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ABSTRACT Battery technology is the bottleneck of the electric vehicles (EVs). It is important, both in
theory and practical application, to do research on the modeling and state estimation of batteries, which
is essential to optimizing energy management, extending the life cycle, reducing cost, and safeguarding
the safe application of batteries in EVs. However, the batteries, with strong time-variables and nonlinear
characteristics, are further influenced by such random factors such as driving loads, operational conditions,
in the application of EVs. The real-time, accurate estimation of their state is challenging. The classification
of the estimation methodologies for estimating state-of-charge (SoC) of battery focusing with the estimation
method/algorithm, advantages, drawbacks, and estimation error are systematically and separately discussed.
Especially for the battery packs existing of the inevitable inconsistency in cell capacity, resistance and
voltage, the advanced characterizing monomer selection, and bias correction-based method has been
described and discussed. The review also presents the key feedback factors that are indispensable for accurate
estimation of battery SoC, it will be helpful for ensuring the SoC estimation accuracy. It will be very helpful
for choosing an appropriate method to develop a reliable and safe battery management system and energy
management strategy of the EVs. Finally, the paper also highlights a number of key factors and challenges,
and presents the possible recommendations for the development of next generation of smart SoC estimation
and battery management systems for electric vehicles and battery energy storage system.

INDEX TERMS Batteries, data-driven estimation, electric vehicles, model based estimation, multi-scale,
state of charge.

I. INTRODUCTION
Battery technology is a major technical bottleneck with elec-
tric vehicles (EVs). To develop a battery system that can
satisfy the requirements of EVs, many countries, such as
America, Japan and Germany, have launched their own spe-
cial projects to improve the performance of batteries [1], [2].
Through the Tenth Five-Year Plan, Eleventh Five-Year Plan,
and Twelfth Five-Year Plan, performance of battery cells
has achieved significant improvement. The Ni−MH battery
and lithium-ion battery have been widely used in a variety
of EVs.

To ensure the safe application, improve the driving range,
optimize the power management strategy, prolong the service
life and decrease the cost of the batteries, efficient manage-
ment for batteries is very necessary [3]–[10]. A general block
diagram of a battery management system (BMS) is shown
in Fig.1.

FIGURE 1. General function of a battery management system.

A BMS consists of many kinds of sensors, actuators, con-
trollers and signal line. The basic task of a BMS is to ensure
safe and optimal use of the energy inside the battery and to
provide accurate battery state information for the vehicular
energy management system. What’s more, it should have the
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capability to give appropriate interventions for the battery
system if it is operated in an abnormal condition. This is
achieved by monitoring and controlling the charging and
discharging process of batteries. The main task of the sample
circuit is to measure the current, voltage and temperature
according to the gating signal obtained from the control
circuit. The basic task of the control circuit is to estimate
the state of charge (SoC), state of health (SoH), state of
available power capability (SoP) and state of life (SoL) of
batteries through advanced algorithms with measurements
of battery current, voltage and temperature converted from
the analog signal. And then this information will be trans-
mitted to the vehicular controller and provide key deci-
sion factors for vehicular energy management and power
distribution [11]–[13].

The SoC of a battery is defined as the percentage of
the remaining capacity in its maximum available capacity.
Battery SoC does the similar operation of the fuel gauge in
a gasoline-driven vehicle which indicates how much energy
is left inside a battery to power an EVs. Accurate estimation
of battery SoC not only helps to provide information about
the real-time remaining capacity and energy of the battery, but
also gives assurance of a reliable and safe vehicular operation.
However, since batteries are complex electrochemical devices
with a distinct nonlinear behavior depending on various inter-
nal and external conditions, their accurate SoC estimation is
a challenging task. On the other hand, because the voltage
and energy of one cell are low, ten to thousands of cells
have to be connected in corresponding series and parallel
to satisfy the requirements of EVs. Considering the incon-
sistent cell characteristics of the performance and operating
conditions inside every battery pack, SoC estimations for
solving their inner inhabited states remain very challenging.
Furthermore, the performance of the battery is highly affected
by aging, temperature variation, charge- discharge cycles
which make the task of estimating an accurate SoC very
challenging [11]–[13].

In considering the indispensable function of battery SoC
in battery management, lots of methods have been proposed
for determining the SoC accurately. Early from the year
of 1960s, the academics, researchers, scientists have per-
formed an extensive research to carry out the battery SoC
estimation [14], [15]. However, very few literatures have been
foundwhich provide a detailed description of the key difficul-
ties to estimate battery SoC although more than half a century
of efforts have been paid, the accurate estimation problem
of battery SoC has not been solved efficiently [16]–[18].
Reference [2], [10], [16], [17] have presented a detailed SOC
estimation in terms of overall research progress, future devel-
opment trends and the origin of SOC estimation. However,
there is no systematic exposition of the SOC calculation
process and algorithm selection and how to deal with the
uncertain environment conditions and grouping of battery
system in the electric vehicles. Thus, this paper hopes to
fill up the gap by exploring different existing methodologies
and addressing the key issues and challenges for the SoC

estimation of battery pack, not only focus on the battery cells.
It will be very helpful for the researcher, scientist and vehicle
manufacturer to choose an appropriate method for battery
management and energy management.

This paper presents a classification for the existing SoC
estimationmethods. It systematically reviews the battery SoC
estimation methods in EV applications with the completely
operation process for each type. In order to provide detailed
information and knowledge to the vehicle manufacturer and
BMS developers, the benefits and drawbacks of the exist-
ing SoC estimation methods have been briefly elaborated in
Section 2. The issues and challenges of implementing various
SoCmethods for battery pack are illustrated in Section 3. The
conclusion and recommendation are presented in Section 4.

II. SoC ESTIMATION METHODS
Asmentioned in the introduction, the determination of battery
SoC is always an essential part of a BMS. The accurate and
reliable estimation of battery SoC can provide a necessary
assessment factor for vehicle energy management and opti-
mal design of the control system. Therefore, a larger number
of methods have been proposed for estimating battery SoC
in real-time. For comparing these methods in more detail,
we have classified them into four groups and the classification
is illustrated in Fig.2.

A. LOOKING-UP TABLE BASED METHODS
SoC of batteries has a direct mapping relationship with their
external (static) characteristic parameters, such as the open
circuit voltage (OCV), impedance et al. Thus, by measuring
their parameters and then using themethod of the looking−up
table which was built with the relationships between SoC and
one or more parameters, we can infer the SoC [19]–[22].

Let us take batteryOCV as an example. Fig.3 shows battery
OCV versus SoC for a lithium−ion polymer battery (LiPB).
It indicates that the OCV of a LiPB cell shows a mono-

tonically increasing trend with its SoC. Thus, if we know the
OCV, we can infer battery SoC through looking-up the table
between OCV and SoC. This relationship is exploited for the
estimation of SoC formost batterymanagement technologies.
It can be efficiently used for calibrating the erroneous SoC.
However, it is hard to measure the precise OCV in real-time
because the measurement of battery OCV requires cutting off
the power and having the battery rest for an extended period.
On the other hand, the measurement of battery impedance
relies on the measurement device, thus, it cannot be imple-
mented for running EVs.

This type of SoC estimation method is more suitable for
being applied to the laboratory environment.

B. AMPERE-HOUR INTEGRAL METHOD
When the maximum available capacity of a battery is known
and its current can be measured precisely, the ampere-hour
integral method can permit the accurate calculation of the
variation of the SoC. If we know the initial SoC, we can
obtain the accurate SoC. The calculation equation for the
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FIGURE 2. Classification of the SoC estimation methods.

FIGURE 3. OCV curve of a LiPB cell.

ampere-hour integral method is presented in Eq. (1).

zk = z0 −
∫ tk

t0
ηIL(t)dt

/
Q (1)

where z denotes battery SoC, zk and z0 denote the SoC
at discrete-time tk and t0 respectively. t0 denotes the
initial value, tk = t0 + k × 1t , 1t denotes the

sampling interval. η denotes the coulomb efficiency, IL(t)
denotes the load current of battery, Q denotes the maximum
available capacity. It should be emphasized that Q has been
defined as the nominal/rates capacity in some studies. Since
battery capacity is affected by the operating conditions and
aging status, it should not be constant in SoC calculation.
Thus, we use the maximum available capacity.

This method works very accurately for batteries because
there are no significant side effects during normal operation.
However, for the estimation of the SoC by this method, there
are three drawbacks that need to be dealt with first. First,
the initial SoC must be known. Second, the measurement
errors of battery current from random disturbances, such as
noise and temperature drift, are inevitable. Lastly, the Q is
required to be recalibrated as the variation of the operating
conditions and aging levels of the battery. The combination
of the above-mentioned factors would further decrease the
reliability of this method. Therefore, the ampere-hour integral
method is more apt to work with other supporting techniques,
for example, model-based methods.

C. MODEL-BASED ESTIMATION METHODS
With the development of battery technologies, a large number
of battery models have been put forward for the purpose
of vehicle power management and BMS [2]. The most
commonly used models can be roughly summarized as
three types: electrochemical model (EM), equivalent circuit
model (ECM) and electrochemical impedance model (EIM).
In the model-based SoC estimation methods, battery models
are expressed as state equations. A lot of nonlinear state
estimation algorithms and adaptive filters are employed to
estimate or infer the internal state of batteries. The typical
algorithms are Kalman filter [23]–[25], Luenberger
observe [26], PI (proportion integration) observer [27], H∞
observer [28], sliding−mode observer [29], [30], et al. The
Kalman filter has become a general technique for nonlinear
estimation and machine learning applications.

FIGURE 4. A general flowchart of the model-based SoC estimation
method.

Fig.4 shows a general flowchart of model-based SoC
estimation methods. Actually, these methods are a type of
fusion method. It combines the ampere-hour integral method
and battery OCV parameters table based looking-up method
through state equation of batteries. It is noted that the SoC of
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batteries acts as a bridge between the ampere-hour integral
method and the looking-up table based methods. An inac-
curate SoC estimate calculated by the ampere-hour inte-
gral method brings an erroneous battery OCV, and then it
increases the prediction error of the terminal voltage. In this
way, theminimum prediction error of battery terminal voltage
can be achieved only when the best SoC has been obtained.
In other words, the OCV can be used to correct the estimation
error.

1) ELECTROCHEMICAL MODEL (EM)
The EM, as proposed by Prof. Newman, has been employed
to lots of applications with the development of the battery
technologies. In general, the EM describes the mass, energy,
and momentum transport of each specie for each phase and
component of a battery cell. More specifically, the electro-
chemical model has capability to describe the macroscopic
quantities such as cell current and voltage and local distribu-
tion on a microscopic scale for cell concentration, potential,
current, and temperature [31], [32]. Its strengths are the better
prediction of the inward spatial and temporal states of the
battery, such as the concentration of the solid/electrolyte
phase and the current/potential distribution of the two elec-
trodes. The widely used electrochemical models for battery
SoC estimation are the one-dimension (1D) model [32]–[34],
the pseudo two-dimensional (P2D) model [35], the quasi-
three dimensional full order physical model [36] and the first
principle model [31], among which the simplification of the
P2D model, single particle model [31], [37]–[44] is most
popular.

Chao-Yang Wang proposed a simplification model
of 1D electrochemical model though the transfer function
method [33], [34]. The order and complexity of the original
1D model have been greatly reduced. Then an extended
Kalman filter (EKF) has been employed to build a model-
based SoC estimator with this simplified model [45].
To improve the prediction performance of the EMwith regard
to voltage, degradation and temperature behaviors of battery,
Doyle et al. proposed a P2D electrochemical model on the
basis of its physical process [46], [47]. A common disadvan-
tage of the P2D model is the long simulation time due to the
large number of nonlinear equations, thus thismodel becomes
computationally inefficient for simulating conditions such as
cycling behavior and series/parallel configuration of stacked
cells in battery packs. To solve the problem of low compu-
tational efficiency of the P2D model which is unsuitable for
BMS application, the single particle model has been proposed
and the schematic of the model is presented in Fig.5.

The single particle model ignores the detailed distribution
of local concentration and potential in the solution phase
and instead accounts for a lumped solution resistance term.
Furthermore, the local reaction currents across the porous
electrode are assumed to be uniform, which allows treating
a porous electrode as a large number of single particles,
all of which are subjected to the same conditions. These
assumptions are reasonable for low applied current densities,

FIGURE 5. Schematic of the single particle model [41].

thin electrodes, and highly conductive electrodes [48]. Based
on the single particle model, the EKF and unscented Kalman
filter (UKF) are respectively used to build the SoC estimator
by Santhanagopalan and White [43], [49].

Estimation methods based on the EM can reflect the effect
of kinetic process and charge transfer process in the battery.
The estimations can not only satisfy the required accuracy
of the BMS, but also provide some rules for the optimal
design of the battery. However, though several simplifications
have been made, it is difficult to identify all parameters.
Additionally, it requires high professional background, thus
it hardly can be applied to the BMS directly.

2) EQUIVALENT CIRCUIT MODEL (ECM)
The ECM is widely applied to BMS and vehicular energy
management system [50]–[77]. It uses electrical circuit com-
ponents, such as resistors, capacitors, and voltage source to
build circuit networks to describe the terminal voltage of
batteries. It can describe various dynamic behaviors of the
battery accurately. It has good applicability and expansibility,
and can be used to develop the model-based SoC estimation
approach precisely. Fig.6 presents an ECM with n RC net-
works, named the NRC model hereafter. The model contains
three parts: (i) Voltage source: it uses OCV (open circuit
voltage) to denote battery voltage source. (ii) Ohmic voltage
cross the equivalent ohmic resistance Ri, which represents the
electrical resistance from various battery components or with
the accumulation and dissipation of charge in the electrical
double layer. (iii) Dynamic voltage behavior and the mass
transport effects: the elements of RD and CD are used to
describe the diffusion resistance and diffusion capacitance.
CDi denotes the ith equivalent diffusion capacitance and RDi
denotes the ith equivalent diffusion resistance, UDi is the
voltage across CDi, i = 1, 2, 3, 4, . . . n [60]. In Fig. 6, iL
denotes battery load current, Ut denotes battery terminal
voltage. Electrical behavior of the NRC battery model can
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FIGURE 6. Schematic diagram of the NRC ECM [60].

be expressed by Eq. (2).
U̇Di = −

1
RDiCDi

UDi +
1
CDi

IL

Ut = Uoc − ILRi −
n∑
i=1

UDi

(2)

It is noted that the symbol of battery current is positive
during the discharging process and the symbol is negative for
charging process.

Following are three typical realizations of the model-based
SoC estimation with the ECM.

a: OCV RECURSIVE ESTIMATION
Since battery OCV shows a monotonically increasing trend
with SoC, the SoC can be predicted in real-time through
the online identified OCV. The commonly used algo-
rithms for battery system identification are recursive least
squares (RLS) and the Kalman filter. The RLS method gets
the optimal matching results for battery parameters by min-
imizing the sum of squares of the terminal voltage predic-
tion error based on the ARX (auto regressive exogenous)
model [61]. The Kalman filter achieves the accurate real-
time parameters by minimizing the root mean square error
between the desired output value and actual output value
based on its state equation.

Based on the presented NRC equivalent circuit model,
References [60]–[62] have proposed a RLS-based online
parameter identification method with an incremental anal-
ysis based ARX model, and the trade-offs between model
complexity and prediction precision have been systemati-
cally analyzed and evaluated. It can provide a reference for
selecting the structure of battery model. With the online
identified battery OCV, the authors have implemented the
SoC estimation with the looking-up table based method.
The results indicate that the SoC estimation errors are less
than 5%. What’s more, when the order of the NRC model
is more than three, it is hard to obtain all parameters of the
ARXmodel with the RLS based methods. To overcome these
problems, an adaptive extended Kalman filter (AEKF) has
been employed to develop an online parameter identification
model and a recursive SoC estimation method. Results sug-
gest that the SoC estimation with the mapping relationship

FIGURE 7. OCV curves and SoC variation per mV OCV: (a) OCV maps;
(b) SoC variation per mV OCV; (c) OCV map; (d) SoC variation per mV
voltage [64].

also can ensure an acceptable accuracy for the LiMn2O4
lithium battery [63].

It is worth noting that the mapping relationship between
battery SoC and OCV is very sensitive to the material char-
acteristic and aging status of battery cell. Fig.7 shows the
OCVs of the four types of lithium-ion battery cells as well
as corresponding SoC variation per mV voltage. The first
one is LiMn2O4 cell which uses carbon (C) as its nega-
tive electrode and lithium manganese oxide (LMO) as its
positive electrode (abbreviated as C/LMO). The second one
is Li4Ti5O12 lithium-ion cell which uses lithium titanate
(Li4Ti5O12) as its negative electrode and Li[NiCoMn]O2
as its positive electrode (abbreviated as LTO/NCM). The
third one is Li[NiCoMn]O2 lithium-ion cell (abbreviated as
C/NCM) and the last one is lithium iron phosphate LiFePO4
cell (abbreviated as C/LFP).

Fig.7 shows that the OCV behaviors of the four kinds
of lithium-ion battery cells are different, the slope of OCV
curve of C/NCM is relatively steep and C/LFP is very flat.
Thus, the corresponding SoC rates of change per mV OCV
are very different. Considering that the voltage measurement
inaccuracy of 5 mV, the interpolation error of battery SoC for
C/LFP lithium-ion battery cell will be more than 10% while
the errors for the other three kinds of lithium-ion batteries are
less than 2.5%. On the other hand, the uncertain operating
temperatures and aging levels also affect the mapping rela-
tionships between battery SoC and OCV, and maybe reduce
the inference accuracy. Therefore, the OCV recursive estima-
tion based SoC prediction method is not sufficiently accurate
for main kinds of lithium-ion batteries.

b: SoC RECURSIVE ESTIMATION
Let us take the EKF for an example. The EKF remains the
most preferred state estimator for solving both unconstrained
and constrained state estimation problems in the field of
battery modeling and state estimation. In state estimation,
the EKF is the standard method of choice to achieve a recur-
sive (approximate) maximum likelihood estimation of the

1836 VOLUME 6, 2018



R. Xiong et al.: Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles

FIGURE 8. A general diagram of the time-discrete EKF.

inhabited state. It provides optimal state estimation with min-
imum mean square error based on the information obtained
from the system model and assumptions on uncertainties
(noise) [65].

In 2004, G. L. Plett applied EKF to identify the
parameters of the ECM and estimate the SoC of the
batteries [23]–[25]. Taking the simple model as an example,
the detailed implement processes of the SoC estimation with
the EKF are described as follows. The model equation can be
expressed by Eq.(3).{

zk+1 = zk − ηiIL,k1t/Q
gk = OCV(zk )− RIL,k

(3)

where OCV(z) denotes the function for battery OCV, Q
denotes battery nominal capacity of battery, R denotes ohmic
resistance of battery. Then the Jacobi matrices of the EKF can
be provided by: {

Ak−1 = 1
Ck = ∂OCV(zk )/∂zk

(4)

A general flow diagram of the EKF is presented in Fig.8,
where L denotes Kalman gain matrix.

Corrections for the residual error of the model-based esti-
mation process presented in Fig.4 are executed by updat-
ing the state estimation with the measurements in the EKF
algorithm. Since the characteristics of state and measurement
noise are considered in EKF, these SoC estimation methods
achieve strong noise immunity. It is worth noting that battery
OCV can affect the state estimation through the Kalman gain
matrix since the Kalman gain matrix K is updated by the
Jacobi matrix C, which is updated by the OCV of battery from
Eq.(4). Thus, the relationship between battery OCV and SoC
plays a significant role in EKF based SoC estimation.

In Fig. 8, xk is the vector of dynamic states, uk is the
control input, wk represents process noise which is assumed
to be discrete-time Gaussian zero-mean white noise with
covariance of

∑
x,k. It should be noted that x̂

−

k and x̂+k both are
estimates of the same quantity; and both are estimates of xk .
However, x̂−k is the estimate of xk before the measurement
yk is taken into account, which is called priori estimate,

FIGURE 9. Implement flowchart of multi−scale EKF.

and x̂+k is the estimate of after the measurement yk is taken
into account, which is called posterior estimate.
However, the estimation accuracy of battery SoC with the

above recursive estimation methods relies on the prediction
accuracy of the model. As a result, an inaccurate or inap-
propriate battery model will lead to unrealistic estimates.
Ref. [74] provided a detailed analysis of the SoC estimation
results considering the uncertain model parameters of the
battery. It shows that the dual/joint estimation for battery
parameters and states is an effective solution.

c: JOINT/DUAL ESTIMATIONS
Considering that the battery parameters tend to change slowly
over time while system states are prone to rapid fluctuation
over time, it is not an optimal choice to use the same time
scale for battery parameter and state estimation; on the con-
trary, the approach with the same scale barely can achieve
accurate and reliable system estimates, and largely increases
the computational cost of the control system. On the other
hand, accurate and real-time estimation of battery capacity is
an indispensable prerequisite for battery SoC estimation. The
SoC estimation algorithm with the known battery capacity
is difficult to apply to the BMS. So the multi-scale EKF is
developed which uses the macro scale to estimate the battery
parameters and uses the micro scale to estimate the system
state, and the parameters of battery include model parameters
and capacity, the state is the SoC. The implement flowchart
of the proposed multi-scale EKF is presented in Fig.9.

Verification results of the multi-scale EKF show that max-
imum estimation errors of the capacity and SoC of batteries
are less than 2% against uncertainty operating conditions and
degradation status [77]. Where the macro-scale’’ and micro-
scale mean the estimation under big and small calculated
time intervals. Based on the above analysis, the joint/dual
estimationmethods for battery parameters and states aremore
suitable for EVs application.

3) ELECTROCHEMICAL IMPEDANCE MODEL (EIM)
The electrochemical impedance spectroscopy (EIS) provides
a unique tool for the analysis of the dynamic behavior of
batteries. Compared with step-response methods, which are
widely used for building ECMs, harmonic small-signal exci-
tation allows for direct measurement of system response in
any operating point. What’s more, the parameters in EIMs
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FIGURE 10. Equivalent circuit of the impedance model.

have a more substantial meaning than those presented in
ECMs. In addition to the resistance, capacitor and voltage
sources, the porous electrode theory based EIMs further com-
priseWarburg element, constant phase element (CPE), ZARC
element et al. Based on the analysis with the measurements
of EIS, [78] proposed an equivalent circuit of the EIM which
is presented in Fig. 10.

In Fig.10, Vocv denotes the OCV of the battery; V1, V2 and
V3 denote the voltage for R1, ZARC and Warburg respec-
tively; Vo is the terminal voltage of the battery which can be
measured directly; I denotes the load current.

Based on the measurements of EIS at different SoC points,
we can identify the parameters of EIM. Then with the state-
equation of the EIM, we can use the calculation processes
of the model-based estimation method presented in Fig.4 to
estimate the SoC of battery in real-time [51], [78]–[80].
The estimation results of the battery SoC with the above
described method shows that the maximum errors are less
than ±1% [78].

D. DATA-DRIVEN ESTIMATION METHODS
Data-driven control methods merely use the input-output data
of the system to develop a controller. Since these methods
do not require an accurate plant model, the estimations and
assumptions introduced in the plant modeling step are omit-
ted. In particular, the data driven control approach can show
great advantages in the following cases [81]:

(1) The global mathematical model of the controlled sys-
tem is completely unknown;

(2) The uncertainties of the controlled system model are
great;

(3) The mathematical model cannot be built for defining
the controlled system with uncertain structure in its operating
process;

(4) The mechanism model of the controlled system is too
complicated or the number of the order is too prohibitive or it
is impractical to analyze and design.

The black-box model is a typical data-driven method and
the intelligent system is a classic approach. Due to the
internal complex chemical reaction process and uncertain
external operating conditions of batteries, it is challenging to
model batteries accurately by ECM and EIM. However, the
black-box model which uses the nonlinear relationship of the

input data to train the model has several potential benefits
such as parallel distributed processing, high computation
rates, fault tolerance and adaptive capability to deal with
this complicated problem. The typical algorithms that can
be used for the black-box model includes the fuzzy con-
troller [82], [83], the neural network [84]–[86], the support
vector machine [87], [88] and a combination of these algo-
rithms [89]–[91].

Nonlinear statistical data modeling tools are more prac-
tical. They can be used to model complex relationships
between inputs and outputs or to find patterns in data.
Ref. [85] used the neural network to develop the SoC estima-
tor, where the input layer contains the current, temperature,
SoC of the battery, and the voltage is the output layer. Results
show high computation accuracy with this method.

The black-box model method can effectively solve nonlin-
ear problems of modeling and state estimation, and realize
high prediction accuracy. However, these algorithms are very
sensitive to their parameters and theymay not even be conver-
gent with bad parameters selection when the train data cannot
completely cover the present operating conditions.

E. RECOMMENDATION FOR THE
ENGINEERING APPLICATIONS
The data-model fusion method is a type of online data driven
estimation approach. It merges the online data-driven method
and the model-based method, where the data-driven method
can identify the system parameter in real-time with the
online measurements. The model with real-time behavior can
greatly improve the performance of the controlled system.
The relationship between the online measurement data and
the offline data is relative but interdependent. The online
data-driven method merely uses the real-time measurements
of the controlled system and the knowledge obtained from
data processing to design the controller. It can ensure the
convergence, stability and the robustness of the controlled
system. Commonly used algorithms for the online data-driven
methods are the RLS based method [75], the support vector
machine [92], [93], the bias-correction based methods [60].

Sun and Xiong [94] proposed a data-model fusion method
to estimate the SoC of a multi-cell series connected battery
pack. Through the detailed analysis of the terminal voltage
behavior of the battery, a model bias function between the
‘‘average pack model’’ and each single cell involved in the
battery current, SoC and the current rate has been developed.
Then the RLS and AEKF have respectively been used to
update the model bias and estimate the SoC for all cells
in the battery pack. Results indicate that both the voltage
prediction error and SoC estimation error are less than 1% for
all cells. They also indicate that the data-driven method does
not repel the model-based method. In contrast, they are able
to penetrate and complement each other and achieve a novel
data model fusion method. It is worth noting that the data-
drivenmethod uses the experiment data in different levels and
time scales, which is different from the model-based method
that uses the offline data once.
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Based on the above analysis for four types of SoC esti-
mation methods for battery cell, we can find that each type
has its own advantages. Taken as a whole, the joint/dual
estimation methods for battery parameters and states and the
data-model fusion method are two progressing method for
achieving the accurate battery SoC estimation in real practical
application. However, the prediction performance of battery
models will degrade as the variation of battery aging, and
operating condition and environment, different SoC operating
ranges also will affect the model and method performance.
Reference [95] discussed the predicted accuracy of the same
battery models and different battery models under different
SoC operating ranges, respectively. It found that the perfor-
mance of the battery model is very sensitive to the above fac-
tors and then a new battery model merged by different models
through the Bayes theorem has been proposed. Results show
the fusion model has better overall performance under dif-
ferent battery operating conditions, aging levels and working
ranges. Therefore, we can merge different types of battery
models, i.e., EM and ECM, to form a multi-model fusion
based data driven SoC estimation model/methodologies for
ensuring the overall performance of battery SoC estimation.
In this methodology, the joint/dual method can be employed
as one part.

III. SoC ESTIMATION FOR BATTERY PACKS
Considering that the voltage and capacity/energy levels of
battery cell cannot meet the requirements of EVs, the bat-
tery packs are usually composed of up to hundreds of cells
connected in series or parallel. As we know, the more num-
bers of the cells connected in battery packs, the greater of
the difference happens in each battery cell. What’s worse,
the inconsistencies in cells performance caused by the manu-
facturing chain coupling with the operation conditions of the
battery system will lead to different degradation rate in their
performance, and in turn spread the differences in individual
cells [96]. As a result, it is difficult to fully guarantee the
conformity of the initial performance parameters as well
as the intrinsic or extrinsic operation condition of battery
packs, and this non-uniform characteristic would lead to a
difference in battery state. Consequently, the differences in
battery performance degradation would be aggravated by
those differences in battery state in turn.

On the other hand, for one battery cell, we can measure its
capacity and SoC through discharging it from fully charged
status to fully discharged status. Different from battery cell,
the capacity and SoC of battery pack are not the basic
natures. It is because the inconsistent characteristics of bat-
tery capacity, resistance, voltage et al, exist in battery pack
unavoidably, which makes the accurate capacity and SoC
measurements of battery pack are very hard. Battery pack
shows strong time-varying, nonlinear, non-uniform and other
complex characteristics. In this way, the SoC estimation of the
battery pack can be equivalent to an estimation problem for
the inner inhabited state of a strong time-varying, nonlinear,
non-uniform and other complex hybrid connection battery

system. However, so far there is no systematic theory to solve
this problem.

To achieve accurate SoC estimations for battery packs,
several efforts have been made and they can be classified into
three types.

A. CELL CALCULATION BASED METHODS
Generally, it has three kinds of realizations.

(i) ‘‘Big cell’’ method, which regards the battery pack as
a big cell, the battery pack’s voltage and current are used
to calculate the SoC of battery pack [26], [97]. However,
the inconsistent characteristics in cells performance have
been ignored. Obviously, it cannot ensure the safety appli-
cation of the battery pack although it has less amount of
calculation.

(ii) ‘‘Short board effect’’ method, which uses the extreme
cell to calculate the SoC of battery pack. Namely, during
discharging process the cell with lowest voltage is used for
indicating the SoC of battery pack and during charging pro-
cess the cell with highest voltage is used for indicating the
SoC of battery pack. Obviously, it can improve the safety
of the battery pack, but for battery pack commonly used
of 30∼80% SoC operating range, this method will reduce the
energy utilization of the battery pack.

(iii)One by one calculation method, which estimates the
SoC for all cells in battery pack and then calculates the SoC
of battery pack. As expect, this kind of method can obtain
the desired estimation accuracy. However, the computational
cost is big and it is not suitable for BMS in EVs.

B. SCREENING PROCESS BASED METHODS
It selects the battery cells which have similar battery capac-
ity, resistance, et al, to construct a battery pack and then
use the SoC of one cell from the battery pack to represent
the SoC of battery pack due to the fact that all cells have
good consistency. Reference [96] proposed a second level
screening process to select the battery cells for packaging
a battery pack, as shown in Fig.11. The results showed that
the SoC estimation errors are less than 2% for all the cells
in the battery pack. However, as aging process goes on, the
performance of this method will degrade to the ‘‘big cell’’
method. The greater difference of the cells will make the
estimation error bigger and bigger.

C. BIAS CORRECTION METHODS
Fig. 12 presents a bias correction based SoC estimation meth-
ods for cells series connected battery pack.

It firstly builds a nominal model for battery pack and
then uses the bias-correction method to online identify the
difference between the nominal model and the battery cell,
the SoC estimation is carried out with the corrected model.
With the SoC of each cell, the SoC of battery pack can be
calculated lastly [94].

U j
t = Uoc − UD1 − . . .− UDn − iLRi + δ(C

j
rate, z

j,1Qj)

(5)
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FIGURE 11. Detail operation procedure of cells filtering approach (the
CCCV model means constant charge and constant voltage model).

FIGURE 12. Flowchart of the proposed framework for battery SoC
estimation [94].

where uncertainty δ is the function of cell discharge/charge
rate−C j

rate, cell SoC− zj, maximum available capacity dif-
ference 1Qj between cell j and average value of battery
pack. It is noted that the superscript j is used to denote the
cell number in battery pack. The determination of model
and parameter uncertainties is a recognized problem. In this
study a Radial Basis Function (RBF) neural networkwas used
to develop a response surface approximate method for the
determination of the bias function. Results indicate that this
method shows has good performance. It is noted that the nom-
inal model can be built from the average pack model or spe-
cial cell model. This method can reduce the computational
cost and improve the real-time performance of the battery
model. It is a promising method for solving the SoC of
battery packs against their strong time-varying, nonlinear and

non-uniform characteristics. However, if the number for bat-
tery cells in an electric vehicle is too big, the computational
cost is required to be greatly reduced.

IV. CONCLUSION AND RECOMMENDATION
Battery SoC estimation is an essential function of a BMS
used in electric vehicles. This paper reviews and compares
typical SoC estimation methods, with a focus on their use in
electric vehicles. Four types of battery cell SoC estimation
methods and three kinds of SoC estimation methods for
battery pack have been systematically evaluated and summa-
rized. Although a large number of estimation methods have
been proposed and corresponding progress and applications
have been obtained, the systematic theories and methods
for the reasonable management of battery packs cannot be
determined. Both the theoretical research and technological
application of the SoC estimation are remaining challenges.

(1) Multi-constraint, multi-scale and multi-state joint/ dual
estimation. Estimation of battery SoC involves the accuracy
of initial values and the measurement, and also involves
the identification for path of capacity degradation and the
thermal behavior of batteries. The existing methods mainly
work for correcting the initial error of SoC or achieving
the joint/dual estimation for battery capacity and SoC, but
they seldom consider the mechanical properties (fatigue dam-
age), electrical properties (degradation path of capacity) and
thermal properties (thermal failure track) of batteries. The
fusion method by combining of data-driven control strategy,
multi-scale multi-dimension optimization theory and optimal
estimation theory may provide an effective solution for the
multi-constrain multi-scale state joint estimation.

(2) Multi models fusion modeling method for batteries.
Commonly used battery models for EVs comprise of EMs,
ECMs and EIMs. EMs canmodel the complex chemical reac-
tion process of batteries but they cannot provide a compre-
hensive description of capacity degradation, thermal failure
and the mechanical fatigue process of batteries. The strength
of the ECMs and EIMs is that the structure and order of
the models are relatively simple, and the limitations are that
they cannot illustrate the inner reaction kinetics as well as
the capacity degradation and aging path of batteries. Each
types of battery models have its strengths and drawbacks, so a
fusion model by combing different types of battery models
with a well-designed fusion rule can achieve good predictive
performance under uncertain battery aging levels, operating
conditions and battery materials.

(3) SoC estimation for a hybrid connection battery system
with strong time-varying, nonlinear and non-uniform charac-
teristics. The battery pack used in the EVs consists of hun-
dreds of battery cells. It is difficult to ensure the consistency
of the parameter and state for all cells. What’s worse, due
to the disturbance of uncertain operating conditions, aging
levels and the balancing strategies, SoC estimation methods
designed for battery cell cannot ensure the SoC estimation
accuracy of the multi-cell battery pack. As a result, this
will finally lead to inefficient energy use. Thus, the SoC
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estimation of the battery pack can be equivalent to a
kind of state estimation problem for a hybrid system with
strong time-varying, nonlinear and non-uniform characteris-
tics. Thus, we can seek solutions from the uncertainty mod-
eling theory, the system identification theory and the data-
driven control theory.
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