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ABSTRACT The Kalman filter (KF) is the most common state estimation method for gas turbine health
monitoring, and it runs in the centralized architecture. However, health estimation cannot be achieved by the
KF-based method as sensor fault occurs, and malfunction of the central monitoring unit will unavoidably
result to the termination of the diagnosis task. For these purposes, this paper develops a novel hybrid
federated KF approach from the previous achievements. The hybrid KF consists of a bank of local filters
and one master filter, and the federated filtering structure and asynchronous fusion mechanism are designed.
Both the linearized KF and extended KF are employed as the local filters based on the linear correlation
of thermodynamic parameters. The local state estimates and covariance are yielded in parallel, and then
integrated in a master filter to produce global state estimate. The proposed methodology is evaluated
and compared with the general federated KFs in terms of estimation accuracy, computational efforts, and
robustness to sensor fault in the application of gas turbine health monitoring. The result shows that the hybrid
KF is the best balance off the involved performance, and confirms our viewpoints in this paper.

INDEX TERMS Gas turbine, health monitoring, Kalman filter, asynchronous fusion, sensor fault tolerance.

I. INTRODUCTION
Gas turbine engine is the key mechanical system to supply
aircraft power, and its reliability is crucial for flight safety.
Gradual deterioration of gas turbine performance is unavoid-
able during the course of its lifetime, and it is mainly caused
by erosion and fouling of major gas path components [1], [2].
The foreign/domestic object damages result in performance
degradation rapidly during its operation, and they are rec-
ognized as abrupt performance faults. Generally speaking,
the variations of component efficiencies and flow capaci-
ties are employed to depict these performance anomalies,
and so-called health parameters [3]. Health parameters con-
tain important information of engine performance condition,
which guide the maintenance schedule to safe operation and
reduced costs [4].

Since health parameters can’t be measured from the
engine directly, lots of approaches have been studied
in the past decades, such as weighted least squares,
Kaman filters [5], [6], stochastic modeling [7], [8], neural

networks [9], expert systems and genetic algorithms
[10]–[12]. The KF-based methods seem to be the widely
used one, and variants of the KFs are concerned including
the LKF, the EKF, the UKF (Unscented KF) and the CKF
(Cubature KF). The LKF is usually applied to estimate state
of linear system and the rest KFs are the extension of LKF
to nonlinear applications. The EKF, UKF and CKF produce
similar health estimation accuracy and evidently outperform
the LKF due to the mild nonlinearity of gas turbine [13].
When it comes to computational load, the EKF requires
an order of magnitude higher than the LKF. The UKF and
CKF have the same order of computational efforts, and yet
both require another order of magnitude higher than the
EKF. Thus, the LKF is the best candidate with regard to
computational efforts, and EKF seems to be the best balance-
off in gas turbine health monitoring.

The conventional linear and nonlinear KFs both run in
a centralized architecture, and all sensor measurements are
processed at a central processor. This centralized structure of
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the KFs is simple, but the computational load will increase
greatly with gas turbine engine complexity, in-flight tasks and
estimated state parameters increase. In addition, it has more
opportunity for the occurrence of sensor fault as more sensors
used in harsh working condition. Decentralized filtering tech-
nology was exploited for multi-sensor systems [14], and fed-
erated KF proposed by Carlson is one of the most well-known
examples in decentralized linear filtering structure [15]. The
computational loads are assigned by several LKF individuals
in the federated KF approach.

Similar to the centralized architecture, some kinds of
nonlinear federated KF are developed from the linearized
one in the recent years, such as the FEKF (federated EKF)
and FUKF (federated UKF) algorithms. The FEKF is pre-
sented to improve the accuracy and reliability of vehicle
position estimation [16], and the FUKF utilized to esti-
mate navigation parameters [17]. The FUKF contains a
fault detection and isolation module, and the navigation sys-
tem will not break down even if one sensor faulty. Other
researches prove the superiority of federated filtering struc-
ture in terms of high estimation precision and high fault toler-
ance in the application of multi-sensor integrated navigation
system [18]–[20]. In a word, the progress on the feder-
ated filters achieved above relies on the same local filters,
while the integration of different kinds of local filters is not
referred.

Motivated by taking the advantage of federated filtering
method, this paper proposes a novel hybrid Kalman filtering
methodology by the combination of linear and nonlinear
local KFs, and then applies it for aero-engine health mon-
itoring in decentralized filtering architecture. The available
sensor measurements for health estimation are partitioned
into several sensor subsets, and every subset is related to
one local filter. The LKF and EKF are used to form local
filters, and the parameters of which depends on linear param-
eters correlation. These local filters independently collect the
sensed data, and synchronously copewith the data in the field.
One master filter receives and integrates all sensor-based
estimates from the local filters to generate the global state
estimate on the top of decentralized structure. The global state
and covariance are weighted and feedback to different kinds
of local filters. The equivalence of the HKF and general EKF
for state estimation is mathematically proved with the least
square errors based on an information-sharing principle. The
simulation results of engine health monitoring demonstrate
the superiority of the proposed methodology in both total
computational effort and robustness to sensor faults.

The remainder of this paper is organized as follows.
Section 2 gives aero-engine gas path health description and
a review of centralized Kalman filters. In Section 3, a sys-
tematic framework of the HKF, and its fault diagnosis and
isolation (FDI) mechanism are developed in detail. Simula-
tion results based on a nonlinear turbofan model is presented
in Section 4, along with some comparisons between the
proposed HKF and general federated KFs. The conclusion is
drawn in Section 5.

II. GAS PATH HEALTH USING CENTRALIZED
KALMAN FILTERS
A. GAS PATH HEALTH DESCRIPTION
In this paper, a two-spool turbofan engine is studied, which is
recognized as the most important aircraft propulsion systems.
The main components of the engine consist of inlet, fan,
compressor, bypass, combustor, HPT (high pressure turbine),
LPT (low pressure turbine), mixer and nozzle. The airflow
is supplied to the fan from inlet, and then separates into two
streams: one stream passes through the engine core path, and
the other passes through the annular bypass duct. It is driven
into the combustor after through compressor. Fuel is injected
into the combustor and burned to produce hot gas to drive
turbines. The fan is driven by the LPT and the compressor
by the HPT. Finally, the mixed gas from LPT and bypass
exhausts discharge through nozzle [11].

On the basis of air flow mass, power and momen-
tum conservation laws, a nonlinear mathematical model
is established to describe the turbofan engine. The ther-
modynamic relationship of engine model is expressed as
follows

x0,k+1 = x0,k + w0,k

yk = g(x0,k ,uk )+ v0,k (1)

where k is a discrete time index, x0 is the original state
vector and u is the control vector. The engine output y is
observed by a set of available sensor measurements, and the
function g() represent the engine operating equation. The
process noise term w0,k with covariance matrix Q0 denotes
the system inaccuracy, and measurement noise term v0,k with
its covariance R0 denotes the measurement inaccuracy. The
original state variables contain low-pressure spool speed NL
and high-pressure spool speed NH . The elements of control
vector in the model are fuel flow Wf and nozzle area A8,
which determine the engine operating point. The measure-
ments are NL , NH , fan outlet temperature T22, fan outlet
pressure P22, compressor outlet temperature T3, compressor
outlet pressure P3, HPT outlet temperature T43, HPT outlet
pressure P43, LPT outlet temperature T6 and LPT outlet
pressure P6.

Gas path abnormal incidents of the turbofan engine include
gradual performance deterioration and abrupt gas path fault,
and health parameters representing the health condition of
turbofan engine are denoted as vector h. In this study, the effi-
ciencies and flow capacities of four major rotating compo-
nents, like fan, compressor, HPT and LPT, are defined below
form the health parameter vector

SEi =
Ei,real
Ei,nor

, SWi =
Wi,real

Wi,nor
i = 1, · · · , 4 (2)

where the subscript i from 1 to 4 is successively fan, com-
pressor, HPT and LPT. The subscript real denotes the real
efficiency SE and flow capacity SW values, and nor is their
design values. The health parameter vector can be written
as h = [SE1, SW1, SE2, SW2, SE3, SW3, SE4, SW4]T. Both
the engine performance gradual deterioration and component
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abrupt deviations can result in health parameters variations.
Health parameters of interest are unmeasured directly in the
plants, while their variations will result in the measurement
changes. Thus, the sensor measurements are employed to
calculated health parameters by state estimation algorithms
to obtain the engine health condition.

B. CENTRALIZED KALMAN FILTERS
The LKF is an optimal state estimator with the advantages
of real-time computation and resistance to measurement
noise. The health parameters are supplemented to the spool
speeds to form the augmented state x = [NL , NH , hT]T

to be estimated by the LKF. The LKF-based approach for
health monitoring has a recursive and predictor-corrector
structure. The prior values of health parameters are generated
through engine state transition equation, and then the resid-
uals between the actual measurements and estimated ones
from the measurement equation are acquired to correct the
predicted health parameters [21], [22].

State variable models (SVM) at several steady operating
points are established before the use of the LKF. The actual
engine model in whole operating range is described by a
piecewise linear representation based on the SVMs. The cen-
tralized LKF includes time update and measurement update
that are separately given in Eq. (3) and Eq. (4).

x̂k|k−1 = x̂k−1
Pk|k−1 = Pk−1 + Qk−1 (3)

Kk = Pk|k−1CT
k (CkPk|k−1CT

k + Rk )
−1

x̂k = x̂k|k−1 + Kk (yk − Ck x̂k|k−1 − Dkuk )

Pk = (I − KkCk )Pk|k−1 (4)

where Ck , Dk are the coefficient matrices of the SVM at
time k , and the detailed calculation of these matrices can
be referred to [23]. These matrices are obtained off-line and
updated with steady operating point. An identity matrix I is
with appropriate dimension, Kk is Kalman gain and Pk is
the state estimate covariance matrix computed at time k . The
estimation performance of the LKF varies with the distance
from the actual operating point to steady operating point.
The larger distance from the steady operating point, the more
estimation errors is produced.

The EKF is an important state estimator for nonlinear
system, where the SVM is not necessary. The less model lin-
earization errors are introduced, and affect to the state estima-
tion accuracy in the EKF. It utilizes a first order linearization
to propagate state mean and covariance, and contains time
update and measurement update [24]. Time update equation
of the EKF is the same as the LKF given in Eq. (3), and
measurement update formulation is presented in Eq. (5). The
coefficient matrices C in the EKF is calculated on-line and
update at each step in the engine trajectory. Compared to
LKF, the EKF has better estimation accuracy but more com-
putational effort paid. Most computational effort is consumed
on Jacobian calculation to obtain the coefficient matrices at

each step.

Kk = Pk|k−1CT
k (CkPk|k−1CT

k + Rk )
−1

x̂k = x̂k|k−1 + Kk [yk − g(x̂k|k−1,uk )]

Pk = (I − KkCk )Pk|k−1 (5)

where

Ck =
∂g(x̂k ,uk )

∂x

∣∣∣x=x̂k|k−1 (6)

Both the LKF and EKF algorithms for engine health esti-
mation are organized in a centralized architecture. All sensed
data are fed into one central processor for state estimation.
Since each measurement is identically processed by one cen-
tral filter at a time, this filter experiences heavy computational
loads as the number of system parameters increases. Besides,
the general Kalman filter can’t make sense of sensor fault,
and the wrong sensed data will lead to mistakes of health
estimation. In the next section, we will combine the LKF
and EKF to advance a novel hybrid Kalman filter in the
decentralized architecture for engine health monitoring.

III. HYBRID FEDERATED KALMAN FILTER FOR ENGINE
HEALTH ESTIMATION
A. DESIGN OF THE HYBRID FEDERATED KALMAN FILTER
Hybrid federated Kalman filter is developed based on the
integration of KFs and information fusion theory. In the appli-
cation of gas turbine health monitoring, the measurements
for state estimation are optimally selected and divided into
two teams by linear correlation analysis [25]. The estimation
errors of health parameters from the linear model and non-
linear model are used to represent linear correlation of the
parameters [26], [27]. The sensor subsets with less linearity
are stream to the local EKFs, while the remaining sensor
subsets to the local LKFs to estimate health parameters.
The measurements in each sensor subset for estimation are
different, and health parameters to be estimated are the same
in local filters, namely, SE1, SW1, SE2, SW2, SE3, SW3, SE4
and SW4.

On the other hand, engine gas path sensor layout is taken
into account for the assignment of sensor subsets related to
local filters in the distributed architecture. A large number of
sensed data are collected and transmitted to a single process-
ing center, and it results in an overhead to the communication
bandwidth as the number of sensors increase. Some measure-
ment transmissions to the processing center are practically
remotely and hard or even impossible. The sensor neighbor-
hood along the engine gas path is considered to form the
sensor subsets in the decentralized KFs. The processed local
sensor information is delivered to the processing center by the
bus, and it reduces the transmission load and interference. The
HKF modeling parameters are determined by the integration
of linear correlation analysis and engine sensor layout.

The HKF for the engine health monitoring is designed
and mainly includes three stages. Firstly, the local LKFs
and EKFs perform in parallel to obtain local estimates from
their own sensor subsets. Secondly, all local estimates of
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FIGURE 1. The framework of proposed HKF for engine health monitoring.

health parameters are sent to a master filter in the centralized
processor, where a global state estimate is reached. Thirdly,
the global health state and covariance are fed back to local
LKFs and EKFs with an information-sharing strategy for
next step calculation. Assume that there are M1 local LKFs
and M2 local EKFs in the decentralized filtering architec-
ture, then the HKF has totally M = M1 + M2 local fil-
ters. The detailed procedure of the HKF is summarized as
follows.
Step 1 (Initialization): Given the initial global state

vector x̂g,0, estimation error covariance Pg,0, and process
noise covariance Q0 with appropriate dimension in the mas-
ter filter. Then initialize the modeling parameters of local
filters

x̂i,0= x̂g,0 P i,0=β−1i Pg,0 Qi,0=β
−1
i Q0 i=1, · · · ,M

(7)

where βi is the information-sharing factor, and it follows
M∑
i=1
βi = 1. This factor βi is usually a constant, and equal to

average coefficient. It is set by βi = 1/M in this paper.
Step 2 (TimeUpdate andMeasurement Update in the Local

Filters): The time update and measurement update process
are carried out independently in local filters at each iteration
step. The local estimates of the local LKFs are computed by
the Eq. (3) and Eq. (4), and the local estimates of the local
EKFs computed by the Eq. (5) and Eq. (6).
Step 3 (Local Estimates Fusion in the Master Filter): The

local estimates x̂i,k and P i,k are transmitted to synthetize in
the master filter. The optimal global state estimate x̂g,k and
error covariance Pg,k are obtained by the following additive

information fusion

P−1g,k =
M∑
i=1

P−1i,k (8)

x̂g,k = Pg,k
M∑
i=1

(
P−1i,k x̂i,k

)
(9)

where xi,k is the i-th local state vector at time k with the
local process noise covariance Qi,k, and its state estimate
covariance matrix is Pi,k.
Step 4 (Global Information Feedback): The global state

and covariance generated by the master filter are fed back
to local filters for the next step of recursive calculation. The
information-sharing strategy follows as x̂i,k = x̂g,k , P i,k =
β−1i Pg,k , Qi,k=β

−1
i Qk (i=1, · · · ,M ).

For step k+1, the calculated values of state and covariance
delay a time index, and steps (2)-(4) are repeated. The block
diagram of the HKF algorithm for engine health monitoring
is shown in Figure 1.

Compared to the centralized framework, state estimation
task in HKF is decomposed from a KF in a processing center
into several LKFs and EKFs in the field, and one master filter
in the center. In other words, the master filter and local KFs
share the computation burden of the general KF together,
which avoids the overload in a single processor. Although the
estimates of HKF are distributed over a network, the global
estimate is optimal and conservatively equivalent to that of
the centralized EKF.

B. EQUIVALENCE ANALYSIS OF THE HKF
The mathematical equivalence of the HKF and centralized
EKF is presented in this section. Provided that the two
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KFs have the same initial parameters, the equivalent con-
clusion can be reached as the time update and measurement
update expressions of the HKF and EKF are mathematically
consistent.

Assume five sensor subsets are designed for engine
health estimation, and they are two local LKFs and three
local EKFs. The i-th local system can be described by
the following state transition equation and measurement
equation

xk+1 = xk + wk (10)

yi,k = C i,kxk + Di,kuk + vi,k i = 1, 2 (11)

yi,k = gi(xk ,uk )+ vi,k i = 3, 4, 5 (12)

where yi,k is the measured vector from the i-th sensor sub-
system at time k , and its measurement noise term vi,k with its
covariance Ri,k . Ci,k , Di,k are the coefficient matrices of the
i-th subsystem at time k . The linear measurement equation
Eq. (11) is a special form of nonlinear function, and it is
obtained by Taylor Expansion.

The combined measurement expressions of the hybrid sys-
tem in the distributed framework are

yk = [yT1,k , y
T
2,k , · · · y

T
5,k ]

T

vk = [vT1,k , v
T
2,k , · · · , v

T
5,k ]

T

Rk = diag(R1,k ,R2,k , · · · ,R5,k ) (13)

In the fusion module, the EKF treats measurement data
from each sensor subset identically to obtain the state esti-
mates. It runs time update equations at time k , then the EKF
performs measurement update process.

x̂k|k−1 = x̂k−1
Pk|k−1 = Pk−1 + Qk (14)

For more convenient derivation of equivalence, measure-
ment update of the EKF is expressed by information filtering
equations, and it mainly contains covariance inverse P−1k
and information state estimate P−1k x̂k . Previous publication
reveals that two filters are equivalent only these two terms of
the EKF and HKF consistent [24].

P−1k = P−1k|k−1 + C
T
k R
−1
k Ck

P−1k x̂k = P−1k|k−1x̂k|k−1 + C
T
k R
−1
k

× [yk − g(x̂k|k−1,uk )+ Ck x̂k|k−1] (15)

Since each local filter of the HKF has the same state
transition equation, and they are also the same as the EKF.
According to the information allocation equations Qi,k−1 =
β−1i Qk−1,P i,k−1 = β

−1
i Pg,k−1, the priori covariance matrix

of the i-th local filter can be written as

P i,k|k−1 = P i,k−1 + Qi,k = β
−1
i Pg,k−1 + β−1i Qk

= β−1i

(
Pg,k−1 + Qk

)
= β−1i Pg,k|k−1 (16)

Then the global priori covariance matrix of the HKF is
calculated by

P−1g,k|k−1 =
2∑
i=1

P−1i,k|k−1 +
5∑
i=3

P−1i,k|k−1

=

2∑
i=1

(
P i,k−1+Qi,k

)−1
+

5∑
i=3

(
P i,k−1+Qi,k

)−1
=

5∑
i=1

(
P i,k−1 + Qi,k

)−1
=

5∑
i=1

(
β−1i Pg,k−1 + β−1i Qk

)−1
=

5∑
i=1

βi
(
Pg,k−1+Qk

)−1
=
(
Pg,k−1+Qk

)−1 (17)

Substituting Eq. (16) into information fusion strategy
Eq. (6), and it yields the global priori HKF state vector

x̂g,k|k−1

=Pg,k|k−1

{
2∑
i=1

(
P−1i,k|k−1x̂i,k|k−1

)
+

5∑
i=3

(
P−1i,k|k−1x̂i,k|k−1

)}

=Pg,k|k−1

{
2∑
i=1

(
βiP−1g,k|k−1x̂i,k|k−1

)
+

5∑
i=3

(
βiP−1g,k|k−1x̂i,k|k−1

)}

=

5∑
i=1

βi
(
x̂i,k−1

)
=

5∑
i=1

βi
(
x̂g,k−1

)
= x̂g,k−1 (18)

As can be seen from Eq. (17) and Eq. (18), the global priori
state vector and covariance matrix of the HKF are identical to
those of the centralized EKF in Eq. (14). Hence, we have the
equivalence of time update expression between the HKF and
centralized EKF.
When the measurement update is concerned, the global

posteriori covariance of HKF is calculated by

P−1g,k =
2∑
i=1

P−1i,k +
5∑
i=3

P−1i,k =
2∑
i=1

(
P−1i,k|k−1 + C

T
i,kR
−1
i,k C i,k

)
+

5∑
i=3

(
P−1i,k|k−1 + C

T
i,kR
−1
i,k C i,k

)
=

5∑
i=1

(
P−1i,k|k−1 + C

T
i,kR
−1
i,k C i,k

)
=

5∑
i=1

P−1i,k|k−1 +
5∑
i=1

CT
i,kR
−1
i,k C i,k

=

5∑
i=1

βiP−1g,k|k−1 +
[
CT
1,k , · · · ,C

T
5,k

]
× diag

[
R−11,k , · · · ,R

−1
5,k

]
×

[
CT
1,k , · · · ,C

T
5,k

]T
= P−1g,k|k−1 + C

T
k R
−1
k Ck (19)
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Then the global posteriori state vector of HKF can be
computed by

P−1g,k x̂g,k =
2∑
i=1

(
P−1i,k x̂i,k

)
+

5∑
i=3

(
P−1i,k x̂i,k

)
=

2∑
i=1

{
P−1i,k|k−1x̂i,k|k−1 + C

T
i,kR
−1
i,k (yi,k − Di,kuk )

}
+

5∑
i=3

{
P−1i,k|k−1x̂i,k|k−1 + C

T
i,kR
−1
i,k

×
[
yi,k−gi

(
x̂i,k|k−1,uk

)
+C i,k x̂i,k|k−1

]}
(20)

Since the coefficient matrices Ci,k and Di,k are obtained
from the measurement function gi(), the linear item in
Eq. (20) can be rewritten by

yi,k−Di,kuk=yi,k − gi
(
x̂i,k|k−1,uk

)
+C i,k x̂i,k|k−1 i=1, 2

(21)

On the other hand, since the global state is fully feedback
to the local filters, namely x̂i,k|k−1 = x̂g,k|k−1. The global
posteriori state vector of HKF can be finally given as

P−1g,k x̂g,k =
5∑
i=1

{
P−1i,k|k−1x̂i,k|k−1 + C

T
i,kR
−1
i,k

×
[
yi,k − g

(
x̂i,k|k−1,uk

)
+ C i,k x̂i,k|k−1

] }
=

5∑
i=1

{
P−1i,k|k−1x̂g,k|k−1 + C

T
i,kR
−1
i,k

×
[
yi,k − gi

(
x̂g,k|k−1,uk

)
+ C i,k x̂g,k|k−1

] }
=

5∑
i=1

P−1i,k|k−1x̂g,k|k−1 +
5∑
i=1

CT
i,kR
−1
i,k yi,k

−

5∑
i=1

CT
i,kR
−1
i,k gi

(
x̂g,k|k−1,uk

)
+

5∑
i=1

CT
i,kR
−1
i,k C i,k x̂g,k|k−1

=

5∑
i=1

βiP−1g,k|k−1x̂g,k|k−1 +
[
CT
1,k , · · · ,C

T
5,k

]
× diag

[
R−11,k , · · · ,R

−1
5,k

]
×

[
yT1,k , · · · , y

T
5,k

]T
−

[
CT
1,k , · · · ,C

T
5,k

]
× diag

[
R−11,k , · · · ,R

−1
5,k

]
×

[
gT1
(
x̂g,k|k−1,uk

)
, · · · , gT5

(
x̂g,k|k−1,uk

)]T
+

[
CT
1,k , · · · ,C

T
5,k

]
× diag

[
R−11,k , · · · ,R

−1
5,k

]
×

[
CT
1,k , · · · ,C

T
5,k

]T
× x̂g,k|k−1

= P−1g,k|k−1x̂g,k|k−1 + C
T
k R
−1
k yk

−CT
k R
−1
k g

(
x̂g,k|k−1,uk

)
+ CT

k R
−1
k Ck x̂g,k|k−1

= P−1g,k|k−1x̂g,k|k−1 + C
T
k R
−1
k

×
[
yk − g

(
x̂g,k|k−1,uk

)
+ Ck x̂g,k|k−1

]
(22)

It can be easily found from Eq. (19) and Eq. (22) that
the global posteriori covariance matrix and state vector
of HKF are identical to those of the EKF in Eq. (15).
The measurement update consistence between the HKF
and centralized EKF is likewise deduced. The proof is
completed.

C. THE FDI MECHANISM IN HKF
Both the time and measurement update are carried out inde-
pendently in each local filter, and the local estimates are not
immediately affected mutually at the current step. The HKF
has a nature advantage in the capability of sensor fault toler-
ance. The FDI mechanism is inherently included in the HKF
algorithm, and it relies on the consistency of the local state
estimates. The variance of local estimates is regarded as the
sensor fault detection index. When no sensor fault exists, all
local estimates are close to the real state, and the variance of
state estimates between the local individuals is small. Once a
sensor fault occurs, the local estimate generated by its related
local filter is polluted with faulty sensor data. This local
estimate deviates from the real state and different from other
estimates generated by normal local filters, and it leads to
the fault detection index exceeding the fault threshold. Then
faulty sensor subset can be detected, and its related local filter
will be isolated from the distributed framework. Although one
local filter is excluded, the measurement number is eight and
no less than the estimated state count. Hence, the HKF still
follows the observability of state estimator, that is to say, the
engine health estimation will not be interrupted as the sensor
fault happens in one subset.

The proposed HKF runs in the proposition that all local
filters provide estimates to the master filter synchronously,
but it is difficult to realize in engineering. The update fre-
quencies of various sensor devices are different and the local
EKF usually consumes more computational effort than local
LKF. Literature [28] presented an unequal-interval federated
filtering method to the problem of the output cycle inconsis-
tency of local filters. The asynchronous fusion mechanism
is introduced in the HKF, the greatest common divisor of
all local output cycles is taken as the calculation cycle and
the least common multiple as the fusion cycle. When one
measured channel provides no information, the related local
filter only carries out time updating process. Based on this
asynchronous fusionmechanism, the implementation steps of
the HKF are briefly summarized as follows:

(1) At the calculation cycle that only part of the local filters
has measurement information.

a) The local filter with measurement information carries
out time updating and measurement updating process, and
the others without measurement information only carries out
time updating process.
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b) The master filter firstly carries out time updating pro-
cess, like the local filter. Then it fuses the estimates from local
filters by the Eq. (23)

P−1g,k = P−1g,k|k−1 +
J∑
i=0

(P−1i,k − P
−1
i,k|k−1)

x̂g,k = Pg,k{P−1g,k|k−1x̂g,k|k−1

+

J∑
i=0

(P−1i,k x̂i,k − P
−1
i,k|k−1x̂i,k|k−1)} (23)

where J denotes the number of local filters with measurement
at time k .
(2) At the fusion cycle that all of the local filters have the

sensed measurement.
This period is ideal for the HKF to perform in accordance

with the normal steps. All local filters are responsible for
running time and measurement updating process, and the
master filter fuses local estimates and the global state estimate
is then fed back to local filters.

TABLE 1. Gas turbine engine measurements, nominal value, and
standard deviation.

IV. SIMULATION AND ANALYSIS
The proposed HKF is evaluated by a systematical discussion
for gas turbine engine health monitoring in cases of abrupt
and gradual performance deterioration. The computation bur-
den and robustness to sensor faults are compared and dis-
cussed. In the simulations, the actual engine is replaced by a
component level model (CLM) with sampling rate of 20 ms.
The CLM is codedwith C language and packaged by dynamic
link library in Matlab environment [29]. The PC hardware
used for simulations is configured as follows: CPU i3-550 @
3.20 GHz and RAM 4 GB. The normalized values and stan-
dard deviations of sensor measurements are listed in Table 1.
Gaussian noise vwith magnitude specified in Table 1 is added
to the measured values [30], and the independent system
noise and measured noise separately follow ω ∼ N (0,Q) and
v ∼ N (0,R), wherein Q = 0.004× I8×8.

Table 2 summarizes some typical component abrupt fault
modes and their health parameters deviation from the normal
values according to the turbofan engine lab record of Rolls-
Royce Company [30].

The performance of the LKF, EKF, and HKF are assessed
by four indices, namely, root-mean-square error (RMSE),

TABLE 2. Turbofan engine abrupt fault cases and their deviation
magnitudes.

root-mean-square deviation (RMSD), convergence time Tc,
and computational time Ts. The RMSE and RMSD are defined
as follows

RMSE = [
1
S

S∑
i=1

(x̂i − xi)2]
1
2

RMSD = [
1
S

S∑
i=1

(x̂i − ¯̂xi)2]
1
2 (24)

where S is total sampling steps, and ¯̂xi is the mean of estimate
value. The convergence time Tc denotes the consuming step
to fault recognition, and it is from the staring deviation to
the estimate steady state within ±2% range and no longer
out of this range in two consecutive steps. The computational
time Ts is the total consuming time in a particular simulation.
According to linear correlation analysis, two spool speeds

NL , NH , and two temperatures T22, T3 separately form two
sensor subsets for the local LKFs. The rest sensed data are
utilized for the local EKFs, and they are partitioned based on
the neighborhood of engine component. Hence, the measure-
ments of five local filters can be denoted by y1 = [NL , NH ],
y2 = [T22, T3], y3 = [P22, P3], y4 = [T43, P43], y5 = [T6, P6],
where y1 and y2 are coped by the LKFs, y3, y4 and y5 are by
the EKFs.

A. ESTIMATION ACCURACY FOR ENGINE
HEALTH MONITORING
The turbofan engine health estimation tests on abrupt
anomaly are carried out at three operation conditions: ground
point 1 (H = 0m, Ma = 0, Wf = 2.48kg/s), the operating
point 2 (H = 8000m, Ma = 0.5, Wf = 1.5kg/s), and
the operating point 3 (H = 11000m, Ma = 0.8, Wf =

0.7kg/s). The sudden shifts of health parameters summarized
in Table 2 are added to their normal values at t = 2s. Monte
Carl simulation implements, and each case runs twenty times.
The Ts is the sum of the CPU processing time of local filter
and master filter, and the first part is equal to that of the
largest consuming time of local filters. The results of abrupt
monitoring are reported numerically at different conditions
in Table 3.

As shown in Table 3, both the EKF and HKF outperform
the LKF in terms of RMSE and RMSD, while they con-
sume more CPU processing time than the LKF. The esti-
mation quality performed by LKF is relatively poor due to
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TABLE 3. Estimation performance of the examined filters in abrupt anomaly cases at different conditions.

FIGURE 2. Convergence time of the examined KFs in engine abrupt deviation cases. (a) Ground operating 1.
(b) Operating point 2. (c) Operating point 3.

linearization errors of the modeling. The EKF achieves better
estimation accuracy due to its nonlinear characteristics. Since
the HKF employs three local EKFs to handle the system
nonlinearity, it has a similar level of accuracy as the EKF.
Figure 2 gives the convergence times Tc by three examined

filters, Tc of the HKF approaches to that of the EKF in many
involved cases.

In order to further evaluate the proposed HKF perfor-
mance to track abrupt shift during gradual deterioration dur-
ing the engine transient behavior. The turbofan engine runs
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TABLE 4. Computational burden comparison of HKF and EKF with regard to Ts(s).

as follows: Wf linearly decelerates from 2.48 kg/s to
2.28 kg/s, and A8 keeps to 0.2597. Gradual deterioration is
that all health parameters move from their normal values
to the degradation terminals in 10s with linear trajectories
[30]. Eight health parameters equal to 1 at t = 0s, and the
degeneration at the end of the sequence at t = 10s are
set as: −2.18% on SE1, −2.85% on SW1, −6.71%on SE2,
−8.99% on SW2, −3.22% on SE3, 2.17% on SW3, −0.81%
on SE4 and 0.34% on SW4. Two abrupt deviation, −1% on
SW1 and −1% on SE3 are injected at 5s. A comparison of
the examined filters for engine health tracking is depicted
in Fig. 3, where the dotted lines and solid lines represent the
real and estimated health parameters, respectively.

It can be found from Fig. 3 that the EKF has the best
tracking capability, followed by the HKF, and the LKF is the
worst one. The RMSEs by the examined filters are calculated,
and they are separately 0.0884 by the LKF, 0.0234 by the
EKF, and 0.0338 by the HKF. The deviation from the real
degraded condition is resulted from that the SVM used by
LKF is only an approximation of the real turbofan enginewith
single health parameter degraded.What’s more, themismatch
between the linearized model and actual engine increases
because of operating point variation. The Jacobian matrix
is updated when the operation changes, the EKF tracking
performance won’t be affected.

B. COMPUTATIONAL EFFORTS AND ROBUST
TO SENSOR FAULT
To demonstrate the reduction of computational effort of the
HKF, the Ts in case of turbofan engine abrupt fault diagnosis
is tested. Since the HKF performs in the distributed architec-
ture and local filters run in parallel, the Ts is the sum of the
running time of local filters and master filter, and the running
time of local filters is equal to the longest one among local
filters. Table 4 shows the Ts of HKF and EKF in eight abrupt
fault cases.

In Table 4, the average computation time of master filter
is about 0.0407s, and those of local LKF and local EKF
are 0.0132s and 0.046s, respectively. The average time of
HKF in eight abrupt anomaly modes is 0.882 while that of
EKF is 0.1162s. Compared to the EKF, the HKF reduces the

computational time by 0.028s (24.1%). The computational
burden is relieved because of the dispersed structure of HKF.
The centralized KFs afford the whole computing process only
by one processor, while it is assigned to five local filters and
one master filter in the HKF.

Sensor failure is another important challenge for the reli-
ability of engine health monitoring. In order to evaluate the
robustness of the HKF to sensor fault, estimation simulations
are carried out with the sensor step fault and impulse fault
cases. A comparison of the HKF and EKF is presented at
ground design point. Gas turbine engine experiences gradual
degradation with a step fault 3% on sensor T3 at 5s is simu-
lated in Fig. 4.

As it can be observed from Fig. 4, both of the EKF and
HKF can track the engine performance degradation before the
step fault is injected to compressor exit temperature sensor T3.
There is a large deviation between the true health parameters
and their estimates generated by the EKF after 5s. In partic-
ular, the compressor efficiency SE2 and the HPT efficiency
SE3 have about 6% deviation. In contrast, the estimates by
the HKF follow the actual performance deterioration curve
all the time. Likewise, the test of engine gradual degradation
with sensor impulse fault is carried out at ground operation.

The sensor robustness simulation results indicate that the
estimates by the centralized EKF are easily polluted once
sensor failure occurs. That is to say, the EKF in the centralized
structure is unable to self-tune and isolate the faulty sensor.
Compared to the centralized EKF, the HKF has better robust
to sensor step and impulse fault in virtue of the number and
weight of local KFs change. Therefore, the HKF can readily
perform engine health estimationwith the capability of sensor
fault tolerance.

C. HKF WITH ASYNCHRONOUS FUSION
MECHANISM SIMULATION
It is noteworthy that the computational time of each local
estimator is usually different in the distributed structure, and
the simulation of asynchronous HKF is performed in this
section. Let the time consumption of calculation in the local
EKFs equal to 60 ms, and that in the local LKFs equal to
20 ms. The asynchronous fusion mechanism is utilized in the
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FIGURE 3. Gas turbine engine performance tracking under dynamic operation. (a) LKF. (b) EKF. (c) HKF.

HKF (denoted by the AHKF), and it is assessed at ground
operation point. The results of engine health monitoring by
the AHKF in the cases of mixed gradual deterioration and
abrupt deviation (−1%on SE3 and−1%on SW1) are depicted
in Fig. 5.

From Fig. 5, the AHKF can track engine performance
degradation precisely. RMSE by the HKF with asyn-
chronous fusion mechanism simulation is 0.0304, while
RMSE by the HKF in simultaneously computation of the
local KFs is 0.0275. It follows that the asynchronous fusion
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FIGURE 4. Gas turbine engine health monitoring with 3% step fault on sensor T3. (a) EKF. (b) HKF.

FIGURE 5. Asynchronous fusion estimation performance under abrupt deviation with gradual deterioration by the AHKF.

mechanism of the HKF has a little slow response to abrupt
deviation. In order to further illustrate the performance of
the HKF with asynchronous fusion mechanism, the engine
abrupt deviation in Table 2 are tested at ground operation and

each case is performed for twenty times. A comparison of
HKF with asynchronous computation in eight abrupt fault
cases with regards to RMSE, RMSD and Tc are reported in
Table 5.
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TABLE 5. The estimation performance of asynchronous HKF in the cases
of engine abrupt deviation.

Table 5 shows that the biggest difference in RMSEs by
the HKF and AHKF is less than 0.0016, and that in RMSDs
is also less than 0.0014. The estimation accuracy is hardly
affected by the consuming time difference of local processors
as the asynchronous fusion mechanism is used in the HKF.
While it can be clearly found that the convergence time Tc
of these involved HKFs produces a certain gap in all fault
cases, Tc increases are owing to the longer output cycle of
local EKFs in the AHKF. It reveals that the HKF with the
asynchronous fusion mechanism has satisfactory estimation
accuracy, on the premise of ensuring periodic output of global
estimation.

V. CONCLUSION
This paper proposes a hybrid fusion filtering approach
based on federated filtering technique for gas turbine engine
health monitoring. Compared to general centralized KFs,
the improvement of this methodology lies in the integration of
the linear and nonlinear KFs to yield an optimal global state
estimate in the distributed structure and asynchronous fusion
mechanism introduced. The health parameters computational
burden is dispersed from one filter processor center to five
parallel local filters and one master filter in this distributed
architecture. Three local EKFs are utilized to process sensor
subsets with strong measurement nonlinearity, and two local
LKFs to process the remaining subsets. Several key aspects
concerning state estimation robustness to sensor faults, asyn-
chronous fusion mechanism, and equivalence of the HKF and
centralized EKF are mathematically discussed in this paper.

This approach is evaluated under various engine health
anomalies involving abrupt deviation, gradual deterioration
and their mixtures. The engine health estimation tests are
performed under three conditions: the steady behavior at
ground and high-altitude points, and the dynamic behavior.
The simulation results demonstrate that one advantage of the
proposed HKF has less computational burden than the cen-
tralized EKF, which brings the benefits of real time on-board
implement of engine health estimation. The other advantage
of this approach is robust to step fault and impulse fault on
sensors according to the simulations on sensor fault tolerance.
In addition, the asynchronous fusion mechanism is given in
HKF, and the results show theHKF performswell even output
cycles of local KFs are inconsistent.

This research presents a distributed filtering methodology
by combining linear and nonlinear KFs, which is particu-

larly advantageous for gas turbine engine health monitoring.
However, several important aspects related to this work can
be explored in our future research. First, health parameters to
be estimated are the same in every local filter, and it would be
interesting to discuss how the proposedmethod performwhen
each local filter devotes to estimate a different subspace of the
state variables. Second, the evaluation of the HKF for engine
health estimation is limited to the numerical simulation, and
it will be of more practical significance to examine these
involved filtering methodologies based on the experiments on
semi-physical hardware in loop simulation.
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