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ABSTRACT With the growing demand for high safety in industrial system, fault diagnosis has attracted
more and more attention. Currently, belief rule base (BRB) has shown an excellent performance in modeling
complex system, where the expert knowledge is used effectively. Existing BRB models are assumed that
the inputs of the attributes are independent and the attribute correlation is not taken into account. However,
in some engineering system, there is an obvious correlation among these attributes. The correlated attributes
may produce redundant informationwhich limits the abilities of attributes to express the accurate information
of system. In this paper, a new BRB model with considering attribute correlation (BRB-c) is proposed.
Moreover, a decoupling matrix is introduced to eliminate the redundant information from the attributes. The
initial parameters of the decoupling matrix are given according to the expert knowledge. And then, when the
inputs of the attributes are available, the parameters in the decoupling matrix are trained by an optimization
model. The projection covariance matrix adaption evolution strategy is chosen as an optimization algorithm.
A practical case study about fault diagnosis of oil pipeline is conducted and the results show that the BRB-c
model can diagnose the leak size and leak time of oil pipeline accurately, which can demonstrate that the
proposed model can be widely applied in engineering for fault diagnosis.

INDEX TERMS Belief rule base (BRB), attribute correlation, decoupling matrix, fault diagnosis.

I. INTRODUCTION
For a complex engineering system, it becomes more and
more important to diagnose the fault accurately in order
to avoid damage and loss to the environment and compa-
nies [17], [18], [20]–[22]. However, it is difficult to gather
a complete set of observation data in engineering prac-
tice [30], [31]. For example, the gyroscope is an equipment
which has direct connection with the safety of rocket. In the
fault diagnosis for the rocket control system, the state of
the gyroscope is necessary to be obtained. However, due to
the high price of the gyroscope, many experiments cannot be
conducted and a large amount of observation data cannot be
gathered. Therefore, the expert knowledge needs to be intro-
duced into the modeling process. The belief rule base (BRB)
model can integrate the expert knowledge and quantitative

information adequately and its result has shown excellent
performance in modeling engineering system [2]–[4],
[24], [27]. It can be regarded as an expert system and
has been widely applied in engineering practice, e.g.,
Zhao et al. [30] built a model for online failure prognosis
based on belief rule base, Li et al. [12] developed a safety
assessmentmodel for complex system based on the belief rule
base and Zhang et al. [29] used the fuzzy rule-based eviden-
tial reasoning approach in the navigational risk assessment.
However, these models all assumed that the input attributes
are independent.

In engineering practice, an attribute represents one of the
aspects of system information which has physical signifi-
cance, and the system information is represented by all the
attributes corporately. So in an engineering system, there may
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contain correlation among these attributes. An attribute is
regarded as containing redundant information if one or more
other attributes are correlated with it [10], [14], [15], [23].
If we assume that the input attributes are independent and
ignore the redundancy among them, it will affect the ability
of the attributes in providing accurate information of sys-
tem, e.g., in the fault diagnosis for oil pipeline [21], [32],
[33], [37], the flow difference and pressure in oil pipeline are
treated as two attributes in the BRBmodel.When the pipeline
leaked, the flow and pressure in the pipeline decreased. It is
obvious that the decreasing of flow may cause the decreasing
of pressure and there is redundancy between them. If we
assume that these two attributes are independent, it may
overstate the information representing by these two attributes.
Therefore, it is necessary to propose a new BRB model
with considering the correlation between attributes, which is
named as BRB-c.

In dealing with attribute correlation, there are three ways:
building a correlation function, extracting a correlation coef-
ficient from observation data and constructing a decoupling
matrix. Firstly, the correlation represented by a function can
reflect the mathematics connection among attributes. How-
ever, in engineering practice, their relationship may be com-
plicated. Such as the height between parents and child, it is
obvious that there is a correlation between them but it cannot
be represented by a certain function. Another way to address
the attribute correlation is to extract a correlation coefficient
from observation data. Many methods are used to calculate
the correlation coefficient, e.g., Pearson’s correlation coef-
ficient [14], mutual information estimators [5], maximum
correlation coefficient [1], principle curve-based methods [6]
and maximal information coefficient (MIC) [16], [19]. The
correlation coefficient can be used in attributes selection
which aims to decrease the attribute redundancy and improve
the attribute ability in information representation [7], [10],
[14], [28]. This method is mainly used in the situation that
contains huge amounts of attributes. However, in engineering
practice, the amount of the input attribute in the BRB model
is limited and the attribute selection may lose some system
information. The third method is that constructs a decou-
pling matrix which can eliminate the redundant information
among nonlinear attributes. This method can also address the
correlated attributes online by adjusting the parameters in
the decoupling matrix. Therefore, in this paper, a decoupling
matrix is proposed to handle the attribute correlation. To train
the parameters in the BRB-c model, the projection covariance
matrix adaption evolution strategy (P-CMA-ES) algorithm is
chosen as the optimization algorithm [8], [9], [11].

The remainder of this paper is organized as follows: The
problem of fault diagnosis with considering the correlation
between attributes is formulated and defined in Section II.
In Section III, the inference of the BRB model with attribute
correlation is introduced. A case study of fault diagnosis for
oil pipeline is proposed to illustrate the new BRB model in
Section IV. The paper is concluded in Section V.

II. PROBLEM FORMULATION
In this section, the notations which will be used in this paper
are introduced in subsection II-A. Then the problem formula-
tion of fault diagnosis with considering correlation between
attributes is presented. After that, in subsection II-C, a new
BRB model with considering correlation between attributes,
named BRB-c, is constructed.

A. NOTATIONS
The notations which will be used in this paper are listed as
follows:

xi the ith antecedent attribute of BRB-c
x ′i the ith antecedent attribute handled by the

decoupling matrix
M amount of the attribute in the BRB-c model
Aki referential value of the ith antecedent attribute used

in the kth rule
L rule number of BRB-c
θk rule weight of the kth rule
δi weight of the ith attribute in BRB-c
δi relative weight of the ith attribute
Dj the jth consequent in BRB-c
N consequent number of BRB-c
βj,k belief degree of thejth consequent θk in the kth

rule of BRB-c
βn total belief degree of the nth consequent Dnin the

output of BRB-c
α
j
i matching degree of the ith attribute in the jth rule
αk total matching degree of the kth rule
x∗i input data of the ith attribute
wk activation weight of the kth rule
κji weight coefficient between the ith attribute and the

jth attribute in the decoupling matrix
κuji upper bound of κij in the decoupling matrix
κ lji lower bound of κij in the decoupling matrix
f (·) nonlinear function modeled by BRB-c
K decoupling matrix
S(·) nonlinear function modeled by BRB-c
T size of the dataset

B. PROBLEM FORMULATION OF FAULT DIAGNOSIS WITH
CONSIDERING ATTRIBUTE CORRELATION
In engineering practice, the attributes of BRB are used to
represent the system information. When the attribute is corre-
latedwith other ones, their information has redundancywhich
may overstate the information represented by the attribute.

BRB can capture the vagueness, ignorance, and nonlinear
causal relationships [24], [34]–[36]. These models are all
assumed that the input attributes are independent, and cannot
deal with the attributes containing redundant information.
If the input attributes have correlation and contain redundant
information, they may decrease the accuracy of the esti-
mated output generated by the BRB model, e.g., in the fault
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FIGURE 1. Relationship between two correlated attributes.

diagnosis of oil pipeline [21], [36],FlowDiff andPressureDiff
are used as two attributes in BRB. In previous studies,
they assumed that these two attributes are independent [33].
However, FlowDiff is used to represent the flow difference in
the pipeline, and PressureDiff is used to denote the change
of the pipeline pressure. It is obvious that there have correla-
tion and redundant information among these two attributes.
As shown in Fig. 1, if we assume that they are indepen-
dent, it will overlook the redundant information containing
in FlowDiff and PressureDiff simultaneously. This redundant
information may aggravate the estimated error of the BRB
output. Therefore, it is necessary to consider the correlation
between attributes and propose a new BRB model to han-
dle attribute correlation. On the basis of the above analysis,
the relationship between the BRB-c output and the input
attributes can be represented as follows:{(

D1, β1,k
)
, . . . ,

(
DN , βN ,k

)}
= f (K · [x1(t), . . . , xi(t), . . . , xM (t)]T) (1)

where
{(
D1, β1,k

)
, . . . ,

(
DN , βN ,k

)}
is the output of BRB

at the time instant t and βj,k (j = 1, . . . ,N , k = 1, . . . ,L) is
the belief degree of Dj which represents the jth consequent.
xi(t) represents the ith input attribute for the decoupling
matrix at the time instant t , and the outputs of the decoupling
matrix are used as the inputs of BRB which are regarded as
the attributes without correlation. f (·) represents a nonlinear
function which is built by the BRB-c model. K represents the
decoupling matrix.

To improve the modeling ability of BRB, one challenge
must be addressed, i.e., how to overcome the correlation
among attributes in the modeling process of the BRB model.
Thus, a BRB model with ability of recognizing the redundant
information of the attributes should be proposed.

C. CONSTRUCTION OF THE BELIEF RULE BASE MODEL
WITH ATTRIBUTE CORRLEATION
In this paper, a new belief rule base model with considering
attribute correlation (BRB-c) is proposed which contains L
belief rules and the kth rule is defined as follows:

Rk : If x1 is Ak1 ∧ x2 is A
k
2 · · · ∧ xM is AkM ,

Then y is
{(
D1, β1,k

)
, . . . ,

(
DN , βN ,k

)}

With rule weight θk , attribute weight δ1, δ2, . . . , δM
and the decoupling matrix K (2)

where xi is the input of the BRB-cmodel, Aki
(
i = 1, . . . ,M ,

k = 1, . . . ,L
)

represents the referential value of the
ith antecedent attribute in the kth rule. δ1, δ2, . . . , δMare the
weights of the antecedent attributes used in the kth rule and
M is the amount of the antecedent attribute. θk is the rule
weight of the kth rule. βj,k (j = 1, . . . ,N , k = 1, . . . ,L) is
the belief degree assessed to Dj which denotes the jth conse-
quent. If

∑N
j=1 βj,k = 1, the kth rule is said to be complete;

otherwise, it is incomplete. K is a decoupling matrix used in
the BRB-c model to address the correlated attributes. Note
that ‘‘∧’’ is a logical connective to represent the ‘‘AND’’
relationship.
Remark 1: In engineering practice, the environment fac-

tors, such as the temperature, humidity and quake, may influ-
ence the correlation degree between the attributes. In this
paper, we assume that the engineering environment cannot
be changed in a certain period and the parameters κij (i, j =
1, . . . ,N ) in the decoupling matrix are constants in this
period. Moreover, suppose that the redundant information in
attributes is linear.
Remark 2: In the BRB-c model, there are two parts: the

decoupling matrix and the classical BRB model. The input
attributes are handled by the decoupling matrix firstly, and
then the output of the decoupling matrix is used as the input
of the classical BRB model.

III. INFERENCE OF THE BRB MODEL WITH
ATTRIBUTE CORRELATION
In this section, a decoupling matrix dealing with the corre-
lated attribute is proposed. Then the inference of the BRB-c
model is introduced in subsection III-B. In order to train the
parameters in the BRB-c model, subsection III-C presents an
optimization model and P-CMA-ES is used as the optimiza-
tion algorithm. Complex system modeling method based on
BRB-c is proposed in subsection III-D.

A. DECOUPLING MATRIX DEALING WITH THE
CORRELATED ATTRIBUTE
In this subsection, a decoupling matrix is proposed to address
the correlated attributes. For the ith input attribute xi, it may
has correlation with xj, j = 1, . . . ,M , j 6= i. That is to say,
when the ith attribute is available, it may contain the infor-
mation about xj, j = 1, . . . ,M , j 6= i which is redundant for
these attributes [10], [13]. Therefore, an output of decoupling
matrix needs to integrate all the input attributes with different
weights, and their relationship can be represented as

x ′i = κ1ix1 + κ2ix2 + . . .+ κMixM =
M∑
j=1

κjixj (3)

where x ′i represents the output of the decoupling matrix
without redundant information, and it is used as the input
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FIGURE 2. Decoupling matrix in the BRB-c model.

of the classical BRB model. κji is the weight coefficient
between the jth attribute and the ith attribute. Although the
redundant information may exist in the ith attribute, most of
the information in the ith attribute should be preserved to
ensure that the outputs of the decoupling matrix have their
original physical meanings. Thus, bounds should be set on the
role that other attributes can play in the decoupling matrix.
Note that κ lji ≤ κji ≤ κuji , where κ

l
ji and κ

u
ji are the lower

and upper bound of the ith attribute determined by experts.
That is to say, the decoupling matrix is only used to eliminate
the redundant information from the ith attribute by κji, and
x ′i reserves the original physical meaning of xi by the bound
values.M is the amount of the attribute in the BRB-c model.
Note also that if the information of the jth attribute is complete
contained in the ith attribute, the jth attribute can be reduced
from the BRB model. Thus, the decoupling matrix can also
reduce the number of input attribute.

The decoupling matrix is written as

x ′1
...

x ′i
...

x ′M


= K



x1
...

xi
...

xM


=


κ11 · · · κM1

...
. . .

...

κ1M · · · κMM





x1
...

xi
...

xM


(4)

where K represents the decoupling matrix and its
parameters can be trained by the optimization model.
[x1 · · · xM ]T

[
x ′1 · · · x

′
M

]T are the attribute matrixes with and
without redundant information, respectively. The decoupling
matrix can be shown in Fig. 2. For example, in the fault
diagnosis of oil pipeline [21], there are two attributes, denoted
by x1 and x2. These two attributes are used as the inputs of
the decoupling matrix and the output matrix

[
x ′1 x ′2

]T can be
obtained by [

x ′1
x ′1

]
=

[
κ11 κ21
κ12 κ22

] [
x1
x2

]
(5)

Note that if there is no correlation between x1 and x2,
[x1 x2]T =

[
x ′1 x ′2

]T and the decoupling matrix is repre-
sented as follows:[

κ11 κ21
κ12 κ22

]
=

[
1 0
0 1

]
(6)

The decoupling matrix aims to obtain the optimal
input attributes

[
x ′1 · · · x

′
M

]T which can be regarded as the
ideal inputs of the classical BRB model. The decoupling
weights κij (i, j = 1, . . . ,M ) are trained by the optimization
model. When the accuracy of BRB-c reaches the requirement
determined by experts, the decoupling matrix K is obtained.
Therefore, the decoupling matrix K is one part of the
optimization model.
Remark 3: There are also other methods that can address

the correlated attributes. For example, the correlation coef-
ficient between two attributes can be used to denote the
correlation degree between two attributes and it is gathered
from observation data. In fault diagnosis of engineering sys-
tem, the relationship between the input and output has the
feature of nonlinear which may not be represented only by a
correlation coefficient. So in this paper, a decoupling matrix
is introduced to handle the correlated attributes.

B. INFERENCE OF THE BRB MODEL WITH
ATTRIBUTE CORRELATION
After addressing by the decoupling matrix, the redundant
information in the input attribute xi, i = 1, . . . ,M can be
eliminated. Then the attributes can be used as the inputs of
the BRB model.

Firstly, when the attribute x ′i , i = 1, . . . ,M is available,
its matching degree for the ith attribute in the jth rule is
calculated by

αij =


Ai(k+1) − x∗i
Ai(k+1) − Aik

j = k if Aik ≤ x∗i ≤ Ai(k+1)

x∗i − Aik
Ai(k+1) − Aik

j = k + 1

0 j = 1, 2, . . . |xi|, j 6= k, k + 1

(7)

where x∗i represents the input data for the ith attribute.
Aik andAi(k+1) denote the referential values of the ith attribute
in two adjacent activated rules, the kth rule and the (k+1)th
rule, respectively. |xi| is the amount of the rule containing the
ith attribute.
Secondly, the total matching degree containing the match-

ing degree αik and attribute weight δi can be calculated by

δi =
δi

max
i=1,...,Tk

{δi}
, 0 ≤ δi ≤ 1 (8)

αk =

Tk∏
i=1

(αik )
δ̄i (9)

where δi is the relative weight of the ith attribute and Tk is
the amount of the attributes in the kth rule. αk is the total
matching degree for the kth rule.
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FIGURE 3. Process of P-CMA-ES optimization algorithm.

After the total matching degree has been obtained, the acti-
vation weight for the kth rule is calculated by

wk =
θkαk∑L
l=1 θlαl

, k = 1, . . . ,L (10)

where θk is the weight of the kth rule. Note that 0 ≤ wk ≤ 1,

and
L∑
k=1

wk = 1. If the kth rule is not activated, wk = 0.

When certain rules are activated by the input attributes,
there are many output belief degrees βj,k which can be aggre-
gated by the evidential reasoning (ER) algorithm and its
analytic form is represented as follows [21]–[24], [30]–[37]:

βn =

µ[
L∏
k=1

(wkβn,k+1−wk
N∑
j=1
βj,k )−

L∏
k=1

(1−wk
N∑
j=1
βj,k )]

1− µ[
L∏
k=1

(1− wk )]

(11)

µ = [
N∑
n=1

L∏
k=1

(wkβn,k + 1− wk
N∑
j=1

βj,k )

− (N − 1)
L∏
k=1

(1− wk
N∑
j=1

βj,k )]−1 (12)

where βn represents the belief degree of the nth conse-

quent Dn. Note that 0 ≤ βn ≤ 1 and
N∑
n=1

βn = 1.

The final belief degrees generated by aggregating the
L rules can be denoted as follows:

S(x∗) = {(Dn, βn); n = 1, 2, . . . ,N } (13)

where x∗i represents the input of the ith attribute. S(·) denotes
the nonlinear function modeled by BRB-c. The utility for the
individual consequent Dn can be represented by u(Dn), and
the excepted utility for S(x∗) is given as [24]–[27]

u(S(x∗)) =
N∑
n=1

u(Dn)βn (14)

where u(S(x∗)) is the final output of the BRB-c model.

C. OPTIMIZATION MODEL FOR BRB-C
The Initial parameters in BRB-c are given by experts. Due to
the limitation of the expert knowledge, the parameters may
not appropriate for the actual working environment and need
to be trained. Therefore, in this subsection, an optimization
model is introduced to optimize the parameters in the BRB-c
model.
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FIGURE 4. Modeling process of BRB-c.

FIGURE 5. Estimated output generated by the optimized BRB-c model.

The decoupling weights, belief degrees in rules, attribute
weights and rule weights are the parameters needed to be
optimized which can be shown as follows:

(1) The decouplingweights. The decoupling weight among
the ith attribute and the jth attribute κji should satisfy the
following restraint:

κ lji ≤ κji ≤ κ
u
ji (15)

(2) The rule weights. A rule weight is normalized and
between zero and one, i.e.:

0 ≤ θk ≤ 1, k = 1, 2, . . .L (16)

(3) The attribute weights. An attribute weight can reflect
the relative importance of the attribute. It should satisfy the

following restraint:

0 ≤ δi ≤ 1, i = 1, 2, . . .M (17)

(4) The belief degrees in the consequents for the rules.
A belief degree should not be more than one or less than zero
and it must satisfy the following restraint:

0 ≤ βn,k ≤ 1, n = 1, ..,N , k = 1, 2, . . .L (18)

(5) If the kth rule is complete, the sum of the belief degrees
in the consequent should equal to one; otherwise, its total
degree should less than one, i.e.:

N∑
n=1

βn,k ≤ 1, k = 1, 2, . . . ,L (19)
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FIGURE 6. Estimated output generated by the initial BRB-c model.

The optimization objective for the optimization model is
that the error between the estimated output of BRB-c and
the actual output gathered from engineering practice can be
as small as possible. The estimated output of BRB-c can be
represented as

outputestimated =
N∑
n=1

u(Dn)βn (20)

where u(Dn) denotes the utility of the nth consequent Dn.
βn, n = 1, . . . ,N is calculated by Eqs. (11) and (12). The
actual output is denoted by outputactual .
The mean square error (MSE) can be used to represent the

accuracy of the BRB-c model [30]–[34]. It is calculated by

MSE(θk , βn,k , δi, κji)

=
1
T

T∑
t=1

(outputestimated − outputactual)2 (21)

where T is the size of the dataset.
Finally, the optimization model is given as

min MSE(θk , βn,k , δi, κji) (22)

s.t. κ lji ≤ κji ≤ κ
u
ji (15)

0 ≤ θk ≤ 1 (16)

0 ≤ δi ≤ 1, i = 1, . . . ,M (17)

0 ≤ βn,k ≤ 1, n = 1, ..,N , k = 1, . . . ,L (18)

N∑
n=1

βn,k ≤ 1 (19)

In this paper, the projection covariance matrix adaption
evolution strategy (P-CMA-ES) is used as the optimiza-
tion algorithm which is developed from the covariance

matrix adaption evolution strategy (CMA-ES) algo-
rithm [8], [11]. The procedure for P-CMA-ES can be pre-
sented as Fig. 3.

D. COMPLEX SYSTEM MODELING METHOD
BASED ON BRB-C
In this subsection, the complex system modeling method for
fault diagnosis based on BRB-c is proposed. On the basis
of the above analysis, the BRB-c model contains two parts:
the decoupling matrix and the classical BRB model. In the
complex system modeling process of fault diagnosis, there
are two parts, including the training part and the testing part.
The detail functions can be introduced as follows:

Firstly, the training part includes two parts: the training
part for the decoupling matrix and the training part for the
classical BRB model. Their initial values are generated by
the expert knowledge. The optimization model is used to
train the parameters in these two parts as introduced in
subsection III-C, where the training data are the input and
the optimized BRB-c model is the output. In this process, the
P-CMA-ES is used as the optimization algorithm as shown
in Fig. 3.

Secondly, there is the testing part. The testing data and the
optimized parameters for BRB-c, including the decoupling
weights κji, the rule weights θk , the belief degrees βn,k and
the attribute weights δi are the inputs. The estimated outputs
are obtained by BRB-c and the MSE can be calculated by
Eq. (21) which is used to reflect the accuracy of the BRB-c
model.

On the basis of the above discussion, the procedure of the
BRB-c model for dealing with the correlation attributes can
be summarized as follows:
Step 1: The observation data can be gathered from engi-

neering practice and they are divided into the training data and
testing data. The size of these two parts can be determined by
experts according to the size of the total database.
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FIGURE 7. Actual data and the output of BRB-c on time scale.

FIGURE 8. Errors between the actual data and the estimated output of BRB-c.

Step 2: The initial values of BRB-c and bound values of
decoupling weights are given by experts, and the generation
number for the P-CMA-ES algorithm can be set according to
the engineering practice.
Step 3: After the training data and the initial values

� = {θ1, . . . , θL , β1,1, . . . , βL,N , δ1, . . . , δM } for BRB-c are
available, the BRB-cmodel can be trained in the training part.
According to the target of the optimization model, the decou-
pling weights κji(j, i = 1, 2, . . .M ), attribute weights δi,
belief degrees βn,k and rule weights θk can be optimized by
P-CMA-ES. Note that the belief degrees should satisfy the

constraint
N∑
n=1

βn,k ≤ 1, k = 1, . . . ,L. The optimization

procedure is introduced in Fig. 3, and it runs recursively until
the best solution �optimal is obtained.
Step 4: The optimized BRB-c model and the testing data

are the inputs of the testing part. The estimated outputs

are obtained and the accuracy of BRB-c can be represented
by MSE.
Step 4.1:When the training data are available, thematching

degree αk , k = 1, . . . ,L and the activation weight wk , k =
1, . . . ,L are calculated by Eqs. (7)-(10).
Step 4.2:Once the belief rules in BRB-c are activated, they

are aggregated by the ER algorithm, and then the final outputs
of the BRB-c model are calculated by Eq. (14).
Step 4.3: The MSE of the BRB-c model is calculated

by Eq. (21). Its value can be used to reflect the accuracy
of BRB-c.

The whole modeling procedure of the BRB-c model can be
introduced in Fig. 4.
IV. CASE STUDY
In this section, an engineering case of fault diagnosis for oil
pipeline is examined in order to demonstrate that the BRB-c
model can be widely applied in engineering practice.

2062 VOLUME 6, 2018



Z. Feng et al.: Fault Diagnosis Based on BRB-c

FIGURE 9. MSEs generated by BRB-c and BRB.

A. PROBLEM FORMULATION OF FAULT DIAGNOSIS
FOR OIL PIPELINE
For the oil pipeline, it is important to diagnose its fault
accurately to avoid serious damage to the environment and
companies. Similar to [21], the experiment is conduct on a
long distance oil pipeline in Great Britain. The actual leak
size is denoted by LeakSize which is the actual output of
BRB-c. The flow difference and the average pressure in oil
pipeline, denoted by FlowDiff and PressureDiff, are chosen
as two input attributes.

For these two attributes, they reflect the physical informa-
tion of the oil pipeline. When the pipeline leaked, the differ-
ence between the inlet flow and outlet flowmay decrease, and
the flow rate of the oil decreases. In themeantime, the average
pressure of the pipeline also decreases alongwith the decreas-
ing of the flow rate of oil. The flow difference and average
pressure are two independent aspects of the pipeline seem-
ingly, but there is correlation between them. If we assume that
these two attributes are independent, the correlation between
the FlowDiff and PressureDiff will be overlooked, and the
fault information represented by the attributes will be over-
state which may increase the error of the estimated output of
BRB. Therefore, the correlation between these two attributes
needs to be considered in modeling procedure.

On the basis of the above analysis, a BRB model with con-
sidering attribute correlation is constructed for fault diagnosis
of oil pipeline.

B. CONSTRUCTION FOR THE FAULT DIAGNOSIS MODEL
OF OIL PIPELINE
In this paper, similar to [21] and [33], we use eight referential
points for FlowDiff and seven referential points are selected
for PressureDiff. Their referential points and values are given
by experts as shown in Table 1 and Table 2. Five referential
points and values are selected for LeakSize and their referen-
tial values are given in Table 3.

TABLE 1. The referential points and values for FlowDiff.

TABLE 2. The referential points and values for PressureDiff.

TABLE 3. The referential points and values for LeakSize.

In the BRB-c model of fault diagnosis for oil pipeline,
the kth rule can be represented as

Rk : If FlowDiffis Ak1 ∧ PressureDiff is Ak2,

Then LeakSize is
{(
Z , β1,k

)
,
(
VS, β2,k

)
,
(
M , β3,k

)
,(

H , β4,k
)
,
(
VH , β5,k

)}
With rule weight θk , attribute weights δ1, δ2 and

decoupling matrix K (23)

where Ak1 and Ak2 are two referential values as presented
in Table 1 and Table 2. θk denotes the weight of the kth rule
and its initial value is set to one. δ1 and δ2 are weights of two
attributes and their initial values are given to one. There are
56 combinations for two attributes which leads to 56 rules
in BRB-c. The initial parameters of the BRB-c model are
determined by experts as shown in Table 4 of Appendix, and
the initial decoupling matrix is given to a unit matrix.
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TABLE 4. Initial belief degrees of fault diagnosis for oil pipeline.

C. UPDATING AND TESTING FOR THE FAULT DIAGNOSIS
MODEL OF OIL PIPELINE
In this paper, 1000 data are selected as the training data and
the total 2007 data are taken as the testing data. In the training
part, P-CMA-ES is applied as the optimization algorithm.
Its population size is set to be 342 and the generation number
is set to be 200. The upper bounds of decoupling weights are
given by κu11 = 1, κu21 = 0.5, κu12 = 0.5 and κu22 = 1, and the
lower bounds are set to be zero.

The process of the training part and testing part of BRB-c
is conducted using MATLAB.

The optimized BRB-c model is presented in Table 5 of
Appendix. The optimized weights of FlowDiff and
PressureDiff are 0.7774 and 0.2586 respectively, and the
optimized decoupling matrix is obtained as follows:[

κ11 κ21
κ12 κ22

]
=

[
0.6123 0.2768

0 0.1175

]
(24)

It can be seen from Fig. 5, the LeakSize estimated by the
optimized BRB-c model can match the actual data accurately,
compared with the initial BRB-c model as shown in Fig. 6.
Fig. 7 shows the actual leak size and the estimated LeakSize
on the time scale. It can be seen that the BRB-c model

can diagnose the fault time of the oil pipeline accurately
which leaked at around 9:35 A.M. The errors between the
actual leak size of oil pipeline and the estimated output of
BRB-c are calculated as shown in Fig. 8. The errors pre-
sented in Fig. 8 close to zero and it can be used to demon-
strate that the new BRB model with considering attribute
correlation can diagnose the fault size of the oil pipeline
accurately.

D. COMPARATIVE STUDY
In order to demonstrate the effectiveness of BRB-c, in this
subsection, the comparative study is conducted.

The MSE can be regarded as a parameter to represent the
accuracy of a model and it can be calculated by Eq. (21). The
experiment is conducted with 40 times with the same training
part and testing part and their MSEs can be shown in Fig. 9.
The MSEs of BRB-c range from 0.3727 to 0.4603 with the
mean value as 0.4039 and variance as 4.2722E-04. TheMSEs
of BRB range from 0.5128 to 0.6595, and its mean value
is 0.5887 and variance is 7.0848E-04. Compared with the
smallest MSE of BRB, the smallest MSE of BRB-c improves
27.32%. In addition, compared with Zhou et al. [32],
the accuracy of BRB-c improves 52.70%.
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TABLE 5. Optimized belief degrees of fault diagnosis for oil pipeline.

V. CONCLUSIONS
In this paper, a new belief rule base model with con-
sidering attribute correlation (BRB-c) for fault diagnosis
is constructed to deal with the situation where the input
attributes contain correlated information. In engineering
practice, the correlated attributes is said to be redundant
which can affect the attribute ability to provide accurate
information, and further influence the accuracy of the esti-
mated output. Thus, a decoupling matrix is constructed to
eliminate the redundant information from the input attributes
to improve the accuracy for fault diagnosis. A case study of
fault diagnosis for the oil pipeline is examined to demonstrate
that the BRB-c model can be widely used in engineering
practice.

There are three features in the BRB-c model. Firstly, the
attribute correlation is considered in the BRB model for the
first time. The correlated information between the attributes
is redundancy which may affect the modeling accuracy of the
BRB model. Secondly, a decoupling matrix is constructed
to address the correlated attributes. If an attribute corre-
lates with other ones, its information is determined by these
attributes simultaneously. Therefore, a decoupling attribute
can be obtained by weighting all the input attributes which

are correlated with the attribute. Finally, in order to determine
the parameters in the decoupling matrix, a new optimiza-
tion model is proposed where the decoupling weights are
optimized.

In this paper, we assume that the actual working environ-
ment cannot affect the correlation among attributes. However,
in engineering practice, the correlation between attributes
may be influenced by temperature, humidity or stress,
etc. In order to improve the modeling ability of BRB-c
for a dynamic system, the decoupling matrix needs to
be trained online. However, when there are many input
attributes, the calculation of BRB-c is very huge. Thus,
it is necessary to develop an appropriate model to adjust
the decoupling matrix online and can handle huge amounts
of attributes. These requirements pose challenges for future
work.

APPENDIX
See Tables 4 and 5.
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