
Received October 31, 2017, accepted November 27, 2017, date of publication December 8, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2781360

Binary Hashing for Approximate Nearest
Neighbor Search on Big Data: A Survey
YUAN CAO1, HENG QI 1,2, WENRUI ZHOU1, JIEN KATO2, KEQIU LI1, (Senior Member, IEEE),
XIULONG LIU1, AND JIE GUI3, (Senior Member, IEEE)
1 School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, China
2Graduate School of Information Science, Nagoya University, Nagoya 464-0814, Japan
3Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230000, China

Corresponding author: Heng Qi (hengqi@dlut.edu.cn)

This work was supported in part by the NSFC under Grant 61772112, Grant 61672379, Grant 61370199, and Grant 61572463, in part by
the State Key Program of National Natural Science of China under Grant 61432002, in part by the Dalian High-level Talent Innovation
Program under Grant 2015R049, and in part by the JSPS KAKENHI under Grant 16F16349. The work of the Y. Cao was supported by the
China Scholarship Council during a visit to Rutgers University.

ABSTRACT Nearest neighbor search is a fundamental problem in various domains, such as computer
vision, data mining, and machine learning. With the explosive growth of data on the Internet, many new data
structures using spatial partitions and recursive hyperplane decomposition (e.g., k-d trees) are proposed to
speed up the nearest neighbor search. However, these data structures are facing big data challenges. To meet
these challenges, binary hashing-based approximate nearest neighbor search methods attract substantial
attention due to their fast query speed and drastically reduced storage. Since the most notably locality
sensitive hashing was proposed, a large number of binary hashing methods have emerged. In this paper,
we first illustrate the development of binary hashing research by proposing an overall and clear classification
of them. Then we conduct extensive experiments to compare the performance of these methods on five
famous and public data sets. Finally, we present our view on this topic.

INDEX TERMS Approximate nearest neighbor search, large-scale database, hashing based methods,
overview.

I. INTRODUCTION
Nearest Neighbor (NN) Search is to take a query point and
accurately find the examples which are most similar to it
within a large database. It is a fundamental problem in many
applications, such as computer vision [1], [2], information
retrieval, data mining and machine learning. However, with
the increasing availability of all kinds of data, especially
visual data in a variety of domains (e.g. scientific image
data, community photo collections on the Web, news photo
collections or surveillance archives), fast indexing and search
for large database is critical. Hence, Approximate Nearest
Neighbor (ANN) Search methods occur to expedite the
retrieval process by sacrificing a predictable loss in accuracy.

ANN Search methods are generally broken into two
families. One group relies on data structures using spatial
partitions and recursively hyperplane decomposition, which
includes k-d trees [3], metric trees [4], cover trees [5], and
other related techniques. These methods perform well when
processing low-dimensional data, however, they degenerate
to a linear scan in the worst case, when data are distributed
in high dimensions. The other group concentrates on hashing

based methods, which map data points to low-dimensional
binary codes in Hamming space. This paper focuses on the
later one.

Efficient hashing based methods should have several prop-
erties. First, the algorithms should map similar points in
original space into similar binary codes in Hamming space.
This property is to ensure the algorithms to preserve the
similarity between the two spaces. Second, the dataset should
be encoded into a small number of bits to increase retrieval
speed and reduce memory storage. For example, for an ordi-
nary workstation with 16 GB memory, to store 500 million
images in memory, we could only use about 32 bits for each
image. Finally, the algorithms for both learning parameters
of hash functions and encoding a new test point should be
very efficient. To simultaneously satisfying the above three
requirements makes the hash codes learning problem quite
challenging.

After learning the parameters of hash functions on the
training dataset offline, the online search process of hashing
based methods contains three main steps. First, to compute
the binary code of the query point. Second, to find the buckets

VOLUME 6, 2018
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2039

https://orcid.org/0000-0002-8770-3934

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

FIGURE 1. Hash Categories.

with small Hamming distances to the query point. Finally,
to load the points in the selected buckets into memory and
rerank them if necessary.

In view of the above process of hash based ANN search,
hash methods can be grossly divided into two categories:
Hash Coding and Hash Ranking. Here, we introduce the two
categories and more detailed classification in each category
as follows (Fig.1). Table 1 shows the characteristics of hash
coding methods from three viewpoints, namely hash mecha-
nism, data characteristic and hash platform. Table 2 shows the
characteristics of hash rankingmethods. Recently, deep learn-
ing based hash methods are popular. Liu et al. gives Table 3
to summarize existing deep learning based methods [6]. This
is not the focus of this paper. We will describe and discuss
the hash coding methods and the hash ranking methods in
following sections.

A. HASH CODING
Hash Coding based methods aim at how to learn better hash
functions tomap the data points in original space to Hamming
space. We further divide Hash Coding methods into two
categories from different angles.
a. Hash Mechanism. These methods take into account

how to learn hash functions and whether they are data-
dependent or not.

b. Data Characteristic. These hash methods vary accord-
ing to different similarity measures among data
points, data mobility (fixed or floating), data modal
(single or multiple) and data distribution (Concen-
trated or Distributed).

B. HASH RANKING
Hash Ranking based methods pay attention to hash codes
ranking, especially for hash codes that share the same ham-
ming distance to the query point.

a. Weighted Hamming Distance. These methods try to
learn different weights for each hash code. Some focus
on learning bit-wise weight for each hashing bit, some
devote to learning overall weight for each class.

b. Asymmetric Distance. This kind of methods only map
database points to binary codes but do not map the query
point. The distance between this two unequal spaces is
defined as asymmetric distance.

The rest of this paper is organized as follows. First, we give
an overview and a detailed category on Hash Coding meth-
ods in Section 2. Then, we present an introduction of Hash
Ranking methods in Section 3. Next, we make exten-
sive experiments on five common datasets to compare the
accuracy among several notable hashing based methods in
Section 4. Finally, we conclude this paper and propose
conclusion and future work on hashing based methods in
Section 5.

II. HASH CODING METHODS
A. HASH MECHANISM
1) DATA DEPENDENCY
Hash Based Methods aim at learning hash functions to
map high dimensional points to binary codes. Early hash
functions are independent of data distribution, which means
that the learning process does not rely on any information

2040 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

TABLE 1. Category of hash coding methods.

TABLE 2. Category of hash ranking methods.

of the data. These hash functions are mainly made up of
a few random projections that follow certain distribution
(e.g. Gauss distribution). The most notably data-independent
hashing based method is Locality-Sensitive Hashing
(LSH) [7]. Here, We will introduce LSH method briefly as
follows.

LSH method offers probabilistic guarantees of retrieving
items within (1+ ε) times the true nearest neighbor distance,
with query process in constant or sub-linear time respect
to n. LSH does this by computing a number of randomized
hash functions that guarantee a high probability of collision

for similar examples. It has been verified that with high
probability, points that are close in original space will have
similar hashing codes, and this fact is utilized for efficiently
finding approximate nearest neighbors.

Despite its success, it has been observed that the theo-
retical guarantees are asymptotic as the number of random
projections grows. Thus, it needs long codes to achieve
acceptable accuracy. However, since the collision probability
decreases exponentially with the length of the code, more
hash tables are needed to get a good recall. Hence, it would
be hard to scale up to millions of points in consideration of
time and memory. Therefore, many recent works [8]–[11]
focus on generating data-dependent short compact hashing
codes.

A well-known data-dependent hashing based method to
learn compact codes is Spectral Hashing (SH) [8], which
has been shown to attain much higher accuracy than LSH
in practical applications. SH constructs an objective function
on the training data points to preserve the similarity between
original space and Hamming space, which means that the
points which are similar in original space can be mapped
to similar binary codes with low Hamming distance. With

VOLUME 6, 2018 2041

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

TABLE 3. Category of deep learning based hash methods (cited from [6]).

this objective and a few constraints, the learnt hashing codes
of database points are the c (code length) eigenvectors of a
Laplacian matrix with minimal eigenvalues (excluding 0).

Since SH method utilizes the data distribution to
learn hashing codes, it always performs better than data-
independent hashing based methods like LSH. However,
there are also some shortcomings in SH method. First,
the optimal hashing code formulation in SH suffers from
the inability to handle new data points, because no explicit
hash function is produced. Second, its behavior is not easy to
characterize from the theory pespective. In fact, it is not clear
whether Hamming distance between hash codes converges to
similarity measure in original space as the number of hash
bits increases. Third, in practice, the projected data points
are often distributed on a few dimensions which results in
SH working well for only relatively small codes. In the next
section, we will describe the objective function and hashing
codes learning process in detail.

2) HASH PROCESS
• Traditional Methods. Before 2014, most hashing based
methods [8], [9], [12], [13], [16]–[19] follow the tra-
ditional hash framework composed of two processes:
Projection and Quantization. In the Projection process,
the data points in original high dimensional space are
mapped to a low dimensional projection space by a
few hash functions. Then, the data points in the pro-
jection space are quantized to binary codes with several
thresholds during the Quantization process. In order to
illustrate the two processes more clearly, we limn them
as follows:
Let us first introduce our notations. We assume

that the data points in original space are denoted as
{x1, x2, . . . xn},∀xi ∈ Rd , which form the rows of the
data matrix X ∈ Rn×d . The object of hashing based
methods is to find a projection matrixW ∈ Rd×c, where
c denotes the code length. For j = 1 . . . c, the hash
function is defined by

yij = xiwj

Bij = Q(yij) (1)

where wj ∈ Rd is one column of the matrix P, B ∈ Rd×c

is the resulted binary code matrix and

Q(yij) =

{
1, if yij > tj;
0, otherwise.

(2)

in which tj is the corresponding threshold determined by
hash based methods. In this way, we can formulate the
whole hash coding process as B = Q(XW).
From the formula (1), we can see that one hash function
can map a data point to one bit, therefore, we need
c hash functions to learn c bits. The difference among
various hashing based methods is the computation of
projection matrix W [10]. Now, we show how hashing
based methods learn projection matrixes and how to
quantize the data points in projection space.
– Projection. We define the Projection process as
P = XW . Now, the most common hashing based
methods learn hash functions by constructing an
objective function and then minimize or maxi-
mize it to preserve the similarity between original
space and Hamming space. Meanwhile, in order to
increase the performance of hashing based meth-
ods, the hash functions should also meet some con-
straints, such as: Balance and Independence.
Take SH [8] as an example, we present the objective
function and constraints in SH method as follows:

minimize :
∑
kij

Si,j(y(i, k)− y(j, k))2

suject to : Y (i, j) ∈ {−1, 1}

YT1 = 0

YTY = I (3)

in which, y(i, k) and y(j, k) denote the k-th bit
of points i and j respectively in projection space.
Sij represents the similarity between points i and j
in original space with values in [0, 1]. It is clear
to observe that, if two points are similar in orig-
inal space, which means Sij is large, the value
of (y(i, k) − y(j, k))2 should be small. Hence,

2042 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

SH learns hash functions by minimizing the above
objective function and meanwhile meeting the two
constraints: Balance and Independence.

From the information theoretic point of view,
we would like to maximize the information pro-
vided by each bit. According to maximum entropy
principle, a balance partitioning of data space pro-
vides maximum information. Thus, it is desired to
have YT1 = 0, where Y ∈ Bn∗c denotes the binary
codes of n data points. On the other hand, both the
worst case and the average case of time complexity
can be minimized if the hash buckets are perfectly
balanced. In the meanwhile, each hash function
should also be mutual independent, Y TY = I ,
to reduce the information redundancy produced by
similar data space partitioning.

– Quantization. In the Quantization process, the data
points in the projection space are quantized into
binary codes by thresholding. Currently, most of
the hashing basedmethods quantize each projection
dimension with one single threshold which is called
Single-Bit Quantization (SBQ). The thresholds are
often computed by meeting the balance constraint:
(YT1 = 0).
However, one problemwith SBQ is that the thresh-

olds always lie in the region of the highest point
density, which leads to many neighboring points
close to the thresholds quantized into totally dif-
ferent codes. Therefore, a new quantization method
dubbed Double-Bit Quantization (DBQ) [20] is
proposed to solve the problem of SBQ by quantiz-
ing each projection dimension into double bits with
adaptively learned thresholds. It attempts to avoid
setting thresholds among data points with similar
projected values.

In addition, since a subset of hash functions
may be more informative than others, a dubbed
Variable-Bit Quantization (VBQ) [21] method is
introduced to locate a variable number of bits for
each LSH hyperplane. This is done by constructing
such an objective function that Hyperplanes which
better preserve the neighbourhood structure of data
points in original space are awarded more bits.
In comparison with SBQ and DBQ [20], VBQ [21]
can get a much higher accuracy. However, it can
only be applied on LSH hash method, which makes
VBQ [21] limited in real applications.

• Deep Learning Based Methods. Hashing is a widely-
used approximate nearest neighbor search approach for
large-scale image retrieval. In the existing hashing based
methods for image retrieval, an input image is usually
denoted by a vector of hand-crafted visual features
that do not necessarily preserve the accurate semantic
similarities of images pairs, which leads to poor per-
formance of hash function learning. Therefore, deep
learning based hashing methods [44]- [54] are proposed

to simultaneously learn a good image representation and
a set of hash functions automatically.

To our knowledge, Semantic Hashing [55] is the
first work on deep learning techniques for hash-
ing. They learn hashing codes for images by stacked
Restricted Boltzmann Machines (RBMs). Similarly,
Torralba et al. [56] model a deep network by using
multiple layers of RBMs. However, these models are
complex and surpassed by many recent hashing based
methods.
The aforementioned two deep learning based hashing

methods are both unsupervised which do not utilize the
label information of training points. Until 2014, Xia
et al. proposed a supervised hashing basedmethod called
Convolutional Neural Network Hashing (CNNH) [47].
They first learn approximate hashing codes from pair-
wise similarity matrix decomposition and then simulta-
neously learn image features and hash functions with
the raw image pixels as input using CNNs to fit the
learnt hash codes. However, there are some limita-
tions in CNNH algorithm. Therefore, a few improved
deep learning based hashing methods are proposed
in 2015.
First, the learnt image features can not give feedback

for hash codes learning, although the learnt approx-
imate hash codes can guide the learning of image
features, which means that CNNH can not learn image
features and hash codes simultaneously. Therefore,
Deep Pairwise-Supervised Hashing (DPSH) [53] is pro-
posed to perform simultaneous feature learning and hash
code learning for applications with pairwise labels. They
integrate all components into the same deep architecture
to map the images from pixels to pairwise labels in an
end-to-end way. Therefore, different components can
give feedback to each other, which leads to better codes
learning.
Second, in the image features learning stage, a matrix-
decomposition algorithm is used which requires the
input of a pairwise similarity matrix. It consumes con-
siderable storage and computational time when the data
size is large. Therefore, Lin et al. [44] present an effi-
cient deep learning approach to learn a set of effective
hash-like functions.
Third, CNNH does not explicitly impose the ranking

constraint on the deep models, which can not figure out
the multi-level similarity problem. Zhao et al. [49] learn
a joint optimization of feature representation and map-
ping them to hash codes. Hash functions are learnt with
semantic ranking supervision which is the order of a
ranking list derived from shared class labels between
query and database images.

B. DATA CHARACTERISTIC
1) SIMILARITY MEASURE
• Euclidean Distance. In general, the similarity between
two points x and y in original space is measured by

VOLUME 6, 2018 2043

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

Euclidean distance which is defined as follows:

Ed (x, y) = ||x − y||2 =

√√√√ m∑
i=1

(xi − yi)2 (4)

Many hash functions are leant based on this similarity
measure, such as LSH [7] and SH [8] mentioned before.

• Kernel Distance. The aforementioned hashing based
methods have one important limitation: they assume
the points in original space are in a vector format.
However, in many real applications such as multimedia,
biology or Web, data types are always in the forms of
graphs, trees, sequences, sets, or other formats. For such
general data types, a number of complex kernels are
defined to compute data similarities.
Moreover, even if the data are stored in the vec-

tor format, for computer vision applications such as
image retrieval, kernel distance can show better semantic
similarities between images than Euclidean distance.
In addition, many machine learning applications benefit
from the use of domain specific kernel functions, for
which the data in original space is not known explicitly,
namely only the pairwise kernel function is computable.
Therefore, many hash based methods [9], [22]–[27] are
developed dealing with the kernel functions applicable
to both vector and non-vector inputs.
Kernel function includes linear kernel function, poly-

nomial kernel function, Gauss kernel function and so on,
in which Gauss kernel function is the most common one
and is also called Radial Basis Function (RBF), a kind of
scalar function along the radial symmetry. It is defined
as follows:

k(||x − xc||) = e−
||x−xc||2

2σ2 (5)

where xc is the center of kernel function, σ is the param-
eter of width. We can see that Gauss kernel function is
an antidependence function of Euclidean distance.

Now, let’s introduce Optimized Kernel Hashing
OKH [22] in detail. In order to attain efficient hash
codes, they start with the same objective function with
SH [8]. However, SH has two important limitations:
First, since there are no explicit hash functions in SH
method, it is hard to encode a novel input point. Second,
SH can not provide effective solutions for kernel simi-
larities between points in original space.
OKH adopts the following formulation:

min
A,b

1
2

N∑
i,j=1

Sij||Yi − Yj||2 + λ
M∑
m=1

||Vm||2

s.t.
N∑
i=1

Yi = 0

1
N

N∑
i=1

YiY Ti = I

Yi ∈ {−1, 1}M

Ymi = hm(Xi) = sign(V T
m ϕ(Xi)− bm)

Vm=
P∑
p=1

Apmϕ(Zp), i=1, ...,N , m=1, ...,M

(6)

By observing Eq. 3 and Eq. 6, we can see the main
difference between SH andOKH algorithms is that, hash
functions Ymi = hm(Xi) = sign(V T

m ϕ(Xi) − bm) repre-
sented in the kernel form are included in the objective
function. Here, Ymi is themth bit for Yi. There areM hash
functions {hm,m = 1, ...M} in total, each of which is
for one hash bit. In Eq. 6, Vm is the hyperplane vector
in the kernel space, ϕ is the function for embedding the
points in original space to kernel space, and bm is the
threshold on m-th bit. Since it is infeasible to define
the hyperplane vector Vm directly in the kernel space,
they represent Vm as a linear combination of landmarks
in the kernel space with combination weights denoted
as Apm, and {Zp, p = 1, ...P} are landmark points which
can be ‘‘basis’’ vectors. In addition, there is an additional

item in OKH’s objective function λ
M∑
m=1
||Vm||2 which is

utilized to a regularized term as control the smoothness
of the kernel function.

• Semantic Distance. Since unsupervised methods [8],
[9], [19], [28]–[30] do not require any labeled
training points, their objective functions are always
constructed with the pre-specified similarity matric.
However, in image retrieval applications, sometimes
similarity between points is not defined with a simple
metric, because this kind of metric may not preserve
semantic similarity. Therfore, semantic similarity is usu-
ally given in terms of labeled pairs of images. In other
words, similar images in original space share at least
one common label. For such pairwise labeled data,
one would like supervised hashing methods [12], [13],
[23], [24] to automatically generate codes that preserve
this semantic similarity.
There exist a few supervised hashing methods that can
handle semantic similarity, however, they are prone to
overfitting when labeled data is small or noisy. What’s
more, these methods are usually slow to train. Hence,
a kind of Semi-Supervised Hashing (SSH) [12] is pro-
posed to learn hash codes by minimizing empirical error
on the labeled data while maximizing variance and inde-
pendence of hash bits over the labeled and unlabeled
data. Here is the objective function with constraints in
SSH method:

H∗ = argmax
H

J (H)

subject to
n∑
i=1

hk (xi) = 0, k = 1, ...,K

1
n
H (X)H (X)T = I (7)

2044 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

where, J (H) measures the empirical accuracy on the
labeled data for a group of hash functions H :

J (H) =
∑
k

{

∑
(xi,xj)∈M

hk (xi)hk (xj)

−

∑
(xi,xj)∈C

hk (xi)hk (xj)} (8)

in which, M contains pairs of points with the same
label and C contains that with different labels. Since
the objective function J (H) itself is non-differentiable
and the balancing constraint makes the problem NP
hard, the authors relax the objective function as well
as the constraints to obtain an approximate solution
for hash functions. Furthermore, there are also other
two interesting semantic hashing methods: FSDH [14]
and SDHR [15]. Fast supervised discrete hashing
(FSDH) [14] does not only outperform other methods,
but also very fast, which is very useful in practical appli-
cations. SDHR [15] learns a real-value label matrix R to
get higher accuracy than many other semantic hashing
methods.

2) DATA MODAL
Nowadays, most of the existing hashing researches pursue the
binary codes on homogeneous similarity assessment, which
means that the data entities in the database are all of the same
type. However, with the rapid development of the Internet
and multimedia devices, tremendous amounts of data have
been easily obtained, such as document, images and videos.
As the data sizes increase, the density of similar objects also
increases. In practice, some databases include data objects
with multiple views, or some relevant multimedia data from
different media types may have semantic correlations. For
example, an image can be associated with related content-
based texts, descriptors, tags, or links. Since the heteroge-
neous entities and relationships are also ubiquitous in real
applications, there is an emerging need to search similar data
entities from multiple heterogeneous domains.

Recent researches focus on multi-modal hashing meth-
ods to address cross-modality similarity search problem by
mapping heterogeneous data points in original space into a
common Hamming space. The core problem in multi-modal
hashing is how to simultaneously construct the underlying
correlations among multiple modalities and preserve simi-
larity relationships in each individual modality. One of the
attempts aims at translating each of the modalities of a multi-
modal object to one of the modalities and employing single-
modal similarity search techniques. However, this kind of
methods suffers from two main weaknesses [57], [58]. First,
there is approximate loss in the translation stage and it is
application dependent [57]. Second, the translation stage is
always very slow, which makes it not practical to many real
applications [58].

Hence, a number of effective and efficient multi-
modal hashing methods appear continuously since 2010.

Cross-View Hashing (CVH) [31] learns hash codes meeting
the conditions that the binary codes of different views of
the same object should be similar if not identical and that
similar data objects should also be encoded to similar binary
codes. CVH does this by minimizing the weighted average
Hamming distance of the binary codes for the training objects
over all the views through solving a generalized eigenvalue
problem. However, CVH ignores the differences between the
modalities which results in poor performance [34].

Inter-Media Hashing(IMH) [32] explores the correlations
among multiple media types from different data sources and
transforms multimedia data from heterogeneous data sources
into a common Hamming space. They use linear regression
with regularization model to learn view-specific hash func-
tions so that the hash codes for new data points can be
efficiently generated. However, IMH can not be applied to
large-scale data set, because it needs to construct the simi-
larity matrix for all the data points, which leads to a large
computational complexity [34].

The aforementioned two hashing methods need to store
independent hash codes to implement cross-view search,
which increases the cost of storage and search. Collective
Matrix Factorization Hashing(CMFH) [33] learns unified
hash codes by collective matrix factorization with latent
factor model from different modalities of one instance.
CMFH avoids the large scale graph construction and eigen-
decomposition problems which are very time consuming.
However, CMFH assumes restrictive constraint that each
view of one instance generates identical hash codes. The
consistence of pairwise data points is guaranteed, however,
the cross correlationship between different pairwise data
points is ignored.

Although these multimodal hashing methods perform well
in multimodal applications, they all discard the discrete con-
strains to get hash codes, which will cause large quantization
error and get poor search performance for long codes. Seman-
tic Topic Multimodal Hashing(STMH) [34] focuses on the
binary nature of hashing to facilitate the large scale cross-
media retrieval for multimedia data sources with texts and
images by learning latent topics from texts and the unified
hash codes simultaneously.

3) DATA MOBILITY
Existing popular hashing based methods usually employ a
batch-learning strategy. However, two critical problems that
are rarely mentioned before have to be taken into considera-
tion: First, in real-world applications, the data often comes
sequentially. For instance, a search engine company like
Baidu has numerous new web pages including texts and
images continuously arriving at the data centers each day.
The existing hashing based methods do not have the ability
to adapt to the changes as a dataset grows and diversifies,
because they have to retrain new hash functions, which is
apparently a less efficient learning manner for streaming
data. Second, when the dataset becomes huge, the computa-
tional cost and memory requirement may be intractable and

VOLUME 6, 2018 2045

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

infeasible. In fact, data is usually stored in a distributed
manner and it is too large to be read into memory of one
workshop.

Therefore, a few online hashing based methods appear in
succession. Online Hashing [35] is known as the first attempt
to develop a kernel mapping based passive-aggressive learn-
ing strategy for accommodating a new pair of data aiming at
mapping the data points in original space to finite number of
hash codes, meanwhile appropriately preserving the similar-
ity relationship between data points.

Online Supervised Hashing [36] is the first supervised
hashing method that allows the label space to grow. Given an
incoming stream of training data with corresponding labels,
they learn and adapt their hashing functions in a discrim-
inative manner. The method can also adapt to new classes
presented in a incoming data stream.

Online Sketching Hashing [37] proposes a novel online
hashing approach based on the idea of data sketching.
A sketch of one dataset preserves themain property of interest
but with a significantly smaller size. With a small size sketch,
the method can learn hash functions in an online fashion with
low computation and storage complexities. It performs well
because the computations performed on the sketch rather than
the whole dataset do not lose much information.

C. HASH PLATFORM
All the hash based methods we discussed above are
designed for the centralized setting, that is to say, are single
machine approaches. However, in many real-word applica-
tions, the size of datasets is more and more large. Therefore,
the data is often stored in distributed machines. One intuitive
way is to gather all data together to a fusion center before
training, and learn hash functions like in a single machine.
However, it is easy to observe that it is prohibitively expensive
in computation, both time and space. Hence, Hashing for
Distributed Data [38] develops a hashing model to learn hash
functions in a distributed manner. Since there is no exchange
of training data across the nodes in the learning process,
the communication cost is very small, which makes it easy
to adapt to arbitrary large-scale distributed applications.

III. HASH RANKING METHODS
Most of the recent researches devote to increasing the accu-
racy of hashing based methods by learning more effective
hash functions, however, the hash ranking problem which is
also very important is rarely studied. In traditional hashing
based methods, data points in original space are embedded
to Hamming space and the similarity between two binary
codes is evaluated by Hamming distance. However, since
the Hamming distances are discrete integer values, there are
often more than one hash code sharing the same Hamming
distance with the query point, which makes it ambiguous
and leads to a critical issue for approximate nearest neighbor
search when ranking is important. Hence, two groups of
hash ranking methods are proposed recently to solve this
problem. One group focuses on learning Weighted Hamming

Distance by learning different weights for each bit or each
class [39]–[41]. The other group aims at learning Asymmet-
ric Distance which only binarizes the database points but not
the query point [42], [43].

A. WEIGHTED HAMMING DISTANCE
1) BIT-LEVEL WEIGHTS
These hash codes ranking methods learn different weights
for each hash bit. Query-sensitive Hash Code Ranking
(QsRank) [39] takes the target neighborhood radius ε and the
raw query point as input, learns weights for each bit, and then
computes ranking score for each hash code.

In theory, they can calculate the scores by computing the
probabilities of the points mapped to each hash code, which
equals the percentages of the ε-neighbors of the query point
mapped to each hash code.

In practice, to efficiently compute the scores, they propose
an approximation algorithm. First, they only utilize the points
in the ε-neighbors of the query point in a few top dimensions,
which is reasonable because the data points in the original
space are often first dimension-reduced by PCA before the
projection stage which minimizes the reconstruction error
with a few top dimensions. Then, since PCA dimensions are
mutual uncorrelated, they approximate the score formulation
by computing weights for each bit independently and multi-
ply them together at last.

AnotherWeightedHammingRanking algorithm (WhRank)
is proposed to rank the returned binary codes at a finer-
grained binary code level [40]. The weights are composed of
two parts: data-adaptive weights and query-sensitive weights.
First, in the Offline stage, they assign different bit-level
weights to different hash bits to give hashing based methods
the ability to distinguish between the relative importance
of different bits. Then, in the Online stage, they give an
algorithm to learn a set of dynamic bit-level weights of hash
bits for a given query.

In [40], they introduce a term ‘discriminating power’ to
denote the ability of a hash function mapping similar data
points to the same bit. The more discriminative the hash
function is, the more important the corresponding bit is.
Therefore, a larger weight will be assigned to it. Based on the
definition of discriminating power, they use the distribution
of database points around the training points to reveal how
discriminative the hash bit is. As a result, the weight should
be monotonically non-increasing w.r.t. standard deviations
of the nearest neighbors’ distributions around the training
points.

Meanwhile, for a specific query point, the discriminat-
ing powers of different hash functions are also different.
Intuitively, if the query point is near to the threshold, then
after adding a random noise to it, it’s more likely that the
noisy query point flips on the opposite side of the threshold.
Therefore, the weight should be monotonically non-
decreasing w.r.t. the distance between the query point and
the corresponding threshold.

2046 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

2) CLASS-LEVEL WEIGHTS
These hash codes ranking methods learn different weights for
each hash code or each class. [41] is the most representa-
tive one. They learn the suitable weights for each class by
proposing a formulation that not only minimizes intra-class
sample similarity but also maintains inter-class proximity.
The objective function can be solved as a quadratic program-
ming problem. Then, the query-adaptive weights are rapidly
computed by evaluating the proximity between a query point
and the concept categories.

B. ASYMMETRIC DISTANCE
As far as I know, [42] is the first method that proposes the
asymmetric distance for hash codes ranking. They state that
the asymmetric scheme which binarizes the database points
but not the query point is still efficient but may provide supe-
rior accuracy, because they take advantage of more precise
position information of the query point. Of course, it can also
distinguish the hash codes with the same Hamming distance
to the query point, since the asymmetric distance space is
divided more densely than Hamming space.

The whole process can be briefly summarized as follows.
They first compute two query-independent points that rep-
resent hash code 0 and 1 on each bit. Since they generally
do not have access to the distribution of the database points,
they simply approximate them by sample average. Then, for
a query point, they first calculate the distances between the
query point and the two query-independent points on each bit
and then store them in look-up tables. At last, the asymmetric
distance between the query point and the database points can
be calculated by adding up some items of the tables according
to their hash codes, which is very efficient.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
We conduct many experiments on five common datasets:
SIFT-10K, CIFAR-10, NUS-WIDE, MNIST and
Caltech-256. We make an overview of the performance
among some notable hash coding methods and make a
large amount of experiments to compare the performance
among several typical hash coding and hash ranking methods
whose codes are open online. Now, let’s describe these
five datasets as well as three evaluation criteria used in the
experiments(Fig. 4 and Fig. 6-Fig. 20) in detail.

SIFT-10K is a public benchmark for the evaluation of
hash based ANN search, which is published by Hervĺę
Jĺęgou [59].1 It contains 35,000 128-dimensional vectors.
The dataset is partitioned into a base set of 10,000 vec-
tors and a training set of 25,000 vectors. Query set that
contains 100 samples is selected from training set and the
accurate 100 nearest neighbors of them are provided in a
100×100 matrix (‘groundtruth’). We simply use the training
set to learn the parameters and compute the average result of
the 100 queries searching in the base set.

1You can download from http://corpus-texmex.irisa.fr/.

CIFAR-10 [60] is a subset of the Tiny Images
dataset [61].2 It consists of 60,000 images of size
32×32 pixels which have been grouped into 10 classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck). All of the images are identified with labels
which can be used to evaluate the performance of hash
based methods. Since the original images are 32×32 color
images, they can be represented with grayscale GIST descrip-
tors computed at 3 different scales (8,8,4), resulting in
320-dimensional vectors.

NUS-WIDE is a real-world web image database
from National University of Singapore [62].3 It includes
269,648 images with a total number of 5,018 unique tags.
There are six types of low-level features extracted from these
images: BoW, CH, CM55, CORR,WT and EDH. The images
aremanually assignedwith some of the 81 concept tags. Since
images are mostly associated with more than one label, one
image is considered as the true nearest neighbor of the query
if they contain at least one same label.

MNIST is a subset of a larger set of handwritten dig-
its available from NIST [63].4 It contains 70,000 images
of size 28×28 pixels in which 10,000 are used as query
set and the remaining 60,000 images are used as train-
ing set and base set. All of the images are represented by
784-dimensional signature vectors and marked with digital
labels from 0 to 9.

Caltech-256 [64]5 is a collection of 30,607 images that
can be divided into 257 classes (the last one is ‘clutter’).
We select 5 images from each class to form the query set
with 1280 images. The remaining images are partitioned
into two sets in which 5140 are randomly selected as the
training set and the others are used as the database. In our
experiments, we represent the images with 320-dimensional
grayscale GIST descriptors [17]. We utilize the image labels
to tell if the candidate is the true neighbor of the query.

Here, let us introduce the three evaluation criteria used
to verify the accuracy of hashing based methods in the
experiments: Precision@1, Precision and Mean Average
Precision (MAP):

Precision@1 =
1

Number of the first true Neighbor
(9)

Precision =
Number of True Neighbors

N
(10)

MAP =

∑
M Precision

M
(11)

where N is the number of points returned back andM is the
number of true neighbors in the first N returned points.

2You can download from https://www.cs.toronto.edu/ kriz/cifar.html.
3You can download from http://lms.comp.nus.edu.sg/research/NUS-

WIDE.htm.
4You can download from http://yann.lecun.com/exdb/mnist/.
5You can download from https://authors.library.caltech.edu/7694/.

VOLUME 6, 2018 2047

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

FIGURE 2. Euclidean-MAP.

FIGURE 3. Kernel-Precision.

B. EXPERIMENTAL RESULTS AMONG HASH
CODING METHODS
Fig. 2, Fig. 3 and Fig. 5 present the accuracy comparison
among several notable hash coding methods in Euclidean
space, Kernel space and Semantic space. The data in these
three figures are from [23], [62], and [65]. The experimental
settings in each figure are the same, so the results are convinc-
ing. The details of the experimental settings can be found in
[23], [62], and [65]. We also conduct many experiments on
almost all hashing methods whose codes are open online and
create Fig. 4 and Fig. 6-Fig. 14.

1) EXPERIMENTAL ANALYSIS IN EUCLIDEAN SPACE
LSH [7] learns randomized hash functions to guarantee a
high probability of collision for similar points. Since the
theoretical guarantees are asymptotic as the number of ran-
dom projections grows, the accuracy of LSH method is
low with short codes and increases slowly with code length
(Fig. 2, 4- 10). SH [8] learns data-dependent hash functions

FIGURE 4. Euclidean-MAP.

FIGURE 5. Semantic-MAP.

FIGURE 6. Euclidean-Precision@1.

and performs better than LSH method for small codes. From
Fig. 2, we can see that longer codes can not increase the accu-
racy, because the projected data points are often distributed on

2048 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

FIGURE 7. Euclidean-MAP.

FIGURE 8. Euclidean-MAP.

FIGURE 9. Euclidean-Precision@1.

a few dimensions. PCAH [10] learns hash codes by randomly
rotating data. With the rotation, the variance is balanced and
quantization error is lower. However, PCAH [10] always

FIGURE 10. Euclidean-Precision@1.

FIGURE 11. Kernel-MAP.

FIGURE 12. Kernel-MAP.

gives low accuracy(Fig. 4- 10). Therefore, ITQ [10] learns an
optimized rotation on its basis to let the quantization error be
the lowest with an efficient alternating minimization scheme.

VOLUME 6, 2018 2049

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

FIGURE 13. Kernel-Precision@1.

FIGURE 14. Kernel-Precision@1.

We can see ITQ always attain higher accuracy than PCAH
(Fig. 2, 4,6- 10). AGH [29] aims at learning effective short
codes by building an approximate neighborhood graph using
Anchor Graphs to solve the objective function similar to that
in SH. Therefore, we can see that AGH performs well for
small codes(Fig. 2, 4, 6, 7- 9). SPH [66] proposes a novel
hypersphere-based hashing function rather than hyperplane-
based hashing functions to map more spatially coherent data
points into a binary code. We can see from Fig. 4, 6- 10
that SPH [66] can always outperform hash coding methods
mentioned above especially with longer code length. From
Fig. 7- 10, we can clearly see BSH [67] provides much
higher accuracy in image datasets such as CIFAR-10 and
MNIST. This is because BSH [67] develops a Boosting-style
algorithm for simultaneously optimizing the label subset and
hashing function in a unified framework. BSH [67] designs
each hashing function especially for a subset of labels, which
can further enhance hashing efficiency for multi-label data.

FIGURE 15. LSH-MAP.

FIGURE 16. SH-MAP.

KMH [68] proposes a novel Affinity-Preserving K-means
algorithmwhich simultaneously performs k-means clustering
and learns the binary indices of the quantized cells. From
Fig. 4, 6, 7, 9, we can find that KMH performs well in SIFT
dataset but not well in image dataset(MNIST). It is possible
that KMH is more applicable to non-image datasets.

2) EXPERIMENTAL ANALYSIS IN KERNEL SPACE
From Fig. 3, 11- 14, We can see KLSH [28] has low accu-
racy in general because it is based on LSH technique which
formulates random projections as hash functions. However,
KLSH can be applied to high-dimensional kernelized data
when the underlying feature embedding for the kernel is
unknown. BRE [9] learns hash functions by minimizing
the reconstruction error between the original distances and
the Hamming distances of the corresponding binary embed-
dings. It is also easily kernelized, but outperforms KLSH
on all hash bits(Fig. 3), because BRE forms an objective
function utilizing the distribution of training data and learns

2050 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

FIGURE 17. LSH-Precision@1.

FIGURE 18. SH-Precision@1.

data-dependent hash functions rather than random projec-
tions in KLSH. KSH [23] learns hash functions in a more
effective and efficient manner. We can see it attains dramati-
cally higher accuracy compared with the other two hash cod-
ing methods in most instances(Fig 3, 11- 14). From Fig. 11
and Fig. 13, we can see MFKH [67] can achieve obvious
performance gains over other kernel based hash coding meth-
ods(KLSH [28] and KSH [23]) becauseMFKH [67] proposes
a novel hashing approach which utilizes the information con-
veyed by different features.

3) EXPERIMENTAL ANALYSIS IN SEMANTIC SPACE
MLH [11] learns hash functions based on structured pre-
diction with latent variables and a hinge-like loss function.
We can see MLH does not perform much better with more
hash bits. However, it is efficient to be used for large datasets
and scales well to large code lengths. SSH [12] utilizes the

FIGURE 19. ITQ-MAP.

label information of the data points and learns hash codes
that can maintain semantic similarity. SSH can achive supe-
rior performance over many unsupervised methods and some
supervised methods such asMLH. KSH [23] is another effec-
tive supervised hash coding method. It can sequentially and
efficiently train hash functions one bit at a time, yielding very
short yet discriminative codes. We can see KSH outperforms
MLH and SSH methods on all hash bits. SDH [62] proposes
a novel supervised hashing framework, aiming at directly
optimizing the binary hash codes efficiently and efficiently.
SDH solves the discrete constraints imposed on the pursued
hash codes by solving a sub-problem associatedwithNP-hard
binary optimization. We can see from Fig. 4, SDH attains
superior results over the other three supervised hashing
methods.

C. EXPERIMENTAL RESULTS AMONG
HASH RANKING METHODS
We conduct our experiments on SIFT-10K, MNIST
and CIFAR-10 to show the performance comparison
among typical hash ranking methods including Hamming
distance (Hamm), Asymmetric Distance [42] (AsyE), Query-
sensitive Ranking [39] (QsRank), Weighted Hamming dis-
tance [40] (WhRank) andMultiple Asymmetric Ranking [43]
(AsyE3). From Fig. 15- 20, We can see AsyE and QsRank
perform analogously and both get obvious higher accuracy
than Hamm. This is because both of them can rerank the
points sharing the same Hamming distance with the query
point. WhRank can get higher accuracy than QsRank in most
circumstances because WhRank learns bit-level weight in
consideration of the distribution of data. AsyE3 [43] is a new
asymmetric distance calculation method which learns more
than two representative points for each hash bit. It performs
much more better especially in non-image dataset because it
divides the distance space more densely than AsyE, QsRank
and WhRank(Fig. 15, 17).

VOLUME 6, 2018 2051

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

FIGURE 20. ITQ-Precision@1.

D. EXPERIMENTAL OVERVIEW ON HASH METHODS
In general, there are three main streams to increase hash-
ing accuracy. One stream tries to construct more efficient
hash functions, one stream aims at learning new quantization
method subsequent to projection process, the other stream
concentrates on reranking hash codes with new distances.
There is also a new trend that many people try to lean hash
codes with deep learning framework. In my opinion, there
are still lots of details to be discovered in traditional hashing
methods, which can keep the balance of time and accuracy
of hashing methods skilly. Furthermore, new deep learning
framework can be specially constructed for hashing methods
which is a very promising topic. As for hash rankingmethods,
I think it is a very interesting topic, because it is easy to
realize much more accurate ANN search with very simple
operations. There fore, in our future work, we will also search
for more efficient and fast hash ranking approaches.

V. CONCLUSION AND FUTURE WORK
In this paper, we illustrate the process of development of
hashing based methods and propose an overall and a novel
and clear category for them. We think this paper is suited for
people to know hash quickly and find which branch they are
interested in. We also conduct a set of experiments to com-
pare the performance among almost all the existing hashing
based methods whose codes are open online. Besides, we will
continue our research in learning more efficient hash coding
and hash ranking methods. Since approximate nearest search
problem is involved in many domains, we will also explore
to propose appropriate hash algorithms to various practical
applications in our future work.

REFERENCES
[1] R. Datta, D. Joshi, J. Li, and J. Z. Wang, ‘‘Image retrieval: Ideas, influ-

ences, and trends of the new age,’’ Comput. Surveys, vol. 40, no. 2, 2008,
Art. no. 5.

[2] J. Hayes and A. Efros, ‘‘Scene completion using millions of photographs,’’
in Proc. SIGGRAPH, 2007, Art. no. 4.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, ‘‘An algorithm for finding
best matches in logarithmic expected time,’’ ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, 1977.

[4] J. K. Uhlmann, ‘‘Satisfying general proximity/similarity queries with met-
ric trees,’’ Inf. Process. Lett., vol. 40, pp. 175–179, Nov. 1991.

[5] A. Bygelzimer, S. Kakade, and J. Langford, ‘‘Cover trees for nearest
neighbor,’’ in Proc. ICML, 2006, pp. 97–104.

[6] W. Liu, H. Ma, H. Qi, D. Zhao, and Z. Chen, ‘‘Deep learning hashing for
mobile visual search,’’ EURASIP J. Image Video Process., vol. 2017, p. 17,
Dec. 2017.

[7] P. Indyk and R. Motwani, ‘‘Approximate nearest neighbors: Towards
removing the curse of dimensionality,’’ in Proc. STOC, 1998, pp. 604–613.

[8] Y. Weiss, A. Torralba, and R. Fergus, ‘‘Spectral hashing,’’ in Proc. NIPS,
2008, pp. 1753–1760.

[9] B. Kulis and T. Darrell, ‘‘Learning to hash with binary reconstructive
embedding,’’ in Proc. NIPS, 2009, pp. 1042–1050.

[10] Y. Gong and S. Lazebnik, ‘‘Iterative quantization: A procrustean approach
to learning binary codes,’’ in Proc. CVPR, 2011, pp. 817–821.

[11] M. Norouzi and J. D. Fleet, ‘‘Minimal loss hashing for compact binary
codes,’’ in Proc. ICML, 2011, pp. 353–360.

[12] J. Wang, S. Kumar, and S.-F. Chang, ‘‘Semi-supervised hashing for large-
scale search,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2393–2406, Dec. 2012.

[13] J. Wang, S. Kumar, and S.-F. Chang, ‘‘Sequential projection
learning for hashing with compact codes,’’ in Proc. ICML, 2010,
pp. 1127–1134.

[14] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, ‘‘Fast supervised dis-
crete hashing,’’ IEEE Trans. Pattern Anal. Mach. Intell., in press,
doi: 10.1109/TPAMI.2017.2678475.

[15] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, ‘‘Supervised discrete hash-
ing with relaxation,’’ IEEE Trans. Neural Netw. Learn. Syst., in press,
doi: 10.1109/TNNLS.2016.2636870.

[16] W. Kong and W.-J. Li, ‘‘Isotropic hashing,’’ in Proc. NIPS, 2012,
pp. 1646–1654.

[17] C. Strecha, A. Bronstein, M. Bronstein and P. Fua, ‘‘LDAHash:
Improved matching with smaller descriptors,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 1, pp. 66–78, 2012.

[18] Y. Gong, S. Kumar, A. Henry Rowley, and S. Lazebnik, ‘‘Learning binary
codes for high-dimensional data using bilinear projections,’’ in Proc.
CVPR, 2013, pp. 484–491.

[19] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai, ‘‘Harmonious hashing,’’
in Proc. IJCAI, 2013, pp. 1820–1826.

[20] W. Kong and W.-J. Li, ‘‘Double-bit quantization for hashing,’’ in Proc.
AAAI, 2012, pp. 634–640.

[21] S. Moran, V. Lavrenko, and M. Osborne, ‘‘Variable bit quantisation for
lsh,’’ in Proc. ACL, 2013, pp. 753–758.

[22] J. He, W. Liu, and S.-F. Chang, ‘‘Scalable similarity search with optimized
kernel hashing,’’ in Proc. KDD, 2010, pp. 1129–1138.

[23] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, ‘‘Supervised hashing
with kernels,’’ in Proc. CVPR, 2012, pp. 2074–2081.

[24] Y. Mu, J. Shen, and S. Yan, ‘‘Weakly-supervised hashing in kernel space,’’
in Proc. CVPR, 2010, pp. 3344–3351.

[25] M. Raginsky and S. Lazebnik, ‘‘Locality-sensitive binary codes from shift-
invariant kernels,’’ in Proc. NIPS, 2009, pp. 1509–1517.

[26] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer, ‘‘Compact hashing
with joint optimization of search accuracy and time,’’ inProc. CVPR, 2011,
pp. 753–760.

[27] A. Joly and O. Buisson, ‘‘Random maximum margin hashing,’’ in Proc.
CVPR, Jun. 2011, pp. 873–880.

[28] B. Kulis and K. Grauman, ‘‘Kernelized locality-sensitive hashing for scal-
able image search,’’ in Proc. CVPR, 2009, pp. 2130–2137.

[29] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, ‘‘Hashing with graphs,’’ in
Proc. ICML, 2011, pp. 1–8.

[30] Z. Jin et al., ‘‘Complementary projection hashing,’’ in Proc. ICCV, 2013,
pp. 257–264.

[31] S. Kumar and R. Udupa, ‘‘Learning hash functions for cross-view similar-
ity search,’’ in Proc. IJCAI, 2011, pp. 1360–1365.

[32] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, ‘‘Inter-media
hashing for large-scale retrieval from heterogeneous data sources,’’ inProc.
SIGMOD, 2013, pp. 785–796.

[33] G. Ding, Y. Guo, and J. Zhou, ‘‘Collective matrix factorization hashing for
multimodal data,’’ in Proc. AAAI, 2014, pp. 2075–2082.

[34] D. Wang, X. Gao, X. Wang, and L. He, ‘‘Semantic topic multimodal
hashing for cross-media retrieval,’’ in Proc. CVPR, 2015, pp. 3890–3896.

2052 VOLUME 6, 2018

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

[35] L.-K. Huang, Q. Yang, andW.-S. Zheng, ‘‘Online hashing,’’ inProc. IJCAI,
2013, pp. 1422–1428.

[36] F. Cakir and S. Sclaroff, ‘‘Online supervised hashing,’’ inProc. ICIP, 2015,
pp. 2606–2610.

[37] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, ‘‘Online sketching hashing,’’
in Proc. CVPR, 2015, pp. 2503–2511.

[38] C. Leng, J. Wu, J. Cheng, X. Zhang, and H. Lu, ‘‘Hashing for distributed
data,’’ in Proc. ICML, 2015, pp. 1642–1650.

[39] X. Zhang, L. Zhang, and H. Shum, ‘‘QsRank: Query-sensitive hash
code ranking for efficient ε-neighbor search,’’ in Proc. CVPR, 2012,
pp. 2058–2065.

[40] L. Zhang, Y. Zhang, J. Tang, K. Lu, and Q. Tian, ‘‘Binary code ranking
with weighted Hamming distance,’’ in Proc. CVPR, 2013, pp. 1586–1593.

[41] Y.-G. Jiang, J. Wang, and S.-F. Chang, ‘‘Lost in binarization: Query-
adaptive ranking for similar image search with compact codes,’’ in Proc.
ICMR, 2011, Art. no. 16.

[42] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik, ‘‘Asymmetric distances
for binary embeddings,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 1, pp. 33–47, Jan. 2014.

[43] Y. Cao, H. Qi, K. Li, and M. Stojmenovic, ‘‘Multiple query-independent
values based asymmetric ranking for approximate nearest neighbor
search,’’ in Proc. ISPA, Aug. 2016, pp. 1628–1635.

[44] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen, ‘‘Deep learning of binary
hash codes for fast image retrieval,’’ in Proc. CVPR, 2015, pp. 27–35.

[45] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, ‘‘Deep hashing for
compact binary codes learning,’’ in Proc. CVPR, 2015, pp. 2475–2483.

[46] K. L. A. Lu, C.-S. Chen, and J. Zhou, ‘‘Learning compact binary descrip-
tors with unsupervised deep neural networks,’’ in Proc. CVPR, 2016,
pp. 1183–1192.

[47] R. Xia, H. Lai, C. Liu, and S. Yan, ‘‘Supervised hashing for image retrieval
via image representation learning,’’ in Proc. AAAI, 2014, pp. 2156–2162.

[48] H.-F. Yang, K. Lin, and C.-S. Chen, ‘‘Supervised learning of semantics-
preserving hashing via deep neural networks for large-scale image search,’’
CoRR, vol. abs/1507.00101, 2015.

[49] F. Zhao, Y. Huang, L. Wang, and T. Tan, ‘‘Deep semantic ranking
based hashing for multi-label image retrieval,’’ in Proc. CVPR, 2015,
pp. 1556–1564.

[50] T.-T. Do, A.-D. Doan, and N.-M. Cheung, ‘‘Learning to hash with binary
deep neural network,’’ in Proc. ECCV, 2016, pp. 216–234.

[51] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, ‘‘Bit-scalable deep
hashing with regularized similarity learning for image retrieval and per-
son re-identification,’’ IEEE Trans. Image Process., vol. 24, no. 12,
pp. 4766–4779, Dec. 2015.

[52] H. Lai, Y. Pan, Y. Liu, and S. Yan, ‘‘Simultaneous feature learning and hash
coding with deep neural networks,’’ in Proc. CVPR, 2015, pp. 3270–3278.

[53] W.-J. Li, S. Wang, and W.-C. Kang, ‘‘Feature learning based deep super-
vised hashing with pairwise labels,’’ in Proc. IJCAI, 2016, pp. 1711–1717.

[54] H. Zhu,M. Long, J.Wang, andY. Cao, ‘‘Deep hashing network for efficient
similarity retrieval,’’ in Proc. AAAI, 2016, pp. 2415–2421.

[55] R. Salakhutdinov and G. Hinton, ‘‘Semantic hashing,’’ in Proc. CVPR,
2009, pp. 969–978.

[56] A. Torralba, R. Fergus, and Y. Weiss, ‘‘Small codes and large image
databases for recognition,’’ in Proc. CVPR, Jun. 2008, pp. 1–8.

[57] R. Udupa and M. Khapra, ‘‘Improving the multilingual user experience of
Wikipedia using cross-language name search,’’ inProc. NAACLHLT, 2010,
pp. 492–500.

[58] J. C. Platt, K. Toutanova, and W.-T. Yih, ‘‘Translingual document rep-
resentations from discriminative projections,’’ in Proc. EMNLP, 2010,
pp. 251–261.

[59] H. Jegou, M. Douze, and C. Schmid, ‘‘Product quantization for nearest
neighbor search,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[60] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

[61] C. Redondo-Cabrera, R. J. López-Sastre, J. Acevedo-Rodriguez, and
S. Maldonado-Bascon, ‘‘Surfing the point clouds: Selective 3D spatial
pyramids for category-level object recognition,’’ in Proc. CVPR, 2012,
pp. 3458–3465.

[62] F. Shen, C. Shen, W. Liu, and H. T. Shen, ‘‘Supervised discrete hashing,’’
in Proc. CVPR, 2015, pp. 37–45.

[63] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[64] G. Griffin, A. Holub, and P. Perona, ‘‘Caltech-256 object category dataset,’’
in Proc. CVPR, 2013.

[65] P. Zhang, W. Zhang, and W.-J. Li, ‘‘Supervised hashing with latent factor
models,’’ in Proc. SIGIR, 2014, pp. 173–182.

[66] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, ‘‘Sperical hashing,’’
in Proc. CVPR, 2012, pp. 2957–2964.

[67] X. Liu, J. He, B. Lang, and D. Liu, ‘‘Compact kernel hashing with multiple
features,’’ in Proc. ACM MM, 2012, pp. 881–884.

[68] K. He, F. Wen, and J. Sun, ‘‘K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,’’ in Proc. CVPR,
2013, pp. 2938–2945.

YUAN CAO received the B.Sc. and B.E degrees
in computer science from Dalian Maritime Uni-
versity, Dalian, China, in 2013. She is currently
pursuing the Ph.D. degree in computer application
technology with the Dalian University of Tech-
nology. Her research interests include large scale
approximate nearest neighbor search and image
retrieval.

HENG QI received the bachelor’s degree from
Hunan University in 2004 and the master’s and
Ph.D. degrees from the Dalian University of Tech-
nology, in 2006 and 2012, respectively. He is cur-
rently a JSPS Post-Doctoral Research Fellow with
Nagoya University, Japan and also an Associate
Professor with the School of Computer Science
and Technology, Dalian University of Technol-
ogy, China. His research interests include multi-
media computing, big data computing, and cloud
computing.

WENRUI ZHOU received bachelor’s degree from
Dalian Maritme University in 2015. She is cur-
rently pursuing the master’s degree with the
School of Computer Science and Technology,
Dalian University of Technology, China. Her
research interests include big data and hashing
algorithms.

JIEN KATO received the M.E. and Ph.D. degrees
in information engineering from Nagoya Uni-
versity in 1990 and 1993, respectively. She is
currently an Associate Professor with the Grad-
uate School of Informatics, Nagoya University.
Her research interests include visual tracking,
object/action recognition and detection, people
re-identification, video summarization, and
machine learning. She is a member of the IEICE,
IPSJ, JSAI and ACM. She is a Senior Member of
the IEEE Computer Society.

KEQIU LI (SM’12) received the bachelor’s and
master’s degrees from the Department of Applied
Mathematics, Dalian University of Technology,
in 1994 and 1997, respectively, and the Ph.D.
degree from the Graduate School of Information
Science, Japan Advanced Institute of Science and
Technology, in 2005. He also has two-year post-
doctoral experience with The University of Tokyo,
Japan. He is currently a Professor with the School
of Computer Science and Technology, Dalian Uni-

versity of Technology, China. He has authored or co-authored over 200 tech-
nical papers, such as the IEEE/ACM TON, the IEEE TMC, the IEEE TPDS,
and the ACM TOIT. His research interests include internet technology, data
center networks, cloud computing, and wireless networks.

VOLUME 6, 2018 2053

Y. Cao et al.: Binary Hashing for Approximate Nearest Neighbor Search on Big Data

XIULONG LIU received the B.E. degree from
the School of Software Technology, Dalian Uni-
versity of Technology, China, in 2010, where he
is currently the Ph.D. degree with the School of
Computer Science and Technology. He served as a
ResearchAssistant with TheHongKong Polytech-
nic University in 2014, and a Visiting Scholar with
Temple University in 2015. His research inter-
ests include RFID systems and wireless sensor
networks.

JIE GUI (SM’16) received the B.S. degree
in computer science from Hohai University,
Nanjing, China, in 2004, the M.S. degree in com-
puter applied technology from the Hefei Insti-
tutes of Physical Science, Chinese Academy of
Sciences, Hefei, China, in 2007, and the Ph.D.
degree in pattern recognition and intelligent sys-
tems from the University of Science and Technol-
ogy of China, Hefei, China, in 2010.He is currently
an Associate Professor with the Hefei Institute

of Intelligent Machines, Chinese Academy of Sciences. He has been a
Post-Doctoral Fellow with the National Laboratory of Pattern Recognition,
Institute of Automation Chinese Academy of Sciences. His research inter-
ests include machine learning, pattern recognition, data mining, and image
processing.

2054 VOLUME 6, 2018

	INTRODUCTION
	HASH CODING
	HASH RANKING

	HASH CODING METHODS
	HASH MECHANISM
	DATA DEPENDENCY
	HASH PROCESS

	DATA CHARACTERISTIC
	SIMILARITY MEASURE
	DATA MODAL
	DATA MOBILITY

	HASH PLATFORM

	HASH RANKING METHODS
	WEIGHTED HAMMING DISTANCE
	BIT-LEVEL WEIGHTS
	CLASS-LEVEL WEIGHTS

	ASYMMETRIC DISTANCE

	EXPERIMENTS
	EXPERIMENTAL SETUP
	EXPERIMENTAL RESULTS AMONG HASH CODING METHODS
	EXPERIMENTAL ANALYSIS IN EUCLIDEAN SPACE
	EXPERIMENTAL ANALYSIS IN KERNEL SPACE
	EXPERIMENTAL ANALYSIS IN SEMANTIC SPACE

	EXPERIMENTAL RESULTS AMONG HASH RANKING METHODS
	EXPERIMENTAL OVERVIEW ON HASH METHODS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	YUAN CAO
	HENG QI
	WENRUI ZHOU
	JIEN KATO
	KEQIU LI
	XIULONG LIU
	JIE GUI

