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ABSTRACT This paper presents a novel nonlinear decoupling control scheme for a permanent magnet
in-wheel motor (PMIWM), in which both the radial basis function neural network inverse (RBFNNI) and
the state feedback robust pole placement (RPP) are employed. First, a theoretical analysis shows the existence
of the inverse system of the PMIWM to be modeled mathematically. An inverse system is introduced
into the original system of the PMIWM. Then, by cascading the RBFNNI system on the left side of the
original PMIWM system, a new decoupling pseudo-linear system is established. Moreover, the RPP theory
is employed to design an extra controller which further improves the disturbance rejection and robustness of
the whole system. The effectiveness of the proposed control approach is verified by the real-time hardware-
in-the-loop experiments under various operations.

INDEX TERMS Permanent magnet in-wheel motor, inverse system, radial basis function neural network,
robust pole placement, electric vehicle.

I. INTRODUCTION
In recent years, electrified vehicles (EVs) have been regarded
as one key technology in reducing future emissions and
energy consumption in the mobility field. Generally, the drive
system of EVs could be classified into centralized motor
drive and in-wheel motor drive. The reduction and differ-
ential gear are coupled to the motor, which constitutes the
centralized motor drive system. Compared with the central-
ized motor drive system, the in-wheel motor drive consists
of the independent power electronics control system, which
eliminates the mechanical transmission and drives the vehicle
directly with faster torque response and higher efficiency. The
in-wheel configuration has drawn significant attention from
both industrial and academic researcher. Prominent features,
such as high efficiency, high torque density and good over-
load capability, make the permanent magnet synchronous
motor (PMSM) become a promising candidate for direct-
drive propulsion [1], [2].

PMIWM, however, is a high-order, strongly coupled and
nonlinear system. The accuracy of the controller is seriously

influenced by the various uncertainties and nonlineari-
ties of the PMIWM, which leads to great difficulties to
achieve a strong robustness and disturbance rejection [3], [4].
To enhance the robustness of the control system, much
effort has been made to address the above-mentioned draw-
backs. Li et al. [5] and Chen et al. [6], [7] proposed some
feedforward control methods to effectively deal with the
disturbances and torque ripples. Several advanced feedback
control techniques have been developed to improve the per-
formance of the PMIWM in recent years, such as direct
torque control, dynamic programming, model predictive con-
trol, sliding mode control, model reference adaptive control,
fuzzy logic control, artificial neural network control [8], [9].
Ammar et al. [10] and Khedher and Mimouni [11] employed
direct torque control (DTC) to achieve dynamic decou-
pling the induction motor. However, DTC has the short-
comings of a poor low-speed performance and large torque
ripple [10], [11]. Incremental optimization methods and para-
metric structures are hybridized to approximate the sys-
tem control [12], [13]. Model predictive control (MPC) can
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explicitly handle constraints based on the future dynamic
behavior of the system. However, MPC involves much com-
putation load and long processing time, and could mainly
be suitable for the linear system [15]–[17]. Sliding mode
control (SMC) method is applied to the speed control of the
brushless DCmotor [15]–[17]. SMC improves the robustness
of the speed control system, but its inherent high-frequency
chattering is difficult to eliminate. Model reference adaptive
control (MRAC) technique is mature and easy to be imple-
mented [21], [22]. The adjustment of the adaptive parameters
is related to the error and derivative of the error. The tracking
performance of the speed control system is improved after
introducing the adaptive law, which overcomes the deter-
ministic dependence of the optimal control of the controlled
object and the environment model and is more adaptable. But,
MRAC depends on the fixed parameters and structure of the
system. The system will fall into complex calculations when
the system model is unknown.

Aiming to address the above-mentioned drawbacks,
the intelligent control schemes have been developed in recent
years. Fuzzy logic control (FLC) can get better speed track-
ing effect than other control schemes. The design of fuzzy
logic control, however, lacks systematic methods [23]. The
determination of the membership function and fuzzy rule
mainly depend on the experts’ experience. The impact of the
nonlinear factors on the system performance could not be fun-
damentally weakened [24]. Neural network control (NNC)
can improve the performance by parallel and distributed pro-
cessing learning, which does not require mathematical mod-
els [25]–[29]. In [30] and [31], the back-propagation neural
network (BPNN) is used for dynamic decoupling control
of permanent magnet motor. Ben and Kurosawa [32] use
BPNN-based speed estimator to control the speed of the
motor. The BPNN is also employed in [30]–[32] to estimate
the parameter for the dynamic system. BPNN, however, has
the shortcomings of low learning rate, long convergence
speed and easily trapping to a local minimum. The radial
basis function neural network (RBFNN) is more suitable
than multilayer neural networks due to its localized learning
capability, which can work as the decoder [36]. The function
approximation capability of the RBFNN has been proven and
implemented to the dynamic nonlinear system in [37].

The linearization and decoupling control methods, includ-
ing differential geometry scheme and inverse system scheme,
have been widely used in magnetic bearings systems recently.
The differential geometry is difficult to be implemented prac-
tically due to its abstract and complex process procedure.
Moreover, the inverse system is relative to carry out in prac-
tice. However, the inverse system control approach requires
an accurate mathematical model of the control plant, which
could not be obtained precisely. Thus, the linearization and
decoupling of the PMIWM are difficult to achieve by only
utilizing the inverse system method. It is necessary to realize
the dynamic decoupling control of the complex nonlinear
system by investigating an effective and intelligent control
scheme for the PMIWM control system. The combination

of the inverse system and other intelligent method is sup-
posed to realize the linearization and decoupling control of
the PMIWM.

In this study, a novel radial basis function neural network
inverse (RBFNNI) control scheme is adopted to implement
the control system for the PMIWM. The RBFNNI control
method combines the approximating ability of RBF neural
network with the decoupling characteristic of the inverse
system. The complex nonlinear system of the PMIWM will
be decoupled into a pseudo-linear system using the proposed
RBFNNI control scheme. In addition, as the unknown load
dynamics and parameters variation affect the control perfor-
mance of the PMIWM, the whole pseudo-linear system could
not be completely decoupled. Since the performance of a
feedback control system is largely determined by its closed-
loop poles, robust pole placement is an effective state-space
method for the feedback control design of the multivariable
system. Thus, it is necessary to combine the RBFNNI control
scheme with pole assignment method in the dynamic decou-
pling control of the PMIWM.

The paper is organized as follows. First, in Section 2, the
PMIWM modeling and invertibility analysis are deduced.
In Section 3, the RBFNNI control scheme is described. After
that, the pole assignment method is presented in detail in
Section 4. The HIL test bench is implemented, and the test
results are presented and discussed in Section 5. Section 6 is
devoted to the conclusions of the work.

II. INVERSE SYSTEM MODELING
A. MATHEMATICAL MODEL OF THE PMIWM
The following assumptions are made to simplify the mathe-
matical model of the PMIWM: 1) The air gap magnetic field,
produced by the permanent magnet and the armature reaction,
distributes as a sine wave. The induced electromotive force
generated by the winding flux of the three-phase stator is also
supposed to distribute as a sine wave. 2) The stator magnetic
circuit saturation and iron loss can be ignored due to its large
air gap. 3) There is no damper winding on the rotor and no
damping effect on the permanent magnet.

The mathematical model of the PMIWM in the syn-
chronously rotating d-q reference frame is expressed
as Eq. (1): 

ud = Rsid − Liqω + L
•

id

uq = Rsiq − Lidω − ψf ω + L
•

iq

JM
•
ω =

3
2
p2nψf iq − pnTL

(1)

where id and iq are the d-axis and q-axis current of the stator,
respectively. ud and uq represent voltage component on the
d-axis and q-axis, respectively. ω denotes the electrical angu-
lar velocity of the PMIWM rotor. L indicates the inductance
of the d-axis and q-axis, respectively. Rs shows the resistance
of the stator. φf means the permanent magnet flux linkage of
the rotor. JM denotes the moment inertia of the PMIWM and
TL is the load torque. pn is the number of pole pairs.
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The PMIWM is controlled by the field oriented con-
trol (FOC) method shown in Fig. 1. Double closed-loop con-
trol of current and speed is employed for the PMIWM. The
inner closed loop is an automatic current regulator (ACR) and
the outer closed loop is automatic speed regulator (ASR). The
two inputs of the ACR are the errors of the q-axis and d-axis
current. The two outputs of the ACR are q-axis voltage and
d-axis voltage command. The input of the ASR is the speed
error e. The output of the ASR is a q-axis current command
(motor torque command) i∗q. The inputs of the whole system

are speed reference ω∗ and d-axis current command i∗d . The
outputs of the system are speed feedbackω and d-axis current
feedback id .

FIGURE 1. Block diagram of the PMIWM.

B. ANALYSIS OF THE PMIWM INVERTIBILITY
The dynamic model of the PMIWM, in view of the functional
analysis, could be expressed by a mapping from the inputs to
the outputs [30], [31]. Assume a linear or nonlinear system∑

has a p-dimensional input vector u = (u1, u2, · · · uq),
a q-dimensional output vector y = (y1, y2, · · · yq) and an
initial state vector x(t0) = x0. Let θ : u→ y; be the operator
describing the aforementioned mapping relation.

y(•) = θ [x0, u(•)] or y = θu (2)

The inverse system is to realize the mapping from the
output y to the input u.
Definition 1: Consider a system

∑
expressed by Eq. (2).

Assume
∏

is another system with y(t) as the input and
u(t) as the output. It could be expressed by an operator
θ : y → u, where yd = (yd1, yd2, · · · ydq), ud =
(ud1, ud2, · · · udq). yd could be any vector composed of
smooth functions. If the operator θ satisfies

θθyd = θud = yd (3)

The system
∏

could be defined as an inverse system of
the original system

∑
, which means the original system

∑
is invertible.
Definition 2: Assume

∑
α is another mapping ud = θαϕ

with q-dimensional input and p-dimensional output, where
ϕ = (ϕ1, ϕ2, · · ·ϕq), ud = (ud1, ud2, · · · udp). ϕ is any vector
of a continuous function in a region and satisfies a certain

initial condition at time t0. If θα satisfies:

θθαϕ = θθα(y
(α)
d ) = θud = yd (4)

Then
∏
α is the α-order inverse system of the system

∑
.

The α-order inverse system is easily implemented because
the general nonlinearity is hybridized by a group of nonlinear
mapping and a pure integral block.

The newly established composite system composes of an
α-order inverse system

∏
α , and, cascaded with its original

system
∑

, is called an α-order pseudo-linear system. Based
on Eq. (4), the system

∑∑
α described by the mapping θθα

is a linear system, which is equivalent to the system cascaded
by the α integrator.

The inverse system control approach is a nonlinear con-
trol strategy, a direct feedback-linearization method. As a
multi-input-multi-output (MIMO) system, the α-order
inverse systems are generally realized by the state feedback.
A pseudo-linear system in series is generated by putting
α-order inverse system before the original system.

The inverse system method provides the possibility of
feedback linearization and multivariable decoupling for the
complex nonlinear systems. The pseudo-linear hybrid system
can be obtained by putting the generalized inverse system on
the left side of the original system. Then the linearization
and decoupling of the nonlinear system can be realized.
The dynamic decoupling control of the PMIWM can be
implemented by using the inverse system approach, which is
a direct feedback linearization approach. The accurate math-
ematical model of the controlled object is required for the
realization of decoupling linearization. Therefore, the
reversibility of the mathematical model of the PMIWM
should be discussed firstly [3], [4], [30], [38].

The control purpose is to decouple the speed ω, the
d axis current id , the q axis current iq, and the flux ψf . Thus,
id and ω are the outputs of the PMIWM, whose variables
are y = [y1, y2]T = [id , ω]T . Furthermore, ud and uq are
selected as the control variables, where u = [u1, u2]T =
[ud , uq]T , while id , iq and ω are state variables, where
x = [x1, x2, x3]T = [id , iq, ω]T .

The differential of the output is written as

•
y1 =

•
x1 =

u1 − Rsx1 + Lx2x3
L

•
y2 =

•
x3 =

3p2nψf x2 − 2pnTL
2JM

••
y2 =

••
x3 =

3
2
p2nψf
JM

(
u2 − Rsx2 + ψf x3 − Lx1x3

)
L

(5)

According to the theory of the inverse system, the determ
of the Jacob matrix A(x, u) of Eq. (5) could be expressed as

Det [A(x, u)] =
3

2JML2
p2nψf (6)

The flux ψf of the PMWIM could not be zero, such that
A(x, u) is a nonsingular matrix. The relative order of the sys-

tem is α = (α1, α2) = (1, 2). As a result of
2∑
i=1
αi = 3 ≤ n,
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n is the number of the state variable, which satisfies the
sufficient conditions of the existence of the inverse system.

III. RBFNNI-BASED DECOUPLING SCHEME OF PMIWM
The PMIWM, however, still cannot be completely decoupled
even if its inverse system has been expressed in the above
section. Furthermore, the parameter perturbations, load dis-
turbance and unmodeled dynamics may influence the perfor-
mance of the motor. Therefore, the RBFNNI, in this section,
is introduced to address these problems.

A. RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)
Recently, RBFNN has attracted more consideration due to its
simple structure and perfect generalization ability, which has
been utilized in practical applications. RBFNN can approx-
imate any nonlinear function with arbitrary accuracy. The
stability of the system and the convergence of the weight
coefficient can be guaranteed by the adaptation law [37].

RBF neural network shown in Fig. 2 has three layers: the
input layer, the hidden layer and the output layer. The hidden
layer consists of several hidden nodes, which contain a center
c vector that is a parameter vector of the same dimension as
the input vector x is defined by

∥∥x(t)− cj(t)∥∥.

FIGURE 2. The topological structure of the RBFNN.

The output of the hidden layer can be obtained by a non-
linear activation function hj(t) expressed as follows:

hj(t) = exp

(
−

∥∥x(t)− cj(t)∥∥2
2b2j

)
, j = 1, . . . ,m (7)

Where ‖•‖ is the Euclidean norm. x(t) is the i-th input.
cj(t) is the middle of the k-th node in the hidden layer. bj is a
positive scalar. m is the hidden nodes number.
As a linear weighted combination, the output layer is

expressed as:

yi(t) =
m∑
j=1

wihj(t)+ε =
m∑
j=1

wi exp

(
−

∥∥x(t)−cj(t)∥∥2
2b2j

)
+ε,

i = 1, . . . , n (8)

wherew is the output layer weight. n is the number of outputs.
y is the network output. m is the total number of the nodes in
the hidden layer. ε is the error between the ideal RBFNN,
which is approximated by a real RBFNN y∧i (t) with weight
update laws to learn the ideal parameters, ε ≤ εN .

RBFNN is adopted to the control system of the PMIWM.
It is a fully connected feedback network where the output
layer neurons have linear characteristics, but the hidden layer
neurons use a radial basis function as the activation function.
Usually, the RBFNN produces local mapping in contrast with
the global mapping of a BP neural network. One advantage of
the RBFNN is that its training is much faster and easier than
the BP neural network.

B. RBFNN-BASED ADAPTIVE CONTROL
The RBFNN is established by using structure learning and
parameter learning. The similarity between the newly gen-
erated membership function and the existing ones must be
checked in the process of the structure learning. The param-
eter learning is used to adjust the connected weights in the
consequent part, and the feedback weights and the parameters
of the membership functions are employed to minimize a
given energy function by the RBF algorithm [39]–[42].

The diagram of the RBFNN-based adaptive control scheme
is shown in Fig. 3.

FIGURE 3. The diagram of the RBFNN-based adaptive control scheme.

Suppose the output of the RBFNN is described as

∧
r (x) =

∧

wT m(x) (9)

Where
∧
w is the estimated parameter of w. m(x) is the

Gaussian function.
The stability of the RBFNN should be analyzed.
Let

Z =
[

0 1
−ip −id

]
, M =

[
0
1

]
(10)

The estimation error can be defined as

ω =
∧
r (x)− r(x) (11)

The Lyapunov function can be designed as

V =
1
2
ETQE +

1
2δ

(
∧
w−w∗)T (

∧
w−w∗) (12)
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Where E is the error function, E = (e,
•
e)T . δ is a positive

constant. w∗ is the optimal weight. Q is a symmetric matrix,
which satisfies the Lyapunov equation: ZTQ+QZ = −P and
P ≥ 0.
Then, the derivative V can be expressed as

•

V = −
1
2
ETPE + ETQMω (13)

Since − 1
2E

TPE ≤ 0,
•

V ≤ 0 will be obtained if the error
ω is designed to be less than 10−4.

C. RBFNNI SYSTEM
To take the advantages of the RBFNN control method and
the inverse control approach, two schemes are combined to
establish a novel decoupling control system. The RBFNN is
employed to realize the reversibility of the PMIWM control
system. By cascading some certain integrators before the
RBFNN block, the novel NNI control system is established
with the ability of generalization and will improve the robust-
ness and fault-tolerant performance. The proposed NNI is
located on the left side of the PMIWM shown in Fig. 4, which
leads to a pseudo-linear system for the system decoupling.
The NNI control approach can improve the robustness and
reject the disturbance.

FIGURE 4. The pseudo-linear system.

The RBFNN is chosen as 2-4-2. The parameters of the
RBFNN, including the learning rate and momentum coeffi-
cient can be optimized by trail-and-error. Three sets of data,
selected from the selected drive cycle, are shown in Table 1 in
the repaid changing area. The data are employed as the
training sample of RBFNN. The input samples go into the
network work periodically during the whole training process.
The output error does not enter into the permitted range until
the convergence of the neural network. The learning rate is set
at 0.06 during the training process. The RBFNN is supposed
to meet the requirement when the training error is less than
0.02 after 1000 epochs training. Therefore, the RBFNN is
established successfully.

IV. ROBUST POLE PLACEMENT FOR PMIWM CONTROL
A. PRELIMINARIES
Pole placement is an effective state-space method for feed-
back control system design. The robust pole placement (RPP)
problem for a linear system is to find the feedback gains. The
state-feedback RPP problem is to find a state feedback matrix

TABLE 1. The training samples of RBFNN.

such that the eigenvalues of the linear closed-loop system
matrix, associated with the closed-loop system are the given
poles that closed under complex conjugate [43], [44].

Considering a control system expressed as Eq. (14) as
follows:

•
x (t) = Ax (t)+ Bu (t) , x (0) = x0 (14)

where x(t)(n× 1) is the state vector, u(t) is the scalar control
variable, A(n×n) and B(n×1) are system matrix and control
gain vector, respectively. The characteristic polynomial of
matrix A to the state feedback RPP is given by

det [sI − A] = sn + an−1sn−1 + • • • + a1s+ a0 = 0

(15)

Where a = [a0, a1, • • •, an−1] are the coefficients of the
characteristic polynomial and I is the (n× n) identity matrix.
The objective is to place the desired poles for the closed-loop
system. The desired characteristic behavior for the states can
be enforced by the constant state-feedback control.

The closed-loop characteristic polynomial solution to the
SFRPP can be obtained by Eq. (16)

det
[
sI − (I + BK )−1 A

]
= 0 (16)

After the solution of the state feedback RPP, the departure
is employed to measure the robustness from the normality of
•
x (t), which can be expressed as Eq. (17)

1u
[
•
x (t)

]
=

√√√√∥∥∥•x (t)∥∥∥2
u
−

m∑
i=1

|σi|
2 (17)

Where σi, i = 1, . . . ,m, are the poles to be placed.

B. RPP FOR LINEAR SYSTEM
The speed and flux can be approximated as a two input
and two output linear system with minimum phase [45].
The input U (k) = [idi(k), ωi(k)]T , and the output Y (k) =
[ido(k), ωo(k)]T .
The decoupling controller is designed as shown in Fig. 5.

The output feedback matrix H (z−1) and the pre-decoupling
compensation matrix L(z−1) could be realized, which makes
sure the closed-loop transfer function T (z−1) is a diagonal
matrix. The single-loop controller (SLC) C(z−1) is designed
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FIGURE 5. The diagram of decoupling control system.

TABLE 2. The parameters of the PMIWM.

according to the dynamic and static performance require-
ments of each channel.

The closed-loop transfer function of the decoupling is
written as

O(z−1) =
[
M (z−1)+ N (z−1)H (z−1)

]−1
N (z−1)L(z−1)

(18)

Where M (z−1) and N (z−1) are the matrix polynomial deter-
mined by the system parameters.

Assuming the supposed closed-loop transfer function after
pole placement is described as

Oe(z−1) = M−1e (z−1)N−1e (z−1) (19)

Where,M−1e andN−1e are diagonal constantmatrix, respec-
tively.
To ensureO(z−1) = Oe(z−1), theM−1e andN−1e are written

as {
Me(z−1) = M (z−1)+M (z−1)H (z−1)
Ne(z−1) = N (z−1)L(z−1)

(20)

Polynomial division calculation, however, will be involved
in the solution of L(z−1) andH (z−1), which could be obtained
by Eq. (20). A stable filter 1

f (z−1)
is employed into each

channel of F(z−1) to ease the finite order solution process.
f
(
z−1

)
= f0 + f1z−1 + f2z2 + · · · and f0 6= 0.

If f (z−1) = n0 + n1z−1 + n2z−2 + · · · , the finite order
solutions of L(z−1) and H (z−1) are expressed as{

H (z−1) = zd (adjN (z−1))
[
Me(z−1)−M (z−1)

]
L(z−1) = zd (adjN (z−1))Ne(z−1)

(21)

The two-input and two-output linear system could be
decoupled into two independent subsystems by the above-
mentioned L(z−1), H (z−1) and f (z−1).

FIGURE 6. The dSPACE-based HIL test bench.

FIGURE 7. Speed tracking performance with sine wave reference.
(a) NNI control. (b) Proposed control scheme.

V. EXPERIMENTAL VALIDATION
To validate the effectiveness and the performance of the pro-
posed RBFNNI-based robust pole placement control scheme
of the PMIWM, hardware-in-the-loop (HIL) tests are carried
out below.
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FIGURE 8. Speed tracking performance with square wave reference.
(a) NNI control. (b) Proposed control scheme.

A. EXPERIMENTAL SETUP
A dSPACE-based HIL test bench is built, which consists of a
user PC, a dSPACE hardware, a control box, and a control
console. The dSPACE real-time test bench is used as the
control module, the PWMwaves used to control the PMIWM
are generated by the control strategies implemented to the
motor control system. The Encoder board is used to convert
the speed signal of the PMIWM installed inside the wheel
hub. The parameters of the PMIWM is illustrated in Table.2.
The dSPACE-based HIL test bench is shown in Fig. 6.

B. EXPERIMENT 1: TRACKING PERFORMANCE
To test the tracking performance of the PMIWM control
system, comparative experiments with different speed refer-
ence and control schemes were carried out on the test bench
respectively. The sine ware, square wave and constant value
are selected as the reference speed.

FIGURE 9. Speed tracking performance with constant speed reference.
(a) Measurement speed. (b) Close-up at 0.02s. (c) Steady-state
close-up at 0.1s.

Fig. 7 shows the speed trajectory with sine wave reference.
Fig. 7(a) demonstrates that the feedback speed cannot com-
pletely follow the reference under RBFNNI control scheme,
especially at the startup experiment from 0s to 2.2s. Com-
pared with Fig. 7(a), the feedback speed under the proposed
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FIGURE 10. Measurement torque.

RBFNNI-RPP control scheme follows the reference verywell
except for the beginning testing from 0s to 2.2s. Comparison
results obviously illustrate that although there are some large
fluctuations in the feedback speed under the proposed control
scheme shown in Fig. 7(b) from 0s to 2.2s, which is caused
by the moment of inertia of the PMIWM. Fig. 7 shows the
control precision is effectively improved with the proposed
control scheme.

The responses with square wave reference are shown
in Fig. 8, which demonstrates that the actual speed under
the RBFNNI and the proposed control scheme, respectively.
Fig. 7(a) shows the measurement speed cannot completely
agree with its reference at the rapidly changing spots dur-
ing the operation. The response time is approximately 4.8s
in Fig. 8(a) and 1.6s in Fig. 8(b), which demonstrates the
proposed control scheme can compute the solutions rapidly
and greatly shorten the delay. In addition, there is also
high noise level in the feedback speed. Compared with the
RBFNNI control scheme, From Fig. 8, it is obviously found
that in Fig. 8 the tracking error with proposed control scheme
is reduced by 90%, as well as the noise level is decreased by
80% which illustrates the steady-state peak displacement of
the PMIWM.

In this experiment, constant speed is also employed as the
reference for analyzing the speed tracking ability of the pro-
posed control scheme. Fig. 9 shows the measurement speed
with the RBFNNI control approach has a smaller overshoot
and fluctuation than the proposed control method. However,
the RBFNNI control scheme performs well in terms of the
response time than the proposed control method.

C. EXPERIMENT 2: DISTURBANCE REJECTING ABILITY
In this section, experiments are carried out to verify the
performance of disturbance rejecting ability with a sudden
load impact on the control system. To verify the load dis-
turbance rejection, the PMIWM is started without any load,
and 4Nm is applied suddenly at 0.07s which lasts for 0.07s.

FIGURE 11. Disturbance rejecting ability (a) Measurement speed with the
NNI control scheme. (b) Close-up at 0.07s. (c) Close-up at 0.14s.

After that, the torque implemented on the motor is removed.
Fig. 10 shows the curve of the load disturbance employed
in the experiment. The experiment results of disturbance
rejecting ability with the RBFNNI and the proposed control
scheme are shown in Fig. 11 and Fig. 12.

VOLUME 6, 2018 1851



Y. Li et al.: Nonlinear Decoupling Control Approach Using RBFNNI-Based RPP

FIGURE 12. Disturbance rejecting ability (a) Measurement speed with the
proposed control scheme. (b) Close-up at 0.07s. (c) Close-up at 0.14s.

It can be obviously seen from Fig. 11(a) that the output
speed cannot completely avoid the sudden torque impact to
the control system with the RFBNNI control approach. The
amplified speed trajectory at t = 0.07s and t = 0.14s
are shown in Fig. 11(b) and Fig. 11(c). The speed response
experiences a large overshoot of 3.04% at 0.07s and 2.07% at
0.14s, respectively. The settling time as shown in Fig. 11(b)
and Fig. 11(c) is 0.013s and 0.008s, respectively.

Fig. 12(a) shows that the speed fluctuations under the
proposed control are much smaller than those in Fig. 11(a)
at t = 0.07s and t = 0.14s when the loads are applied.
As is seen in Fig. 12(b) and Fig. 12(c), the close-ups illustrate
that the speed response has a large overshoot of 1.02% at
0.07s and 1.09% at 0.14s, respectively. It could be noted that
in Fig. 12(b) and Fig. 12(c) the settling time is 0.009s and
0.008s, respectively.

Compared with the RBFNNI control approach, it can be
obviously seen that the proposed RBFNNI-based RPP control
scheme has prominent advantages in trajectory tracking and
disturbance rejecting ability.

VI. CONCLUSION
To improve the control properties of high-accuracy, fast
response and strong robustness for the PMIWM, a novel
dynamic decoupling approach is developed based on the
RBFNNI method for the synthesis of the pseudo-linear
system via RPP in this paper. The experimental results obvi-
ously demonstrate the following: Firstly, the proposed con-
trol scheme can successfully realize the decoupling control
of the PMIWM, which can avoid the shortcomings of the
single RBFNNI control scheme. Secondly, by introducing the
RPP method for the pseudo-linear system, the decoupling
precision can be effectively improved, as well as the superi-
ority of the elimination of the unmodeled dynamics. Thirdly,
the proposed control scheme can theoretically and experi-
mentally guarantee to find the global minimum regardless of
the initial conditions, and provides a fast and computationally
efficient solution. Moreover, inspired by the concept of the
machine learning, further investigations will be focused on
the RBFNN control, like layer number and neurons in each
layer remain to be discussed in the future.
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