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ABSTRACT One of the major open problems in computer vision is feature detection in visually impaired
images. In this paper, we describe a potential solution using phase stretch transform, a new computational
approach for image analysis, edge detection and resolution enhancement that is inspired by the physics of
the photonic time stretch technique. We mathematically derive the intrinsic nonlinear transfer function and
demonstrate how it leads to: 1) superior performance at low contrast levels and 2) a reconfigurable operator
for hyper-dimensional classification. We prove that the phase stretch transform equalizes the input image
brightness across a range of intensities resulting in high dynamic range in visually impaired images. We also
show further improvement in the dynamic range by combining our method with the conventional techniques.
Finally, our results propose a new paradigm for the computation of mathematical derivatives via group delay
dispersion operations.

INDEX TERMS Phase stretch transform, image edge detection, dynamic range, feature enhancement,
image analytics, feature detection, feature extraction, image processing, computer vision.

I. INTRODUCTION
Feature detection in images plays a critical role in the field
of computer vision for solving problems associated with
object recognition, image registration, content-based image
retrieval and deep learning [1]–[3]. Prior works for improv-
ing feature detection in images have focused on the use of
grey level statistics of the image [1] and on application of
edge detection methods [4]. Color distinctiveness and color
models [5], [6] and scale selections [7] in images have also
been exploited for enhancing the feature detection. The main
goal of feature detection is to classify objects more accu-
rately and at the same time be robust to varying viewing
conditions that include changes in illumination, environmen-
tal conditions, object orientation, and the zoom factor of
the camera. Environmental conditions can severely impair
detection and localization of objects in images. For instance,
under foggy conditions, acquired images suffer from visual
impairments such as reduced contrast, blur and noise which
leads to lower resolution [8], [9]. This constitutes a major
bottleneck for many computer vision applications including
autonomous vehicles. The emerging imaging technologies

such as High Dynamic Range (HDR) hold promise to solve
feature detection problems but their slow frame rate pose a
challenge in real-time applications such as self-driven cars
and autonomous robotics.

The Phase Stretch Transform (PST) was recently intro-
duced as a computational approach for signal and image
processing [10], [11]. PST is a physics-based algorithm that
has its roots in photonic time stretch technique [12]–[16],
a method for real-time measurements of ultra-fast events
and one that has enabled the discovery of optical rogue
waves [17], observation of relativistic electron struc-
ture [18], label-free cancer cell detection with record
accuracy [19], [20] and optical data compression [21]. The
algorithm mimics the propagation of electromagnetic waves
through a diffractive medium with engineered 3D dispersive
property (refractive index) [10], [11]. As introduced in [22],
this optics-inspired algorithm has superior properties that
can be exploited to develop advanced algorithms for feature
extraction from digital images. Here, we discuss in detail the
nonlinear behavior of PST and demonstrate how this behavior
can be used to solve problems related to feature detection for
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FIGURE 1. Comparison of feature detection using the conventional derivative operator and feature detection using PST in case of visually
impaired images. The original images were taken under foggy conditions, shown in (A). Results of feature detection using the
conventional derivative operator and the PST operator are shown in (B) and (C), respectively. Note that the conventional derivative
operator fails to efficiently visualize the low contrast features in the visually impaired regions of the images (shown in green dashed
boxes). However, PST captures these low contrast features in the low resolution regions of the image (shown in green dashed boxes) due
to its reconfigurable mechanism that enables feature detection over a wide dynamic range.

computer vision applications. PST can be applied to both dig-
ital images as well as time series data [23] and has been used
for edge detection in biomedical images [11], [24] and Syn-
thetic Aperture Radar (SAR) images [25]. PST has also been
applied for resolution enhancement in super-resolution local-
ization microscopy for imaging of a single molecule [26].
The algorithm has been open sourced on GitHub and Matlab
Central File Exchange [27].

We first show that PST has an inherent equalization ability
that gives a response ideal for feature detection in low contrast
regimes of visually impaired images. To do this, we apply
our edge detection algorithm on two road traffic images taken
under foggy conditions, as shown in Fig. 1. The figure depicts
how our edge detection algorithm could significantly improve
the feature detection in case of visually impaired images
by outperforming the conventional edge detection methods
based on derivative of the image. The conventional derivative
based method is unable to capture details with small contrast
in the brighter low resolution areas of the image whereas our
technique successfully detects features in these low contrast
visually impaired regions. The warp and strength parameters
of the PST kernel as described in [10] and [11] for feature
detection in these images are 22 and 500, respectively. As we
will show in our mathematical formulations, this property
emerges because PST’s transfer function is a reconfigurable
operator. Finally, we demonstrate the superior performance
of PST at low light levels and its application to HDR images.

II. MATHEMATICAL FOUNDATIONS OF
PHASE STRETCH TRANSFORM
We prove the superior performance of Phase Stretch Trans-
form in the low contrast regime by deriving closed-form

analytical expressions for its transfer function. Mathemati-
cal results reveal that the transform has an intrinsic inten-
sity equalization property that leads to high dynamic range
performance. Analytical results are supported by numeri-
cal simulations confirming the dynamic range enhancement.
We define the stretch operator S {} as follows:

Eo [x, y] = S {Ei [x, y]}
, IFFT2

{
K̃ [u, v] · L̃[u, v] · FFT2{Ei[x, y]}

}
(1)

where Eo [x, y] is a complex quantity defined as,

Eo [x, y] = |Eo [x, y]| ejθ [x,y] (2)

In the above equations, Ei [x, y] is the input image, x and y
are the spatial variables, FFT2 is the two-dimensional Fast
Fourier Transform, IFFT2 is the two-dimensional Inverse
Fast Fourier Transform, and u and v are frequency variables.
The function K̃ [u, v] is called the warped phase kernel and the
function L̃[u, v] is a localization kernel implemented in fre-
quency domain. Here, for simplicity we assume L̃ [u, v] = 1.

The PST operator is defined as the phase of the Warped
Stretch Transform output as follows,

PST
{
Ei[x, y]

}
, ]

{
S{Ei[x, y]}

}
(3)

where ]〈·〉 is the angle operator.
Without loss of generality and in order to keep the notations

manageable in what follows, we consider the operation of
PST on 1D data, i.e.,

PST
{
Ei[x]

}
= ]

{
Eo[x]

}
= ]

〈
IFFT

{
K̃ [u] · FFT {Ei[x]}

}〉
(4)
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The warped phase kernel K̃ [u] is described by a phase
function with a nonlinear dependence on the frequency
variable, u,

K̃ [u] = ej·φ[u] (5)

By using the Taylor expansion for the phase term in the
warped phase kernel K̃ [u], we have:

K̃ [u] = e

(
j

M∑
m=2

φ(m)
m! um

)
(6)

where φ(m) is the mth- order discrete derivative of the
phase φ [u] evaluated for u = 0 and values of m are
even numbers. PST phase term φ [u] only contains even-
order terms in its Taylor expansion due to even symmetry
of the phase term φ [u] considered in [10] and [11]. Using
the warped phase kernel described in equation (6), output
complex-field, Eo [x], can be calculated as follows,

Eo [x] = IFFT
{
Ẽi [u] × K̃ [u]

}
= IFFT

Ẽi [u] × e

(
j

M∑
m=2

φ(m)
m! um

) (7)

where Ẽi [u] is the discrete Fourier transform of the input.
Simulations show that PST works best when the applied
phase is small. Under these conditions, using small value
approximation for the applied phase kernel, the exponential
term in (7) can be simplified to,

Eo [x] = IFFT

{
Ẽi [u]×

[
1+ j

(
M∑
m=2

φ(m)

m!
um
)] }

(8)

→ Eo [x]

≈

[
1 × Ei [x]+ j

M∑
m=2

(−1)m/2 φ(m)

m! (2π)m
Ei [x](m)

]
(9)

where Ei [x](m) is the mth-order discrete derivative of the
input Ei [x]. Since the input is a real quantity, the output phase
can be calculated as,

PST {Ei [x]} = ] {Eo [x]}

≈ tan−1


M∑
m=2

(−1)m/2 φ(m)

m! (2π)m Ei [x](m)

Ei [x]

 (10)

Finally, since the phase is restricted to small values,
(10) can be simplified to,

PST {Ei [x]} ≈


M∑
m=2

(−1)m/2 φ(m)

m! (2π)m Ei [x](m)

Ei [x]

 (11)

We see that the transfer function consists of a summation
of even-order derivatives in the numerator divided by the
amplitude (brightness) in the denominator. The numerator

extracts a hyper-dimensional set of features that corresponds
to differentmeasures of the curvature of the edge. The denom-
inator renders the response nonlinear in such a way that low
light levels are enhanced. These results were obtained for a
general phase kernel and for small values of phase in the PST
kernel. We now consider two additional scenarios that reveal
further insight into the unique properties of our transform.
Case 1: We consider the Phase Kernel K̃ [u] = u2 as

a quadratic function of frequency variable u. Under this
condition, using small phase approximation as used before,
the exponential term in (8) can be simplified to,

Eo [x] = IFFT
{
Ẽi [u] ×

[
1+ j

(
u2
)] }

(12)

→ Eo [x] ≈
[
1 × Ei [x]− j

1

(2π)2
∗
d2E i [x]
dx2

]
(13)

Finally, for calculating the phase of the complex output we
assume it to be restricted to small values. Therefore, the phase
of the output in equation (13) can be simplified to,

PST {Ei [x]} = ]Eo [x] ≈

−1
(2π )2
∗
d2E i[x]
dx2

Ei [x]
(14)

Case 2: Here we consider, the same Phase Kernel
K̃ [u] = u2 as a quadratic function of frequency variable u
as discussed in Case 1. However, we remove the use of small
phase approximation. The exponential term in (8) now leads
to,

Eo [x] = IFFT
{
Ẽi [u]×

[
cos

(
u2
)
+ j sin

(
u2
)]}

(15)

Expanding the sine and cosine terms using Euler expansion
up to third order and then applying small value approximation
to the complex output of (12) will result in the PST output as
shown below

PST {Ei [x]}

= ]Eo [x]

≈

−1
(2π)2
∗
d2E i[x]
dx2

+
1

3!(2π)6
∗
d6Ei[x]
dx6

−
1

5!(2π)10
∗
d10Ei[x]
dx10

Ei [x] − 1
2!(2π)4

∗
d4Ei[x]
dx4

+
1

4!(2π)8
∗
d8Ei[x]
dx8

(16)

The closed-form expression presented in the equation (11)
relates the output to the input in the case of a arbitrary phase
kernel with small phase approximation. The core function-
ality of the PST as a feature detector can be understood by
closed-form expression shown in (11). The output of the PST
operator is related directly to the even-order derivatives of the
input with weighing factors of (−1)

m/2 φ(m)

m! (2π)m . Each derivatives
detects a different feature in the input. Thus, the weighing
factors can be designed to select features of interest. In other
words, our transform is a reconfigurable operator that can be
tuned to emphasize different features in an input image.

The important observation from (11) is that, the output
is inversely related to the input brightness level, and this
is valid for small phase approximation. Therefore, for the
same contrast level, the output is larger in low light level

VOLUME 6, 2018 1409



M. Suthar et al.: Feature Enhancement in Visually Impaired Images

FIGURE 2. Comparison of the numerically simulated output of the PST algorithm with the output given by the closed-form analytical
expression derived in Equation (11). The phase kernel and the corresponding phase derivative profile are shown in (A) and (B),
respectively. The input 1D brightness data simulated for the comparison is shown in (C). Numerically calculated output data is compared
to the analytical output data estimated by (11) in (D) using red-solid and blue-dotted lines, respectively. Simulation results validate the
accuracy of the closed-form analytical model given by Equation (11).

regions of the image. This crucial property, inherent to PST,
equalizes the input brightness and allows for more sensitive
feature detection and enhancement. Brightness level equal-
ization is a well-studied method to improve feature detection
algorithms in High Dynamic Range (HDR) images (see [28]
for an example). One technique for brightness level equaliza-
tion in images is a log function applied to the input before
feature detection. The log function has a higher gain for
lower brightness input which equalizes the brightness and
results in more efficient feature detection. Fortunately, the
PST operator has a built-in logarithmic behavior which gives
it excellent dynamic range. However, this does not com-
pletely describe the transform. As observed in Equation (16),
our transform outputs a hyper-dimensional feature set for
classification. These results also show a method for the
computation of mathematical derivatives via group delay dis-
persion operations.

III. SIMULATION RESULTS
In this section, we present some simulation results that
validate the closed-form expression derived in the previ-
ous section. We also show examples of the operation of
PST on HDR images, supporting the new theory devel-
oped above. In the first example, we simulate the output
for a given 1D data and compare it to the output estimated
by the mathematical expression derived in Equation (11).
The phase kernel φ [u] constructed for the PST opera-
tor is shown in Fig. 2(A). The warp and strength param-
eters of the kernel as described in [10] and [11] are
12.5 and 4000, respectively. The phase and its derivative
are shown in Fig. 2(A) and Fig. 2(B) respectively. The
input is shown in Fig. 2(C). Numerically simulated output
is compared to the output estimated by (11) in Fig. 2(D)
using red-solid and blue-dotted lines, respectively. It is evi-
dent that the simulations match analytically derived results
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FIGURE 3. Effect of PST on features with varying contrast levels at a fixed
brightness level compared to the output by differentiation. The input is
shown in (A). The output of the differentiator (shown in blue-dotted lines)
is linearly related to the contrast level and is insensitive to the brightness
level. However, the dependence of the PST output (shown in red-dotted
lines) to the contrast level at a fixed brightness level is nonlinear.

validating the accuracy of the closed-form analytical model
of our algorithm.

In the next example, we evaluate the effect of PST on
features with different contrast levels at a fixed brightness
level and compare it to the case of using the conventional
derivative technique to detect features in the same input.
The warp and strength parameters used for the PST operator
are 12.15 and 0.48, respectively. The input was designed
to have different contrast levels at a fixed brightness level
(see Fig. 3(A)). Numerically simulated output using PST is
compared to the output using differentiation in Fig. 3(B).
As expected, the output of the differentiator is linearly related
to the contrast level and is insensitive to the brightness level.
However, the relation of the PST output to the contrast level
at a fixed brightness level is nonlinear. This effect is due to
the brightness level equalization feature of PST described
in equation (11).

Fig. 4 shows an example of using PST for feature enhance-
ment in a 14-bit HDR image. The image has sharp features
in the low contrast regions, as shown in the red boxes.
Here we compare the feature detection using the derivative
operator with that using PST. The derivative operator was
implemented from native smooth derivative function. For fair
comparison, both methods use the same localization kernel
with sigma factor of 2 in all the experiment results shown
here. The warp and strength parameters used for the PST
operator are 12.15 and 0.48, respectively. Results of feature
detection using the smooth derivative operator and the PST
operator are shown in Fig. 4(B) and Fig. 4(C), respectively.
The derivative operator is unable to unveil the low con-
trast features in the dark areas of the image, see dashed

FIGURE 4. Comparison of feature detection using the smooth derivative
operator to the case of feature detection using the PST. The original
image is shown in (A). The smooth derivative operator is unable to
efficiently visualize low contrast features in the dark areas of the image
which are successfully captured by the PST operator.

box in Fig. 4(B). However, PST extracts these low con-
trast features in the dark areas due to its natural equaliza-
tion mechanism, see red boxes in Fig. 4(C). Also, it can
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FIGURE 5. A line scan corresponding to row number 524 of the image previously shown in Fig. 4 that compares
the feature detection output of the conventional derivative operator to that of the PST operator under low light
level and high light level conditions. The original input line scan is shown in (A). Feature detection of this line
scan using the derivative operator and the PST are shown in (B). PST operator is more sensitive than the
derivative operator under low contrast conditions in both the low light level and high light level conditions
(see purple and green box).

be observed that the intensity of detected edges in the
case of smooth derivative is related linearly to the bright-
ness level of the original image, compare solid box areas
in Fig. 4(A) and Fig. 4(B). On the contrary, PST has automat-
ically equalized the brightness level in the solid box region in
the image and outputs relatively fixed features intensity for
that region, see solid box in Fig. 4(C). It can be seen that
PST has failed to visualize features in very bright areas of
the image such as the edges of the hand. This is because of
the inverse dependence on brightness as shown in (11). This
problem can be solved by setting a maximum threshold for
detected features or by equalizing the image brightness before
applying the PST operator.

To better understand the role of PST for feature detection
in low light level and high light level regions, we use a single
line scan of the HDR image shown previously in Fig. 4. The
blue box in the Fig. 5 demonstrates the response of PST
to low light level regions where it outperforms conventional
derivative operator. Similarly, for high light level regions of
the image (shown in green and purple box in the Fig. 5),
PST outperforms when the contrast is low (shown in green
box in the Fig. 5). On the contrary, the conventional derivative
operator response dominates only in high contrast regions
(shown in purple box in the Fig. 5).

We consider another 14-bit HDR image to show fea-
ture enhancement in low light level regions using PST.
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FIGURE 6. Comparison of feature detection using the smooth derivative operator to the case of feature detection using the PST. The original image
is shown in (A). The smooth derivative operator is unable to efficiently visualize the features in the low contrast areas of the image (see red boxes
in (B)) whereas PST detects these low contrast features (see red boxes in (C)).

FIGURE 7. Comparison of feature detection using the smooth derivative operator on a contrast enhanced image to the case of feature detection
using the PST. The original image is shown in (A). The smooth derivative operator detects features in the under-exposed regions of the image only
after enhancing the contrast of the image. The edges detected by the conventional derivative operator in the under-exposed regions of the
contrast enhanced image are consistent with the ones detected by the PST (see red boxes in (C) and (E)). (A) Original image (C) Feature detection
using PST (D) Contrast Enhanced Image (E) Feature detection using conventional edge detectors on contrast enhanced image

The image has sharp features in the form of edges of leaves
and branches of trees in the low light level regions, see
red dashed box in Fig. 6(A). Results of feature detection
using the smooth derivative operator and the PST operator
are shown in Fig. 6(B) and Fig. 6(C), respectively. The
warp and strength parameters used for the PST operator are
22.4 and 10.5, respectively. The conventional smooth deriva-
tive operator detects features only in high contrast regions,
as shown in blue dashed box. The derivative operator fails
to identify edges corresponding to low contrast areas of the
image, see red dashed box in Fig. 6(B). PST due to its
inherent equalization mechanism detects these features as
shown in red dashed box in Fig. 6(C). It can be observed
that PST does not have a strong edge response correspond-
ing to high contrast regimes such as the edges of Washing-
ton Monument in the image. We will show later that this
issue can be resolved by combining the edges from both the
methods.

In order to evaluate the performance of PST compared
to the previous methods, we show an example of using
PST for feature enhancement in a 14-bit HDR image and
then compare the output with the conventional techniques
for feature enhancement in low contrast regions. The image
of the rock has sharp surface variations in the low light
level regions, as shown in the red dashed box. The smooth
derivative operator fails to detect these surface features in
low contrast regions, see Fig. 7(B). We apply the standard
intensity histogram equalization technique [28] to enhance
the contrast of the under-exposed regions of this HDR image,
shown in Fig. 7(D). The derivative operator now detects
features in these low contrast regions, see Fig. 7(E) which
are visually consistent with the features detected by PST,
see Fig. 7(C). The warp and strength parameters used for the
PST operator are 12.4 and 0.48, respectively.

We consider another example of a defocused image, shown
in Fig. 8(A), to show that PST outperforms conventional
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FIGURE 8. Comparison of feature detection using the smooth derivative operator to the case of feature detection using the PST operator. The
original image is shown in (A). The smooth derivative operator is unable to detect features in the defocused areas of the image (as shown in red
boxes in (B)). However, PST captures the fingerprint details in these blurred areas due to its unique reconfigurable property (see (C)).

FIGURE 9. Hybrid system that combines the edge maps from the smooth derivative operator and the PST. The original image is shown in (A).
Results of feature detection using the smooth derivative operator and the PST are shown in (B) and (C), respectively. The output of the hybrid
system is shown in (D). Note that in (D), the strength of the detected features in both the high light level and low light level regions is same.
The hybrid system selects the detected features in the darker regions using the PST and in the brighter regions using the smooth derivative
operator and thereby, provides a wide dynamic range of operation.

edge detectors for feature enhancement in visually impaired
images. By comparing the edge map from smooth deriva-
tive function to that from the PST operator, shown
in Fig. 8(B) and Fig. 8(C), respectively, it is evident that the
PST operator detects edges of finger prints in the blurred (low
contrast) regions marked by red boxes. This opens up the
possibility of using PST for fingerprint analysis in forensic
science. The warp and strength parameters used here for the
PST operator are 1000.2 and 50.4, respectively.

To further enhance the dynamic range of operation for
feature detection, we introduce a hybrid system that com-
bines the edge responses from the PST and the conventional
derivative operator, enabling feature detection in low as well
as high contrast regions. As shown in Fig. 9, the edge map
of the hybrid system has edges in the high contrast regions
such as the hand in the image and also in the low contrast
regions such as the pattern on the curtain. It can be clearly
seen that the feature detection of the hybrid system surpasses
the capabilities of feature detection from the derivative and
the PST operator.

IV. CONCLUSIONS
In this paper, we presented a new method for edge detec-
tion in visually impaired images using a new mathemat-
ical transform inspired by the physics of photonic time
stretch. We showed via analytical derivations and numeri-
cal simulations that the so called Phase Stretch Transform

equalizes the input brightness resulting in a high dynamic
range in feature detection and acts as a hyper-dimensional
feature set classifier. Furthermore, our results show a method
for the computation of mathematical derivatives via group
delay dispersion operations
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