ς, θ + ς ];

• In the valid angle range, the responses of two lines are
equal if they are symmetrical to the dominant direction
θ , i.e., Rθ (x, y; θL1) = Rθ (x, y; θL2), where θL1 − θ =
θ − θL2 and θL1, θL2 ∈ [θ − ς, θ + ς ].

For a typical line region, the response of the whole filter
bank has distinct peak value along the line direction. For
a junction region, the response of the whole filter bank is
multi-modality, because it has several branches and obtains
peak responses along branch directions. For a homogeneous
background region, no direction has notable difference.

III. THE JUNR ALGORITHM
A. METHODOLOGY OVERVIEW
The proposed method, JUNR consists of four steps. In the
first step, we construct a measurement for each point in the
image to assess its potential as a line junction. Accordingly,
the original image is converted into a score matrix, where
each element in the matrix is the score of a point in the
image. For the second step, by regarding the score matrix
as a special image, where the scores are pixel intensities, we
exploit a blob detection method to identify the regions which
may contain line junctions. In the third step, we screen the
blobs and keep the blobs with high confidence of covering
line junctions. And in the last step, we locate the junction
center and determine the number and orientations of junction
branches. For real images, some preprocessing operations are
needed, such as background homogenization and denoising.
The flowchart of the proposed method is depicted in Fig. 3.

B. THE MEASUREMENT FOR EVALUATING
LINE JUNCTION CENTERS
In order to detect line junctions, a measurement is needed to
evaluate the potential of being a junction center for each point
in the image. Based on the aforementioned properties, we
define a comprehensive measurement, as shown in Eq. ((7)),

φ(p) =
K∑
i=1

αiMi, (7)

where φ(p) is the score of point p, K is equal to 3, αi is
the coefficient for the i-th measurement, and Mis denote the
measurements for the effect of intensity distribution, optimal
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FIGURE 4. The extraction and screening of junction blobs. (a) is the raw
gray retinal vessel image, (b) is the normalized score image, and
(c) indicates the blob detection and selection. Both yellow and
red circles denote extracted blobs. Yellow ones are filtered
while red ones are remained.

orientation flux (OOF) and their combined effect, respec-
tively. The Mis are defined as follows.
• M1 = norm(λmin), the normalized minimal eigenvalue
of correlation matrix A = 1

N

∑N
j=1((gj) ∗ (gj)

T ), where

gj denotes the gradient of each element in this matrix.
This measurement is the same as the minimal eigenvalue
measurement for corner detection [35]. The principle is
that line junction and corner have a common property,
i.e., the variations of the local autocorrelation matrix for
the gradients along all directions are great. Note that line
junction center may overlap with corner point when the
line width is sufficiently narrow, thus before construct-
ing the correlation matrix, we use a Gaussian kernel with
different variances to convolve with the image window
for estimating the effect of line width.

• M2 = norm(λOOFmin ), the normalized minimal eigen-
value of orientation fluxmatrix. Optimal orientation flux
(OOF) computes the optimal projection orientation by
minimizing the inward oriented flux at the boundary of
localized circles of different scales. And this optimiz-
ing problem is transformed into a generalized eigen-
value computation problem. According to Property 2
in Section II, the magnitude of eigenvalues varies with
the position of point. For junction center points, the
eigenvalues are much larger than those of line points or
background points, thus the minimal eigenvalue is used
as the measurement for junction points.

• M3 = R2C/RO, where RC is the ratio of the two eigenval-
ues from the correlation matrix, and RO denotes the ratio
of the two eigenvalues from OOF matrix. This measure
considers the combined effect of the first two measure-
ments. A junction point is expected to have larger RC
and smaller RO than non-junction points.

The final score is a linear combination of the three mea-
surements. As mentioned in Section 2, a line junction has
similar properties as a natural junction or a corner, and the
impact of the first measurement should be much larger than
other two measures. Therefore, the weights are set as α1 �
α2 > α3 to strengthen the effect of corner metric. Then the
whole image or field of view (FOV) is mapped into a score
matrix, and a high score indicates a high possibility of being
a junction center.

C. DETECTION OF CANDIDATE JUNCTION BLOBS
After assigning a score for each pixel, the original image
is mapped into a score matrix, which can be regarded as a
special image. We call it score image. Fig. 4(a) shows an
example. Intuitively, the pixels with highest scores are junc-
tion centers. However, the per pixel prediction, i.e., predict-
ing each pixel respectively, has some disadvantages. First, it
ignores the dependencies of labels (junction point, line point,
background point) for nearby pixels. Second, points with
local peak values are not necessarily junction centers, because
many points near the edge of intersection have even higher
scores than the true junction centers. Third, the accuracy can
be easily affected by outliers or noisy points.

To overcome these drawbacks, we design a detection
method which considers the dependencies of nearby pixels
to improve the prediction accuracy. Especially, we adopt
the Laplace of Gaussian blob extraction algorithm [36] to
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extract blobs in the score image, which are candidate junc-
tion regions. (The blob metric value is denoted as BMi,
where i denotes the i-th blob in the selected blob set.)
To avoid missing junction centers, in this step we include
sufficient blobs for further screening. Fig. 4(b) shows all the
blobs extracted from the score image mapped for a DRIVE
image (from the retinal vessel image dataset published
by Staal et al. [37]).

D. SCREENING THE JUNCTION BLOBS
Given the junction blobs, how to select high-quality blobs is
a key problem. The high-quality blobs should cover as many
line junctions as possible and contain few false positives in
the meantime. Intuitively, junction centers are located at the
intersection of centerlines, i.e., all junction center points are
located on centerlines. However, we do not have any prior
knowledge of the centerlines.

Therefore, in this step, we use the approximate ridge lines
instead. And we extract the approximate ridge points by both
the intensity profile of lines [38] and the maximal directional
filter response [24]. The junction blobs that are not crossed
by any approximate ridge line are discarded. In order to
obtain the approximate ridge line points, we adopt a base
line algorithm [38] and calculate the intensity distribution of
multi-scale lines along equally spaced directions in the local
window centered by each pixel. To distinguish between the
‘‘line’’ in base line algorithm and ‘‘line’’ in a line structure,
here we use ‘‘stick’’ instead of ‘‘line’’ to denote the former
one. Suppose I (x, y) is the intensity of point (x, y) which is
the center of a window with size W ×W , the average inten-
sity values of the window is IWavg. The initial screening step
selects the points with high intensity values, with the criterion
I (x, y) > τ1IWavg as mentioned in [25], where τ1 denotes the
ratio threshold. The base sticks (with length L < W ) orient
towards 12 directions (evenly spaced), respectively, and pass
through the window center (x, y). The average intensity value
along each stick is computed, and the stick which has the
maximum intensity value (ILmax) is the winning stick, and the
stick response is calculated as,

IR = ILmax − I
W
avg. (8)

We further screen the candidate points which satisfy
IR > Ith, where Ith = τ2IWavg. The winning stick direction
is approximately equal to the line direction at position (x, y).
Thus the normal direction of the line profile is approximately
equal to the direction which is perpendicular to the winning
stick. Then the pixels along the normal direction of sticks
are exploited to determine whether the center of window is
located at the peak of the profile, by checking whether Eq.
((9)) holds,

[I (x, y)− I (xn− , yn− )][I (x, y)− I (xn+ , yn+ )] > 0, (9)

where (xn− , yn− ) and (xn+ , yn+ ) denote the points located
at the two sides of (x, y) respectively with the same dis-
tance along the normal direction of the stick. L can vary in
multi-scale space, and we select multiple pairs of (xn− , yn− )

and (xn+ , yn+ ) with different distances to the center for
verification.

Moreover, we also use Gabor filter bank to locate the
ridge-like points. Referance [24] has demonstrated that strong
response can be obtained for line and junction by tuning
Gabor filters. However, Gabor filter could also produce
strong response on the edge of images. Considering that the
linear structure has a property that its first-order derivative
is close to zero while second-order derivative is large [33],
thus before convolving with the Gabor filter bank, we first
take the second-order derivative of images along the horizon-
tal and vertical coordinates respectively, then calculate their
convolution with filter banks separately, i.e.,

RD(x, y) = ID(x, y) ∗ h(θ,ν)(x, y, σ, ω), (10)

where ID is one of the second-order derivatives, ID ∈

{Ixx , Ixy, Iyy}. After that, we re-normalize each deriva-
tive response and get the maximum value of each point
Rmax(x, y) = max{Rxx(x, y),Rxy(x, y),Ryy(x, y)} as the final
Gabor filter response. Then non-maximal suppression is used
to screen points and the remaining points can be approx-
imately regarded as approximate ridge line points. After
conducting the above two methods, i.e., by using intensity
profiles and Gabor filter bank convolution, we obtain two
candidate sets of approximate ridge line points from these two
methods respectively. Furthermore, we utilize morphology
operations to fill the tiny gaps and fix discontinuous locations
in both sets.

Once approximate ridge lines are extracted, the locations
of forks are also known, where the line junction centers are
most likely located. Therefore, the initial screening step is to
select the blobs which contain a fork identified from either
set mentioned above. Moreover, we eliminate the overlapped
junction blobs by considering the following two cases, where
Dij denote the distance between the centers of the ith blob and
the jth blob,
• Case I: If two blobs have a small overlap (max{σi, σj} <
Dij ≤ (σi + σj), where σ denotes the radius of a blob,
then both of them will be kept.

• Case II: If the center of a blob locates within another
blob, i.e., Dij ≤ max{σi, σj}, then further judgement is
required.

Examples of these two cases are shown in Fig. 5.
In case II, the blob will be kept if it satisfies the following

condition: the number of identified approximate ridge points
is larger than the threshold T (In all our experiments T = 2σ ′,
where σ ′ denotes the minimum integer that is greater than
the blob radius σ ). An additional selection criterion is that,
if a blob center is located in another blob, we will compare
the proportion of identified approximate ridge points among
the whole set of points in the blob, and select the blob i if
(nci /n

m
i ) > (ncj /n

m
j ) where n

c
i and n

c
j denote the number of

identified approximate ridge points in the ith and jth blob
respectively, and nmi , n

m
j denote the total numbers of points

in the two blobs. If (nci /n
m
i ) = (ncj /n

m
j ) then we keep the blob

with the higher blob metric value (ν) and discard the other.
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FIGURE 5. Typical overlapped blobs. The blobs centered with blue points
are kept, and the blobs centered with red points need further judgement.

In Fig. 1, the blobs denoted by yellow circles are discarded
by the screening step. Finally, the number of the remaining
blobs is equal to the number of line junctions we will get.
The pipeline of blob screening is shown in Algorithm 1.
Some input notations are explained as follows. For the input
blob set Sb = {(cm, σm, νm),m = 1, 2, . . . ,M}, cm, σm
and νm denote the coordinate, radius and metric value of
the m-th blob, respectively. For the intensity fork set Sf 1 =
{(cn1, ln1), n1 = 1, 2, . . . ,N1}, cn1 and ln1 denote the coor-
dinate and branch information of the n1th fork, andN1 denote
the total number of intensity forks. For the filter response fork
set Sf 2 = {(cn2, ln2), n2 = 1, 2, . . . ,N2}, cn2, ln2 and N2 can
be defined similarly.

E. LINE JUNCTION CENTER LOCALIZATION AND BRANCH
CHARACTERISTICS ESTIMATION
For a point in a junction blob selected by the previous steps,
it can be regarded as a junction center point if the following
conditions hold simultaneously. First, it is located at or close
to the fork of ridge lines. Second, it is located at or close to a
blob center. As we have obtained two sets of ridge line forks
(See Section III-D), by using intensity information and Gabor
filter bank convolution, respectively. Here we use cross points
of ridge lines and converging points of branches to distinguish
these two kinds of forks. Then we compute the distances from
each query point Jq to the three types of points, namely the
ridge line cross point, branch converging point and junction
blob center, denoted by Jc, Jb andCj, respectively. LetD1,D2
and D3 denote these three distances, i.e.,

D1 = min|Jq − Jc| (11)

D2 = min|Jq − Jb| (12)

D3 = min|Jq − Cj| (13)

The final junction position is determined by Eq. ((14)),

Jq = argmin
3∑
i=1

βiDi, (14)

Algorithm 1 Blob Screening Algorithm
Require: Initial blob set Sb = {(cm, σm, νm),m =

1, 2, . . . ,M}, intensity fork set Sf 1 = {(cn1, ln1), n1 =
1, 2, . . . ,N1}, filter response fork set Sf 2 =

{(cn2, ln2), n2 = 1, 2, . . . ,N2}, distance tolerance
ε, intensity ridge point set Sr1 = {cnr1, nr1 =

1, 2, . . . ,Nr1}, filter response ridge point set
Sr2 = {cnr2, nr2 = 1, 2, . . . ,Nr2}

Ensure: Blob set S?b
1: Compute the distanceDn1,n2 of each fork (cn1, ln1) ∈ Sf 1

and (cn2, ln2) ∈ Sf 2.
2: Get the nearest neighbor fork pair
{(cn1, ln1), (cn2, ln2),Dn1,n2} of the two sets.

3: if Dn1,n2 ≤ ε then
4: add (cn1, ln1) into S?f 1 and (cn2, ln2) into S?f 2
5: else
6: remove (cn1, ln1) if no closer neighbor fork in Sf 2, do

the same operation
7: for (cn2, ln2).
8: end if
9: for each blob (cm, σm, νm) do
10: compute Dm = |cm − c′n|, where c

′
n denotes the

coordinate of either cn1
11: or cn2, and it indicates an arbitrary fork points

(c′n, l
′

n1) ∈ S
?
f 1

⋃
S?f 2.

12: if Dm = |cm − c′n| > σm then
13: remove (cm, σm, νm)
14: else
15: add (cm, σm, νm) into S

cf
b

16: end if
17: end for
18: for each blob (ci, σi, νi) ∈ S

cf
b do

19: compute the distance Dij = |ci − cj| with blob
(cj, σj, νj) ∈ S

cf
b where

20: i 6= j
21: if max{σi, σj} < Dij ≤ (σi + σj) then
22: add (ci, σi, νi) into S?b
23: else if Dij ≤ max{σi, σj} then
24: count number nci , n

c
j of cr ∈ Sr1

⋃
Sr2 in the two

blob regions and
25: the point amount nki , n

k
j of the two blob regions,

respectively.
26: if (nci /n

k
i ) > (ncj /n

k
j ) then

27: add (ci, σi, νi) into S?b
28: else if (nci /n

k
i ) = (ncj /n

k
j ) then

29: if νi ≥ νj then
30: add (ci, σi, νi) into S?b
31: else
32: remove (ci, σi, νi)
33: end if
34: else
35: remove (ci, σi, νi)
36: end if
37: else
38: add (ci, σi, νi) into S?b
39: end if
40: end for
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where βi denotes the weight of the ith distance. Thus, the
junction centers are the points which have the minimal value
of the linear combination of three kinds of distances. Some-
times, a junction blob may not cover any Jb or Jc. For such
cases, we extend the radius r of blobs to include the nearest
Jb or Jc, and set a upper bound υ for r . In our experiment,
υ = 8 pixels. If there is still no Jc or Jb in the extended blob,
we select the ridge line point which is the closest to a junction
blob center, or the branch line point which is the closest to a
junction blob center.

In addition to locating the line junction centers, we also
estimate branch number and orientation. In a certain blob,
since the junction center is very close to the branch converg-
ing point Jb, it is straightforward to get the branch number
by counting the number of valid fork branches that intersect
at Jb. Accordingly, branch orientations are estimated by the
maximal filter orientation of the adjacent ridge lines. Con-
sidering that small blobs may contain no fork obtained by
maximal filter response, we extent the radius of the blob to get
the nearest fork, and then use the same procedure mentioned
above.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTINGS AND EVALUATION CRITERIA
To evaluate the performance of JUNR, our experiments
were performed on both synthetic and real images, includ-
ing neuron and retinal vessel images. The synthetic data set
is composed of simulated neuron images from NeuroMor-
pho.org [39],1 and the real data set consists of retinal vessel
images, i.e., the DRIVE data set [37].2

As for the synthetic data set, we selected 180 simu-
lated neuronal SWC files randomly. Each file contains the
morphology and log of a neuron which is presented as a
sequence of linked center points as well as their correspond-
ing radii. According to [1], the two dimensional fluorescence
microscopy images were generated by the Gaussian point-
spread function and Poisson noise. The line junction infor-
mation for the simulated neuron images is contained in the
raw files. For this kind of images, the preprocessing work is
unnecessary due to the high quality of curvilinear structures.

The DRIVE data set is a widely used benchmark set for the
evaluation of vessel segmentation algorithms. In our experi-
ments, since our algorithm requires no labelled data, we did
not differentiate training and test samples. And for evaluat-
ing our method, we used the ground truth data of junction
center locations provided by Azzopardi and Petkov [18].3 For
images in DRIVE, we adopted the same preprocessing proce-
dure described in [40], including homogenizing background
intensity distribution and denoising. The main steps of the
background homogenization and denoising are a serious of
smoothing and shade-correction operations. To quantitatively
analyze the performance of our approach, four quantities

1The swc files can be downloaded at http://neuromorpho.org/
2http://www.isi.uu.nl/Research/Databases/DRIVE/.
3http://www.cs.rug.nl/imaging/databases/retinadatabase

were recorded, namely true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). Specifically, TP
represents the number of true junction centers detected, TN is
the number of true background points that are not detected as
junction center, FP is the number of falsely detected junction
centers, and FN represents the number of true junction centers
that are not detected. It is quite common to relax the criterion
of accuracy, i.e., points that are within ρ pixels of a true
junction center are also regarded as true positives. Here we
set ρ to 5 as suggested in [16]. Several widely used statistical
metrics were adopted, including sensitivity, specificity and
their harmonic mean, which are calculated as Precision =
TP/(TP + FP), Recall = TP/(TP + FN ), and F1 score =
2× Precision× Recall/(Precision+ Recall).

In our method, the parameters mainly include weighting
coefficients and parameters of filter kernel. The measurement
coefficients in Eq. ((7)) are α1 = 80, α2 = 4, and α3 = 1 on
all data sets, as suggested in [25]. The distance coefficients
in Eq. ((14)) are β1 = β2 = 5, and β3 = 1 for all of the
50 images. In the blob screening step, for simulated neuronal
images, the window size is 9×9, and the stick length 2 ≤ L ≤
7; while for the DRIVE data set, the window size is 15× 15,
and the stick length 2 ≤ L ≤ 15. The parameters of Gabor
filter bank are set as follows: for simulated neuronal images,
wavelength λ = [2, 2

√
2, 4], aspect ratio is 0.5, bandwidth

is 2, phase offset ϕ = [0, π/2, π] and 24 orientations are
{θ = π

18 i | i = 0, 1, 2, . . . , 23}; for retinal vessel data
set, wavelength λ = [2, 2

√
2, 4, 4

√
2, 8], aspect ratio is 0.5,

bandwidth is 2, phase offset ϕ = [0, π] and 36 orientations
are {θ = π

18 i | i = 0, 1, 2, . . . , 35}.

B. EXPERIMENTAL RESULTS
In this section, we show both visual and statistical detection
results on the two data sets. In the low level vision field,
observers’ judgement is a crucial evaluation criterion. Junc-
tion detection is a typical low level vision task, thus the visual
results can directly reflect the quality of the detector, while the
quantitative results make the performance evaluation more
objective.

1) THE EXPERIMENT ON THE SYNTHETIC DATA SET
Fig. 6 shows several examples of the detection results of
the simulated images, including Drosophila melanogaster
and Chinese grey hamster neurons. We mark the junctions
in that images, where red circles are the junction regions,
green lines indicate the junction branches and yellow points
mark the junction centers. Apparently, our method can locate
the intersections accurately and represent their characteristics
adequately.

For the assessment on simulated neuron images, we com-
pared our method with an approach that is specialized
for crucial point detection in neuron images proposed by
Miroslav et al. [1], and a versatile method proposed by
Su et al. [25]. The detection results are listed in Table 1.
As can be seen, our method is superior to the other two
methods on all the three criteria. Actually, all of the three
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FIGURE 6. Experimental results on neuronal images (SNR = 5). Red
circles are the detected junction regions, green lines indicate the
branch orientations and yellow points denote the junction centers.

TABLE 1. Result comparison on the simulated neuron data set with
SNR = 5.

methods take advantage of the local neighborhood of points
and compute the response of a directional filter bank. Rado-
jevi’s method utilizes a specifically designed fuzzy-logic rule
system to estimate the junction. This method is good at
termination detection, but is easily misguided by the local
density intersections and tortile curvilinear structures. In Su’s
approach, the final junction position is confirmed by the
intersection of its branch lines, and the branches are identified
according to the similarities between adjacent directional
sticks with their pre-defined templates. A disadvantage of this
method is the difficulty in distinguishing nearby junctions
when they gather closely. Our method could overcome the
drawbacks of the two algorithms, as we select the junctions
through a screening scheme, and locate the junction centers
with the weight distances, which integrates three junction
metrics.

Furthermore, we investigated the influence of signal-to-
noise-ratio (SNR), and experimented with different SNR val-
ues, i.e., 2, 3, 4, 5, as suggested in [1]. JUNR performs better

FIGURE 7. Experimental results on DRIVE images. The Red circles are the
detected junction regions, green lines indicate the branch orientations
and yellow points denote the junction centers.

than other two methods when SNR ≥ 3; and when SNR < 3,
its performance is slightly inferior to Su’s but also superior
to Radojevi’s method. With the increase of noise ratio, the
detection accuracies of all the three methods decreased. Our
method reduces the impact of noise to some extend via the
process of screening the blobs which may contain junction
centers. And Su’s approach is also partly overcome the impact
of noise by locating the junction centers with local feature
refinement, while Radojevi’s method suffers more from noise
because high noise can offset the feature values in the fuzzy
logic rules.

2) THE EXPERIMENT ON THE DRIVE DATA SET
Fig. 7 shows JUNR’s results on four DRIVE images. It can be
observed that it achieves good performance on these images,
but there are still some falsely detected points and missing
points, whichmay be caused by two reasons. First, some puny
curvilinear structures such as vessel twigs have been removed
in the preprocessing step, thus the related line junctions may
have low metric value close to that of the background points.
Second, in the junction blob selection step, some overlapped
blobs are removed. It is possible that the excluded blobs
contain true junction center points. This will lead to loss or
position deviation of junction center points.

We compared our method with several other approaches
specialized for retinal vessel junction detection, includ-
ing hybrid junction number method [2], filter based junc-
tion detector [30], Saha’s method [31], GRAID (GRowing
Algorithm for Intersection Detection) [16], and COSFIRE
(Combination Of Shifted Filter Responses) [18]. All these
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TABLE 2. Result comparison on the DRIVE data set.

methods detect junctions in binary images provided by man-
ual segmentation. Aibinu et al. [2] thinned the binary images
in which vessels are only one pixel wide, then they used a
small window to count the connected pixels for determining
the junction position and type. Filter based junction detector
skeletonizes the binary images to get junction centers with no
less than 3 neighbors from 8 adjacent pixels. Saha’s method
extracts junctions with 3 branches via counting the cyclic
path of a sliding window with the radius of 3. GRAID does
not thin the binary curvilinear structure, but computes the
distance map of each pixel and gets a local distance cost to
judge whether the point is a local ball center, then uses an
expanded frontier function to infer the branch number and
decide which local ball centers are junctions. COSFIRE algo-
rithm calculates the blurred and shifted responses of selected
Gabor filters to extract the junctions in the segmented vessel
images. Besides, we compare with the Su’s method (work-
ing on raw images as used in the DRIVE experiment). The
detection performance is shown in Table 2. Our method ranks
the second among the 7 methods. The first three algorithms
need to skeletonize the binary images into one pixel wide line
structures. This procedure produces bias in the thinning step
and the final results rely on the window size. The detected
junction location may have large shifts with the true junction
centers. The GRAID method would result into high error
rate when calculating the shortest branch. For example, if the
binary image has a gap in vessel structure which is close to
the junction region, the shortest branch judgement will be
negative in the intersection model, and that junction center
point will be excluded. The aforementioned disadvantage of
Su’s method also exists in dealing with real images, i.e., com-
puting the directional stick response of local intensity is hard
to distinguish the junctions close to each other. JUNR can
overcome the these shortcomings to some extent since JUNR
does not determine the junction in image directly but maps
the images into the metric space, and restricts the potential
junction centers within the junction blobs.

In addition, we also examine the distance between the
detected position and true location of junction centers on
DRIVE [37]. Intuitively, a small distance indicates good
detection performance. Table 3 lists all the mean distances
between correctly detected points with their corresponding
ground truth, where all the mean distances are less than 3
pixels, which indicates that JUNR will still have a good
assessment result with a stricter evaluation criteria.

TABLE 3. Results of JUNR on DRIVE images.

Note that the COSFIRE algorithm gets a better perfor-
mance than all the other methods. COSFIRE obtains the
optimal branches with Gabor filters by learning the param-
eters of the filters. Different from JUNR, COSFIRE works
on binary images, and the learned filters have very different
responses in curvilinear and background region. Although
COSFIRE achieves very good performance and its detec-
tion process becomes much easier on binary images, the
quality of labeling has great impact on its detection results.
That is, the performance of COSFIRE method would fluc-
tuate when the ground truth changes, as mentioned in [16].
In summary, JUNR achieves better or comparable perfor-
mance to the existing state-of-the-art detectors of junctions.
In many actual biomedical images, obtaining the curvilinear
structure is a very hard work. In such cases, JUNR can be
a versatile and powerful tool for the line junction detection
task.

V. CONCLUSION
In this paper, we propose a new approach to detect and charac-
terize line junctions in synthetic and real biomedical images.
We first provide a formal definition of line junction and
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summarize several essential properties of it. Then we propose
the JUNRmethod, which consists of four major steps, namely
the generation of score matrix using a combined measure-
ment, the detection of blobs containing junction centers, the
screening of blobs, and the determination of junction center
locations as well as branch characteristics. This new method
achieves good performance on simulated neuron images and
competitive results on real retinal vessel images compared
against the state-of-the-art detectors for line junctions. The
main advantage of JUNR is that the junction detection is
based on the raw monochromatic images in which the line or
tubular structure is unknown, and no labelled data is required.
The JUNR is a flexible and versatile method for line junction
detection in many biomedical images, especially when the
images contain complex curvilinear networks which are hard
to delineate.
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