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ABSTRACT The RAKE receivers are widely used in code division multiple access communication systems
to achieve anti-multipath fading. However, a traditional RAKE receiver requires pilot data stream inserted
into the sequence, which occupies channel resources and limits its applications. In this paper, a new adaptive
RAKE receiver based on Bayesian theory is reported that only uses received signals to estimate its channel
parameters. Observed data are used to obtain the information of the channel impulse response. Next, the
prior information is used. In the iterative process, a priori information is accumulated to improve the
receiver performance. Thus, the mean and covariance of the channel impulse response that is modeled as
a complex and uncertain Gaussian random vector are recursively estimated using Bayesian theory. Finally,
the RAKE weights are obtained using the mean and covariance. As shown in the simulation results, the bit
error rate (BER) decreases as the number of fingers increases. The performance of the new RAKE receiver
has been greatly improved compared with the all-RAKE receiver with maximal ratio combining, RAKE
receiver with singular value decomposition, and RAKE receiver with fast approximated power iteration.
Under medium to high SNR conditions (i.e., ≥−5 dB), the BER performance of the new RAKE receiver
provides at least 3× 10−4 less than that of the other receiver tested.

INDEX TERMS Anti-multipath fading, Bayesian, CDMA, RAKE receiver.

I. INTRODUCTION
RAKE receivers were first proposed by Price and Green
in 1958 as a key technology of spread spectrum commu-
nication systems [1]. This type of receiver collects signals
from multiple paths and functions similarly to agricultural
polygonal RAKE, which explains its name. RAKE receivers
do not weaken or cut multipath signals but rather take full
advantage of the multipath signal energy. The receivers use
several correlators to individually process multipath signal
components [2], and the output of each correlator is weighted
and combined to improve the receiver signal’s signal-to-
noise ratio (SNR) and decrease the probability of fading [3].
Although usually viewed as a deteriorating factor, multi-
path fading can also be exploited to improve performance
using RAKE receivers [4]. Due to its unique advantages, the
RAKE receiver has many applications [5], [6]. It has been
designed for multiuser underwater communications [7]–[9],
visible light communications [10], and efficient optical
code (OC) [11]. The combined performance of a turbo
decoder and RAKE receiver was investigated in [12].
To minimize BER, a maximum likelihood (ML) optimal
combiner using an optimal linear RAKE receiver was devel-
oped to detect signals in alpha-stable noise [13]. In [14],
a receiver based on ML estimation is proposed to com-
pare conventional RAKE reception, as well as approximate

ML-based approaches, the signal model of which is similar to
that used in this paper. The optimal receiver for RAKE diver-
sity combining on channels with a sparse impulse response
was reported in [15], was based on Bayesian philosophy and
was shown to outperform a classical training-based MRC
detector in the simulations.

Researchers have studied several aspects of RAKE
receiver, such as multipath collection and multipath merg-
ing strategy. In terms of multipath collection strategy,
a standard ‘‘ideal’’ RAKE receiver that combines the com-
plete resolvable multipath component is called All-RAKE
(ARAKE) [16], which has the best bit error rate (BER) perfor-
mance and the highest complexity [17]. As a tradeoff between
complexity and performance, selective RAKE (SRAKE) and
partial RAKE (PRAKE) are more practical RAKE receivers.
SRAKE selects the L best resolvable paths, and PRAKE com-
bines the first L arriving paths [18]. PRAKE is less complex
and provides worse performance than SRAKE because it
combines the first arriving paths and not the strongest ones,
as SRAKE does [19]. For the multipath merging strategy,
RAKE receivers use different combining methods. The most
classical methods are maximum-ratio-combining (MRC),
equal gain combining (EGC) and selective combining (SC),
which are all based on correlation detection and thus, become
more complex as the number of fingers increases. In third
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generation mobile communication, RAKE receivers with
MRC are one of the most commonly used receiver. MRC is an
optimal linear combining technique that combines all avail-
able fingers with different weights that are in proportional to
the SNR (or amplitude) of the corresponding branch.

In this paper, an adaptive RAKE receiver based on the
Bayesian approach is proposed. There are three primary con-
tributions of this paper. First, according to Bayesian theory
and the minimum mean square error (MMSE), this adaptive
RAKE receiver does not require a pilot data stream inserted
into the sequence and only uses received signals to estimate
its channel parameters. The mean and covariance of the chan-
nel impulse response based on Bayesian model is modeled as
a complex and uncertain Gaussian random vector. The char-
acter of the Rayleigh or Ricing fading channel is described
by a tapped delay line (TDL) channel model. The second
contribution of this paper is to propose a recursive RAKE
weights calculation algorithm, which increases the use of
prior information. To obtain the RAKEweights, the mean and
covariance of the channel impulse response are recursively
estimated by using Bayesian theory. In the recursive iteration,
a priori information is accumulated to improve the receiver
performance. The third contribution of this paper is to do
several simulations to verify the improvement of the Bayesian
RAKE receiver performance compared to that of other chan-
nel estimation algorithms, such as singular value decomposi-
tion (SVD) algorithm and fast approximated power iteration
(FAPI) algorithm. Theoretically, the SVD algorithm based on
the batched and sampling process can be used to compute
the dominant eigenvector, which increases system processing
delay and the amount of computation and processing time.
The FAPI algorithm is similar to the Bayesian algorithm in
that both use the concept of iteration. However, the Bayesian
algorithm is characterized by a lower BER. In section IV.B, a
detailed comparison is presented.

The rest of this paper is organized as follows. In section II,
we describe a multipath channel model and a RAKE receiver.
In section III, we present a Bayesian RAKE receiver.
In section IV, several simulations are reported. Finally,
section V presents the paper’s conclusion.

II. MULTIPATH CHANNEL MODEL AND RAKE RECEIVER
Suppose the coded sequence of user q is {bq(i) = ±1},
where q = 1, 2, · · · ,Q, and Q is the number of users. The
sequence from the user qth’s Pseudo Noise (PN) generator
is
{
Cq (i) = ±1

}
, where i is the chip index. The elements

of the coded sequence are mapped into a binary PSK signal
according to the following relation:

bq (t, i) = bq (i) g (t − iTc), (1)

where g (t) represents a pulse of duration Tc seconds and
arbitrary shape, and Tc is chip interval. Similarly, we define
a waveform pq (t, i) as:

pq (t, i) = Cq (i)
∏

(t − iTc), (2)

where
∏
(t) is a rectangular pulse of duration Tc. Thus, the

equivalent low-pass transmitted signal corresponding to the

ith coded bit is:

xq (t, i) = bq (t, i) pq (t, i) = bq (i)Cq (i) g (t − iTc) , (3)

and the i th coded bit of all users is:

x (t, i)=
Q∑
q=1

xq (t, i)=

 Q∑
q=1

bq (i)Cq (i)

 g (t − iTc) . (4)

The TDL channel model is described as:

u(t, i) =
N∑
n=1

a(t, n)x(t − τ (t, n), i)+ no(t)

=

N∑
n=1

a(t, n)

 Q∑
q=1

bq (i)Cq (i)

g (t−iTC−τ (t, n))+no(t),
(5)

where u(t, i) is the received equivalent low-pass signal for
the i th code element, a(t, n) is the tap weight parameter of
the TDL model, no(t) is the noise in the model, N is the
length of the TDL model, and τ (t, n) is the delay of the nth
finger that changes more slowly than a(t, n). Thus, τ (t, n)
can be written as τ (n), and τ (n) = n−1

W , n = 1, 2, · · · ,N ,
whereW is the bandwidth of transmitted signals. Then, using
cross-correlationwith g∗ (t), the received equivalent low-pass
signal through cross-correlating can be written as:

y(t, i) = u(t, i)g∗(t)

=

N∑
n=1

a(t, n)

 Q∑
q=1

bq (i)Cq (i)

+ nc(t), (6)

where nc(t) = no(t)g∗(t).

FIGURE 1. Structure of a RAKE receiver.

The structure of a RAKE receiver is shown in Fig. 1.
The basic version of the RAKE receiver consists of multiple
correlators (i.e., fingers) where each finger can detect/extract
the signal from one of the multipath [16]. In Fig. 1,M + 1 is
the number of RAKE fingers and the outputs of the finger are
appropriately weighted and combined to reap the benefits of
multipath diversity [16]. h = (h(t, 0), h(t, 1), · · · , h(t,M )) is
a row vector with length M + 1, and h(t,m) is the weight of
each finger. 0 is the delay of each finger, andM+1 = N and
0 = 1

W in this paper.
For a chip interval, the channel parameters do no change.

Thus, after the received signal is despread by each finger’s
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despreader, that is:

r(t, i) =


a (0)
...

a (m)
...

a (M)

 bq(i)+ na(t) = abq(i)+ na(t), (7)

where a is the weight of the channel impulse response com-
bined with the spread spectrum, channel processing, matched
filtering, and dispreading; bq(i) is the desired coded bit with
known power E{bq(i)bq(i)∗} = σ 2

b ; and na(t) = anc(t) is
the noise that components with unknown covariance matrix
Rn = E

{
nanHa

}
.

The output of the RAKE receiver is:

z(t, i) = hr(t, i) = habq(i)+ nh(t), (8)

where nh(t) = hna(t). To creat a simple and accurate calcula-
tion, let ha = 1; thus, h = aH , which requires precise channel
parameter estimation. From (8), the weight of the RAKE
receiver can be obtained by estimating a using the method
of the maximum posterior probability. For simplicity, r(t, i)
is written as r, na(t) is written as n, and bq(i) is written as b:

r = ab+ n. (9)

To precisely estimate the channel response a in a manner
similar to those used in [20] and [21], we assume that the
channel parameters a has a complex Gaussian priori proba-
bility density function (PDF) with mean a0 and covariance
matrix C0:

p0(a) =
1

πN |C0|
exp

{
−(a− a0)HC−10 (a− a0)

}
. (10)

The output signal is processed in short-term integration
(STI) windows with K time samples. For arbitrary jK ≤ k <
(j+ 1)K , in each STI, the channel parameter a is assumed to
be time-invariant, and the received samples after despreading
are rj = (rjK , . . . , r(j+1)K−1), where j is the index of STI.
The goal is to design a RAKE receiver to estimate the bit of
interest bj = (bjK , . . . , b(j+1)K−1), which is a row vector with
length of K .

III. BAYESIAN RAKE RECEIVER
A. RECURSIVE ESTIMATION FOR RAKE
RECEIVER WEIGHTS
The finger weights of the Bayesian RAKE receiver are now
computed. According to the Bayesian principle, the posteriori
PDF p

(
a
∣∣r0:j ) can be shown as:

p(a
∣∣r0:j ) = p(a, r0:j)

p(r0:j)
=
p(r0:j−1)p(a

∣∣r0:j−1 )p(rj |a , r0:j−1)
p(r0:j−1)p(rj

∣∣r0:j−1 )
=

p(a
∣∣r0:j−1 )p(rj |a , r0:j−1)

p(rj
∣∣r0:j−1 ) , (11)

where r0:j = (r0, . . . , rj) is the received samples after
despreading. Because successive snapshots of bk and na are
all statistically independent, it can be obtained from (7) that rk

is sample independent at different snapshots when a is given.
Next, rj and r0:j−1 are independent given a, since they are in
the different STI windows.

Thus, we have p
(
rj |a , r0:j−1

)
= p

(
rj |a

)
and

p
(
a
∣∣r0:j ) = p

(
a
∣∣r0:j−1 ) p (rj |a)
p
(
rj
∣∣r0:j−1 ) , (12)

where p
(
rj
∣∣r0:j−1 ) = ∫

p
(
a
∣∣r0:j−1 ) p (rj |a)da is the reg-

ularization probability. Suppose that the posteriori PDF
p
(
a
∣∣r0:j−1 ) follows a complex Gaussian distribution with

mean aj−1 and covariance matrix C j−1:

p(a
∣∣r0:j−1 )= 1

πN
∣∣C j−1

∣∣ exp{−(a−aj−1)HC−1j−1(a−aj−1)}.
(13)

The recursive expressions for aj−1 and C j−1 can be
obtained in the following discussions. p

(
rj |a

)
can be given

by [22]:

p
(
rj |a

)
=

(j+1)K−1∏
k=jK

1
πN |Rr (a)|

exp
{
−rHk R

−1
r (a) rk

}

=π−NK |Rr (a)|−K exp

−
(j+1)K−1∑
k=jK

rHk R
−1
r (a) rk

,
(14)

As we know, Rr (a) is the data covariance matrix given a
and Rr (a) is:

Rr (a) = σ 2
bE(aa

H )+ Rn, (15)

where Ra = E(aaH ), σ 2
b is the energy of the information

bits bq. The output signal is processed in STI windows with
K time samples. Thus, σ 2

b = K .
The above equation can be converted into:

Rr (a) = KRa + Rn, (16)

where Rn can be simplified with the following formulas:

C j−1 = E
[
(a− aj−1)(a− aj−1)H

]
. (17)

From the above formula, Ra = C j−1 + aj−1aHj−1, and (15)
can be rewritten as:

Rn = Rr (a)− K (C j−1 + aj−1aHj−1). (18)

The determinant |Rr (a)| has the form given by [23]

|Rr (a)| = |Rn|
(
1+ σ 2

b a
HR−1n a

)
. (19)

Expanding R−1r (a) using the matrix inversion lemma yields:

R−1r (a) = R−1n −
σ 2
bR
−1
n aaHR−1n

1+ σ 2
b a

HR−1n a
. (20)

The sample autocorrelation matrix is:

R̂r,j =
1
K

(j+1)K−1∑
k=jK

rkrHk , (21)
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and thus, the likelihood function is given by:

p(rj |a ) = α(1+ σ 2
b β(a))

−K exp

{
Kσ 2

b a
HR−1n R̂r,jR−1n a

1+ σ 2
b β(a)

}
,

(22)

where α = π−NK |Rn|−K exp

{
−

(j+1)K−1∑
k=jK

rHk R
−1
n rk

}
, and

β(a) = aHR−1n a.
According to the derivation in [24], (22) can be rewritten

as:

p(rj |a )

= α(1+ σ 2
b β(a))

−K exp

×

{
Kσ 2

b

(
2+σ 2

b β(ad )

1+σ 2
b β(a)

β(a)−
1+σ 2

b β(ad )

1+σ 2
b β(a)

aH R̂
−1
r,j a

)}
(23)

where ad is the ideal channel impulse response that can
be approximated by aj−1. Computing this possibility PDF
presents more difficult. As in [21], [22], and [24], the
quadratic functional β(a) can be approximately equal to the
constant β(aj−1), which is defined by:

β(aj−1) = aHj−1R
−1
n aj−1. (24)

The likelihood function can be alternatively approxi-
mated by

p(rj |a )

≈ α(1+σ 2
b β(aj−1))

−K exp
{
Kσ 2

b

(
µ(aj−1)β(a)−aH R̂

−1
r,j a

)}
= γ exp

{
−Kσ 2

b a
H
(
R̂
−1
r,j − µ(aj−1)R

−1
n

)
a
}

(25)

where µ(aj−1) =
2+σ 2b β(aj−1)
1+σ 2b β(aj−1)

. And γ = α(1+ σ 2
b β(aj−1))

−K

is a normalization factor that ensures the likelihood function
integrates to one. Substituting (13) and (25) into (12), the
posterior PDF p

(
a
∣∣r0:j ) can be shown as:

p(a
∣∣r0:j )≈ η exp {−(a− aj−1)HC−1j−1(a− aj−1)}

× exp
{
Kσ 2

b a
H
(
R̂
−1
r,j − µ(aj−1)R̂

−1
n

)
a
}

= ξ exp
{
−(a−6C−1j−1aj−1)

H6−1(a−6C−1j−1aj−1)
}

(26)

where

6 =
(
Kσ 2

b R̂
−1
r,j − µ(aj−1)Kσ

2
bR
−1
n + C

−1
j−1

)−1
, (27)

and η = γ

πN |C j−1|p(rj|r0:j−1 )
, ξ = η exp

{
− aHj−1(C

−1
j−1 − C

−1
j−1

6C−1j−1)aj−1
}
.

The posterior PDF p
(
a
∣∣r0:j ) is a complex Gaussian with

mean aj and covariance matrix C j, where

aj = 6C−1j−1aj−1
C j = 6. (28)

Because β(a) can be approximately equal to β(aj−1), we
multiply (20) with the channel impulse response a to obtain:

R−1r (a)a =
1

1+ σ 2
b a

HR−1n a
R−1n a

=
1

1+ σ 2
b β(a)

R−1n a

≈
1

1+ σ 2
b β(aj−1)

R−1n a. (29)

From [23], we can obtain the similar form of hMMSE
j :

hMMSEj = (
∫
p(a |r 0:j)σ

2
b a

HR−1r (a)da)H

=

∫
σ 2
bR
−1
r (a)ap(a |r 0:j)da, (30)

so the weights of Bayesian RAKE receiver can be written as:

hMMSEj ≈
σ 2
b

1+ σ 2
b β(aj−1)

R−1n

∫
ap(a |r 0:j)da

=
σ 2
b

1+ σ 2
b β(aj−1)

R−1n aj, (31)

where aj =
∫
ap(a

∣∣r0:j )da.
B. CONSTELLATION ROTATION AND NORMALIZATION
Due to phase ambiguity in the estimated bit b̂j, the con-
stellation is in the wrong position, but its shape is correct.
To solve this problem, we need to rotate the constellation and
normalize it. Therefore, any one bit of bbit , the norm of which
is |bbit |, is selected, and the phase is set equal to θbit randomly.
Next, one constellation center is chosen with a norm |bcen|
and a phase θcen. Assuming that bbit is adjusted to the center
that we choose, the rotation phase θRot and normalization
factor |bNor | can be obtained as:

θRot = θCen − θbit

|bNor | =
|bCen|
|bbit |

. (32)

Thus, we can use (32) to rotate and normalize all estimated
bits.

Although the estimated bits are processed through rotation
and normalization, they still have phase ambiguities. In this
paper, differential detection is used to solve this problem.

C. ALGORITHM SUMMARY AND
COMPUTATIONAL COMPLEXITY
In summary, we assume that p(a

∣∣r0:j−1 ) is a complex Gaus-
sian PDF with mean aj−1 and covariance matrix C j−1. The
proposed Bayesian RAKE receiver in STI j can be described
as follows:

1) Compute R̂r,j using (21);
2) Compute6 using (27) and update aj and C j using (28);
3) Compute hMMSE

j using (31).
The computation complexity can be analyzed as follows:

the complexity of R̂r,j is O(KN 2) according to (21); the
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complexity of 6 is O(4N 3); the complexity of aj and C j is
O(N 3

+ 2N 2); the complexity of hMMSE
j based on (31) is

about O(N3
+ N2). Thus, the overall complexity of weights

h is about O(6N 3
+ KN 2). However, in practice, because the

value of K (1000 in this paper) is much greater than that of N
(6 in this paper), the complexity of weights h is approximatly
O(KN 2).

IV. NUMERICAL SIMULATION
The simulation parameters are shown in Table 1.

TABLE 1. Simulation parameters.

A. ROBUST PERFORMANCE EVALUATION
In this section, several simulations are conducted to evaluate
the performance of the proposed Bayesian RAKE receiver.
The performance of the Bayesian RAKE receiver with differ-
ent fingers is shown in Fig. 2.

FIGURE 2. Bayesian RAKE receiver with different fingers.

The finger is themost important factor in improving system
performance and plays a significant role in reducing error
rates [25]–[27]: more receiver fingers tends to improve the
performance. Given the certainty of the BER, this simulation
shows that the SNR is increased by approximately 0.4 dB
accordingly for every additional finger. However, when the
equalizer length is more than twice as much as the channel
length, the BER shows no changes. For example, when the
BER is 1 × 10−3, the performance of the 12 fingers is
approximately 0.5 dB better than that of 10 fingers, 0.2 dB
better than that of 11 fingers, and 0.05 dB better than that
of 13 fingers. As the BER is decreased, the SNR advantage
of 12 fingers increases. In this paper, the channel length is
set equal to 6. To balance complexity and performance, it is
more appropriate to choose 12 as the equalizer length. In other
cases, the BER is 0 when the SNR is above 2 dB. When the

SNR is not more than -10 dB, the BER of different fingers is
nearly equal.

FIGURE 3. FAPI RAKE receiver with different numbers of fingers.

Moreover, Fig. 3 illustrates the BER performance with
different numbers of fingers for the FAPI RAKE receiver.
The conditions are the same as those in the simulations of
the Bayesian RAKE receiver. As in Fig. 2, the MRC [28]
and SVD algorithms [29] of the RAKE receiver show similar
characteristics, namely the more receiver fingers used, the
better performance can be achieved.

B. COMPARISON WITH OTHER RAKE
RECEIVER ALGORITHMS
In this section, a comparative simulation is conducted to
highlight the superior performance of the Bayesian RAKE
receiver compared to the All-RAKE receiver using the MRC
algorithm, a RAKE receiver using the SVD algorithm, and a
RAKE receiver using the FAPI algorithm. The results of this
simulation are shown in Fig. 4.

FIGURE 4. Bayesian RAKE receiver compared with the All-RAKE receiver
using the MRC algorithm, a RAKE receiver using the SVD algorithm, and a
RAKE receiver using the FAPI algorithm.

The All-RAKE receiver with the MRC algorithm is based
on linear process and the RAKE receiver with the SVD algo-
rithm is based on a batched process. The RAKE receiver with
the FAPI algorithm is similar to the Bayesian RAKE receiver
because both use the concept of iteration. However, Bayesian
RAKE receivers increase the use of prior information.
In the iterative process, priori information is accumulated
and thus, improves the receiver performance. It is shown
that the performance of the Bayesian RAKE receiver is sim-
ilar to those of the other algorithms for low SNR values
(i.e., <−10 dB). As SNR increases, the advantage of the
Bayesian RAKE receiver becomes more apparent. Under
medium to high SNR conditions (i.e.,≥−5 dB), the Bayesian
RAKE receiver provides the best BER performance among
the receiver tested.

For complementary, the complexities of the different algo-
rithms are listed in Table 2. As mentioned above, the value of
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TABLE 2. Computational complexity of four algorithms investigated.

TABLE 3. Comparison of non-similar power users in four algorithms
investigated.

K is much larger than N . From Table 2, the Bayesian method
shows a slightly higher complexity compared with MRC and
FAPI. Considering the lowest BER, as shown in Fig. 4, we can
conclude that the Bayesian algorithm is quite competitive.

FIGURE 5. Bayesian RAKE receiver with non-similar power users and
similar power users.

C. COMPARISON OF MULTIPLE USERS WITH
DIFFERENT POWERS
Another simulation is used to examine the performance of
multiple users with different powers. The number of RAKE
fingers is 12. The results of this simulation are shown in Fig. 5
and Table 3. The curves in Fig. 5 can be categorized into two
groups. The first group is the curve with similar power users,
and the other group is the curve with non-similar power users.
It has been experimentally observed that the performance of
similar power users is more robust. In terms of non-similar
power users, the signal power of the second user is twice that
of the first user (3 dB). Thus, the performance of the second
user shows higher than that of the first. To further investigate

FIGURE 6. Bayesian RAKE receiver with m sequence and Gold sequence.

TABLE 4. Comparison of coherency and non-coherency in four algorithms
investigated.

the superiority of Bayesian algorithm, Table 3 shows the BER
comparisons of non-similar power users in four algorithms
when the SNR1 (the SNR of first user) is −10 dB, −5 dB
and 0 dB. We can see the Bayesian RAKE receiver shows the
best BER performance compared to other receivers tested.

D. COMPARISON OF COHERENCY
AND NON-COHERENCY
The comparison of coherency and non-coherency is discussed
in this section. The number of RAKEfingers is 12. The results
of this simulation are shown in Fig. 6 and Table 4. In terms
of coherency, the orthogonality of the m sequence is slightly
worse than that of the Gold sequence. Thus, the m sequence is
used as the coherent spreading code, and the Gold sequence
is used as the non-coherent spreading code. Fig. 6 shows that
the BER performance of Gold sequence is slightly better than
that of the m sequence. Thus, the stronger non-coherency
of the spreading code tends to produce the improved per-
formance. Table 4 shows the detailed BER comparisons of
coherency and non-coherency in four algorithms when the
SNR is −10 dB, −5 dB and 0 dB. By comparison, Bayesian
RAKE receiver shows the superior BER performance com-
pared to the receivers tested.

V. CONCLUSION
In this paper, a new RAKE receiver, known as the ‘‘Bayesian
RAKE receiver’’, which only uses received signals to esti-
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mate its channel parameters, is proposed. The mean and
covariance of the channel impulse response are recursively
estimated via Bayesian theory based on the MMSE. Next,
the combined weight can be obtained. From the simulation
results, the performance of the proposed receiver is shown
to be considerably improved compared to other types of
RAKE receivers. Under medium to high SNR conditions
(i.e., ≥−5 dB), the BER performance of the new RAKE
receiver provides at least 3× 10−4 less than that of the other
receiver tested. Thus, the proposed Bayesian RAKE receiver
is a reliable structure and quite competitive.
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