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ABSTRACT Numerous applications, such as material handling, manufacturing, security, and automated
transportation systems, use mobile robots. Autonomous navigation remains one of the primary challenges of
the mobile robot industry; many new control algorithms have been recently developed that aim to overcome
this challenge. These algorithms are primarily related by their adoption of new strategies for avoiding
obstacles and minimizing the travel time to a target along an optimal path. In this paper, we introduce four
different navigation systems for an autonomous mobile robot (PowerBot) and compare them. The four
systems are based on a fuzzy logic controller (FLC). The FLC of one system is tuned by an inexperienced
human (naive), while the three other FLCs are optimized through a genetic algorithm (GA), particle swarm
optimization (PSO), and a human expert. We hope the comparison answers the question of which is the best
controller. In other words, ‘‘who can win?,’’ the naive, the GA, the PSO, or the expert, in fine tuning the
membership functions of the navigation and obstacle avoidance behavior of the mobile robot? To answer this
question, we used four different techniques for optimization (the naive FLC, GA, PSO, and FLC-expert) and
used many criteria for comparison, whereas other research papers have dealt with two techniques at a time.

INDEX TERMS Mobile robot, genetic algorithm, partial swarm optimization, fuzzy logic control, robot
navigation, avoid obstacles.

I. INTRODUCTION
Researchers expect that mobile robots will be responsible
for several tasks in human life. Examples include warehouse
management, packet distribution and arrangement, product
handling inside stockrooms, and in working in accessible
but dangerous sites [1]–[3]. Navigation is definitively one
of the strategic tasks for mobile robots. Many advanced
approaches have been used for autonomous navigation;
however, this subject has not been thoroughly elucidated
to date [4]. Diverse formulations have been developed for
the autonomous mobile robots navigation, during the last
decades, moreover, these tremendous developments could
not cope with the new robotic challenges that are becom-
ing more challenging. These new types of situations are
essentially owed to the dynamic and incomplete knowledge
about the new complex and unknown environments. The
diverse self-control techniques, such as fuzzy logic, neural
networks, genetic algorithms, havewidely been used to tackle
this type of dynamic and compensate for some unknown
knowledge [5].

Cao and al. used multiple types of sensors (sonars and
cameras) and stored maps with a fuzzy logic navigation
approach for the mobile robot [6]. Unfortunately, authors did
not show all the simulation conditions and the experimental
design in their paper, making it difficult to repeat their exper-
iments, in a controlled environment. Another FLC approach
for indoor navigation developed by [7], where authors used
a fuzzy logic controller for tracking a target and controlling
their Wheeled Mobile Robot (WMR). The authors concen-
trated their focus on the robot navigation, without interest to
avoid obstacles; they used the FLC uniquely to control the
motion of the WMR. Faisal [8] have developed an online
navigation system for their WMR (Scout II robot), including
two FLC, within an unknown environment. A tracking Fuzzy
Logic Controller (TFLC) is used for navigate control, and
an Obstacle Avoiding Fuzzy Logic Controller (OAFLC) is
used for obstacles avoiding. An indoor FLC system for an
autonomous vehicle was presented in [9], where authors used
a camera sensor and guided the robot to its goal through FLC.
Nevertheless, the authors concentrated on navigation without
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considering obstacles avoidance; FLC was used only for
navigation. A real-time FLC tracking system using dual
robots and infrared sensors was proposed in [10]. The first
WMR served as the followed target and the second as the
following tracker. FLC, genetic algorithms and neural net-
works have been exploited to ameliorate the control strategy.
In order to determine the set of optimal parameters of the FLC
Narvydas et al. [11] used a genetic algorithm. A multi FLC
system compose of 4 FLC was used in [12], these controllers
were designed in a hierarchical control system, three nav-
igation controllers were used for navigation and obstacle
avoidance, while the four controllers acted as a supervisor
node. Another approach using GA to tune fuzzy logic in order
to modify the shape of the membership functions has been
developed by [13], The experimental results have shown that
this Geno-Fuzzy system enhanced the navigation in some and
not in all the experiments. A different FL navigation system
using a gradient and a genetic method was developed in [14].
A Multi-Objective Genetic Algorithm (MOGA) for path
planning was described in [15], where authors have shown
how to use two fitness assignments for the autonomous
mobile robot. Adriansyah and S. H. Amin designed a
technique for membership function tuning and generated
fuzzy rules using Particle Swarm Optimization (PSO) [16].
The simulation, using MATLAB/SIMULINK, has shown
that this technique had the fastest response time compared
to several other techniques when new situations occur.
Wong et al. [17] have determined automatically through a
PSO the appropriate parameters of the membership func-
tions, of the two-wheel robot fuzzy controller. The method
developed under MATLAB was applied on a real case,
where a real soccer robot has shown good performance.
Martínez-Marroquín et al. [18] described an optimizing
method for the parameters of the member functions of the
FLC through a PSO tuning, in a MATLAB/SIMULINK sim-
ulation. Gupta et al. [19] have developed a Takagi-Sugero
fuzzy motion controller, in which the parameters of the con-
troller were optimized also optimized by a PSO using the
statistical approximation method. Obstacles were recognized
by a vision sensor.

For this study, we built different navigation modules using
naive, fuzzy-genetic, fuzzy-PSO, and FLC-Expert systems
and later compared these modules to determine which per-
formed best based on the path followed, time to target and, in
particular, the obstacle avoidance strategy.

The Naive, fuzzy-genetic (FG), fuzzy-PSO (FPSO), and
FLC-Expert (FLCE) systems are used to find obstacle free
paths and guide the mobile robot as it navigates to its target.
In both FG and FPSO systems, the fuzzy system is used to cre-
ate the elementary membership functions; next, the GA and
PSO algorithms enhance these memberships to enhance the
performance of the PowerBot navigation during operation.

There has been research focused on optimizing the mem-
bership of the FLC using different techniques (i.e., PSO,
NN, GA). However, our research is different in several
aspects.

1) We compared four optimizing techniques (Naive, GA,
PSO, and FLC-Expert), while both (FG, PSO) [20] compared
only two techniques.

2) We applied our modules to a mobile robot (PowerBot),
while [20] only used simulations.

3) We used many criteria for comparison (distance trav-
eled, time to target, obstacle avoidance strategy, and Mem-
bership Tuning), while [20] used only distance and time to
target, while other used only path length and the energy of
the path.

We organized the paper as follows. A review of the liter-
ature is presented in section 2. Section 2 explains the pro-
posed system. Comparable systems are described in section 3.
Section 4 provides an analysis of the proposed modules.
Finally, the study’s conclusions are presented in section 5.

II. PROPOSED SYSTEMS
The proposed system contains two fuzzy logic modules:
a Navigation Behavior Module and an Avoiding Obstacles
Module. These two modules are initialized by the fuzzy logic
‘‘Naive’’ module and then enhanced by the GA, PSO, and
human expert. The navigation module is used for navigation
and the avoiding obstacles module is used to simulate the
behavior of avoiding obstacles.

A. NAIVE FUZZY LOGIC MODULES
We first introduce the Naive fuzzy logic system for naviga-
tion, we next describe the method for avoiding obstacles, and
we finally optimize the model using GA, PSO, and the expert.

1) NAIVE: NAVIGATION BEHAVIOR MODULE (NBM)
Naive-NBM is used to navigate the mobile robot to its target
point. NBM has two inputs and two outputs, as showed
in Figure 1.

FIGURE 1. Navigation module.

The heading angle between the robot and the target ‘‘α’’
and the distance between the robot and the target ‘‘d’’, will
be the inputs of the Naive navigation module, as illustrated
in Figure 2.
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FIGURE 2. Inputs of the Navigation module.

The left and right velocities of the motors will be the
outputs of the Naive navigation module. Seven membership
functions for inputs (α, d) are used in the Naive navigation
module. Figures 3 and 4 show the membership functions
of α and d .

FIGURE 3. Naive-NBM module (Membership functions of d; Z symbolizes
for Zero, NZ symbolizes for Near Zero, N symbolizes for Near, M
symbolizes for Medium, NF symbolizes for Near Far, F symbolizes for Far,
VF symbolizes for Very Far).

FIGURE 4. Naive-NBM module (Membership functions of α; N symbolizes
for Negative, SN symbolizes for Small Negative, NNZ symbolizes for Near
Negative Zero, Z symbolizes for Zero, NPZ symbolizes for Near Positive
Zero, SP symbolizes for Small Positive, and P symbolizes for Positive).

FIGURE 5. LV’s membership functions of Naive-NBM module.

The left and right velocities (LV and RV) of the motors are
the outputs of the Naive-NBMmodule. Figures 5 and 6 illus-
trate themembership functions of the LV andRV respectively,
and the fuzzy rules are defined in Table 1.

FIGURE 6. RV’s membership functions of Naive-NBM module.

TABLE 1. Fuzzy rules of the LV and RV of Naive-NBM.

FIGURE 7. Path of the Naive-NBM module.

We applied the Naive-NBM module to the PowerBot
mobile robot from the initial point (0, 0) to the target point
(500,200) cm; the result is shown in Figure 7.

The Naive-NBM is not optimal in terms of time to target
and path length, as we will see in the comparison section;
therefore, there is a need to improve the Naive-NBMmodule.

2) NAIVE: AVOIDING OBSTACLES
BEHAVIOR MODULE (AOBM)
The Naive-AOBM Module is used in conjunction with the
Naive-NBM to find obstacle-free paths and navigate the
PowerBot mobile robot to its target. The Naive-AOBM gen-
erates a left velocity and a right velocity (LV and RV)
to avoid obstacles in an unknown dynamic environment.
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FIGURE 8. Naive-AOBM.

This Naïve-AOBM has three inputs and two outputs, as illus-
trated in Figure 8.

FIGURE 9. Left side obstacle distance of the Naive-AOBM (N: Near, M:
Medium and F: Far).

FIGURE 10. Front obstacle distance of the Naive-AOBM (N: Near, M:
Medium and F: Far).

FIGURE 11. Right side obstacle distance of the Naive-AOBM (N: Near, M:
Medium and F: Far).

The inputs of the Naive-AOBM are the distances between
the front of the robot and the obstacle, the left, and right
sides of the robot and the obstacle. Naive-AOBM used the
laser rangefinder and the Ultrasonic sensors to measure those
distances. The left velocity LV and right velocity RV of the
motors are the outputs of the Naive-AOBM are the velocities
of the left and right motors. As shown in Figures 9 to 11,
Naive-AOBMused threemembership functions to implement
the inputs.

FIGURE 12. Membership functions for the LV of the Naive-AOBM (NH:
Negative High, Z: Zero, HP: High Positive, and VH: Very High).

FIGURE 13. Membership functions for the RV of the Naive-AOBM (NH:
Negative High, Z: Zero, HP: High Positive, and VH: Very High).

Each output of the Naive-AOBM used four member-
ship functions to generate the LV and RV, as shown
in Figures 12 and 13. The fuzzy rules of both velocities are
shown in Table 2.

We applied the Naive-AOBM to the PowerBot mobile
robot from the initial point (0, 0) to the target point
(500 cm, 100 cm); the results are shown in Figures 14 and 15.

We can see that the Naive-AOBM was unable to avoid the
obstacles. In this case, we need to improve the Naive avoiding
obstacles module.

B. FUZZY-GENETIC SYSTEM (FG)
GA is used to optimize and tune the membership functions
of the Naive-NBM and Naive-AOBM, and to improve the
performance of PowerBot navigation during operation. The
fuzzy-genetic module is illustrated in Figure 16.

1) FUZZY-GENETIC OF NAIVE NBM (FG-NBM)
We introduced the GA to enhance and tune the membership
functions of the NBM. The GA used 100 generations; each
generation has a population size of 100. We found that the
best fitness was 16.896, which occurred in the 90th gener-
ation. The FG module was used to simulate the navigation
of the PowerBot robot. The FG-NBM and Naive NBM have
the same configuration for fuzzy rules, inputs, and outputs.
Figures 17 to 20 illustrate the enhanced membership
functions.

We applied the FG module of the NBM to the PowerBot
mobile robot from the start point (0, 0) to the goal/target point
(500 cm, 200 cm); the result is shown in Figure 21.

2) FUZZY-GENETIC OF NAIVE AOBM (FG-ABOM)
To enhance the AOBM, a GA is used to tune its membership
functions. The FG-AOBM and Naive AOBM have similar
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TABLE 2. Fuzzy rules of the LV and RV of Naive-AOBM.

FIGURE 14. Scenario of the Naïve-AOBM module.

inputs, outputs, and fuzzy rules. Figures 22 to 26 illustrate
the enhanced membership functions of both the inputs and
outputs. The GA used 100 generations; each generation has

FIGURE 15. Alternative scenario of the Naïve-AOBM module.

FIGURE 16. Fuzzy-Genetic Module.

FIGURE 17. Enhanced membership of the distance of FG-NBM.

FIGURE 18. Enhanced membership of the angle of FG-NBM.

a population size of 100. The best fitness was 24.7, which
occurred at the 100th generation.

The FG-AOBM was applied to the PowerBot mobile
robot from the initial point (0, 0) to the target point
(500 cm, 100 cm), as illustrated in Figure 27.

Note that, from Figures 17-20 and 22-26, the shapes of the
membership functions, i.e., of the FG module of both NBM
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FIGURE 19. Enhanced membership of the LV of FG-NBM.

FIGURE 20. Enhanced membership of the RV of FG-NBM.

FIGURE 21. Path of the FG-NBM.

FIGURE 22. Enhanced membership of the left obstacle distance of the
FG-ABOM.

and AOBM, are enhanced but still have deficiencies, such as
overlapping shapes and non-optimal paths.

C. Fuzzy-PSO MODULE
In this module, the PSO is used to optimize and tune the
membership functions of the Naive fuzzy logic controllers of

FIGURE 23. Enhanced membership of the front obstacle distance of the
FG-ABOM.

FIGURE 24. Enhanced membership of the right obstacle distance of the
FG-ABOM.

FIGURE 25. Enhanced membership of the LV of the FG-AOBM.

FIGURE 26. Enhanced membership of the RV of the FG-AOBM.

the NBM and AOBM to improve the performance of Power-
Bot navigation during operation. The fuzzy-PSO module is
illustrated in Figure 28.

1) FUZZY-PSO OF NAIVE NBM (FPSO-NBM)
The PSO algorithm is used with 100 generations, where
each generation has a population size of 20. The best fit-
ness was 17.13, which occurred at the 100th generation.
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FIGURE 27. Scenario of the FG-AOBM.

FIGURE 28. Fuzzy-PSO Module.

The FPSO-NBM module is used to simulate the navigation
behaviors of the mobile robot.

The FPSO-NBM and Naive NBM have similar inputs
and outputs, as well as the same fuzzy rules. Figure 29 to
Figure 32 illustrate the enhanced membership functions.

FIGURE 29. Enhanced membership of the distance error of FPSO-NBM.

The FP-NBM was applied to the PowerBot from the start
point (0, 0) to the goal/target point (500 cm, 200 cm); the
navigation result is shown in Figure 33.

2) FUZZY-PSO OF THE NAIVE AOBM (FPSO-ABOM)
In the FPSO-ABOM, the PSO was used to tune the
membership functions of the AOBM with 100 genera-
tions; each generation had a population of 20. The best
fitness that was obtained was 17.13. The FPSO-ABOM
and Naive AOBM have similar inputs, outputs, and fuzzy
rules. Figures 34 to 38 illustrate the enhanced membership
functions.

FIGURE 30. Enhanced membership of the angle error of FPSO-NBM.

FIGURE 31. Enhanced membership of the LV of FPSO-NBM.

FIGURE 32. Enhanced membership of the RV of FPSO-NBM.

FIGURE 33. Path of the fuzzy-PSO NBM.

We applied the fuzzy-PSO module of the AOBM to the
PowerBot mobile robot from the start point (0, 0) to the
goal/target point (500 cm, 100 cm). Figure 39 illustrates
the scenario.
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FIGURE 34. Enhanced membership of the left obstacle distance of the
FPSO-ABOM module.

FIGURE 35. Enhanced membership of the front obstacle distance of the
FPSO-ABOM module.

FIGURE 36. Enhanced membership of the right obstacle distance of the
FPSO-ABOM module.

FIGURE 37. Enhanced membership of the LV of the AOBM fuzzy- PSO
module.

Note that the shapes of the membership functions of the
FPSO-NBM and AOBM are enhanced but still have many
issues, such as overlap, gaps and a result that is not an optimal
path.

FIGURE 38. Enhanced membership of the RV of the AOBM fuzzy-PSO
module.

FIGURE 39. Path of the FPSO-AOBM.

D. EXPERT MODULES
In this part of the research, an expert was asked to tune
the membership functions of the Naive AOBM and AOBM
modules.

FIGURE 40. Enhanced membership of the distance of E-NBM.

FIGURE 41. Enhanced membership of the angle of E-NBM.

1) EXPERT MODULE OF NAIVE NBM (E-NBM)
To enhance the NBM, we used an expert to tune the member-
ship functions of the NBM. Both E-NBM and Naive NBM
have similar inputs, outputs, and fuzzy rules. Figures 40 to 42
illustrate the enhanced membership functions of both the
inputs and outputs.
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FIGURE 42. Enhanced membership of the LV and RV of E-NBM.

FIGURE 43. Path of the Expert NBM.

The E-NBM was applied to the PowerBot mobile robot
from the initial point (0, 0) to the target point (500 cm, 200
cm); the result is illustrated in Figure 43.

FIGURE 44. Enhanced membership of the left, front and right obstacle
distance of E-AOBM.

2) EXPERT STRATEGY FOR THE NAIVE AOBM (E-AOBM)
The expert tuned the membership functions of the AOBM.
Both E-AOBM and Naive AOBM have similar inputs, out-
puts, and fuzzy rules. Figures 44 and 45 illustrate the
enhanced membership functions of the inputs and outputs.

III. PERFORMANCE INDEXES
We compare the naive FLC, GA, PSO, and FLC-Expert mod-
ules of both the NBM and AOBM through different scenarios
as follows:

Each module was executed more than ten times for
the same configuration and same points ((0 m, 0 m) to
(5 m cm, 2 m).

The comparison included the execution time, the fitness
value, the path used, and the traveled distance in meters. Plots
of the results from the first experimental scenario are shown

FIGURE 45. Enhanced membership of the LV and RV of the E-AOBM.

in Figure 46. Detailed performance indicators are shown
in Table 3.

FIGURE 46. First scenario: Traveled paths of the Naive, FG, F-PSO and
E-NBM.

TABLE 3. First scenario: Performance indexes of the Naive, FG, F-PSO,
and Expert modules.

The statistical results of the NBM for the traveled distances
and execution times of the first scenario for ten random
selected experiments are listed in Table 4.

All the modules succeeded in navigating the first scenario
with different execution times and travel distances.

In the second scenario, the working environment was
changed to include objects to be avoided by the four modules
of the NBM and AOBM. Each module was executed several
times from the same startup point (0 cm, 0 cm) to the target
point (500 cm, 100 cm). A plot of the results from one
randomly selected experiment is shown in Figure 47, and the
related performance indexes are listed in Table 5.

In the second scenario, three modules succeeded in the
navigation phase, i.e., moving from the initial point to the
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TABLE 4. Statistical data of all NBM modules.

FIGURE 47. Second scenario: Traveled paths of the Naive, FG, F-PSO and
Expert modules of NBM and AOBM.

TABLE 5. Second scenario: Performance indexes of the Naive, FG, F-PSO,
and Expert modules.

target using the obstacle avoidance strategy. However, each
one had a different execution time and a different travel
distance. All the issues related to this scenario are discussed
in the next section.

In addition to the previous simple scenarios, the four mod-
ules of NBM andAOBMwere tested in a third, more complex
scenario. To determine the performance of both the NBM and
AOBM, each module was executed several times from the
same starting point (0 cm, 0 cm) through the intermediate
points (4.7 m, −2 m), (4.8 m, −4.5 m) to the target point (6.5
m, −4.8 cm), as shown in Figure 48. Detailed performance
indexes are listed in Table 6.

In the third scenario, only the expert module succeeded in
avoiding all obstacles and passing through the door toward

FIGURE 48. Third scenario of the Naive, FG, F-PSO and FLC-Expert
modules of the NBM and AOBM.

TABLE 6. Third scenario: Performance indexes of the Naive, FG, F-PSO,
and FLC-Expert modules.

the target. Related discussions will be covered in the analysis
section.

IV. Analysis
Based on the experimental results obtained for the integration
of FL, GA, PSO, and the expert for navigation and object
avoidance, we have focused our research direction on four
performance indexes: the membership tuning time, the dis-
tance traveled, object avoidance scenarios, and the time to
reach the target.

A. MEMBERSHIP TUNING TIME
The tuning phase using FG and PSO required two to four
hours. This is 91.7% slower than the intelligent algorithms,
but faster when compared to the expert, which required two
to four days. Note that the expert is costly and not available
at all times.

B. TRAVELED DISTANCE
In the first scenario, which is illustrated in Figure 46 and
Table 3, all of the modules succeeded in the navigation phase,
i.e., moving from the initial point to the target. It was con-
cluded that all of the modules are competitive with regards
to navigation, but in terms of execution time and traveled
distance, the expert prevailed in the competition. Recall that
the first scenario was executed more than fifty times; the best
average time was 18 sec and the best distance traveled was
523.4 cm, as shown in Table 4.

In the second scenario, the shortest distance traveled was
attained using the human expert. This is because the expert
has a global view of the map and performs fine tuning based
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on minimizing the length of the path through the membership
functions.

In the third scenario, only the expert could reach the
target because the membership functions were tuned based
on the local and global errors; each tuning required many
experiments. This tuning improved the behavior of the robot
because the results can be reused for any other complex
scenario with different initial and target points.

C. SIMPLE OBJECT AVOIDANCE
In the second scenario shown in Figure 47 and Table 5, all of
themodules succeeded in avoiding obstacles, except the naive
module. However, eachmethod had a different execution time
and travel distance, as listed in Table 5.

D. COMPLEX OBJECT AVOIDANCE
The complex scenario was evaluated to determine if all the
modules could optimize their path by avoiding obstacles and
still focus on the task of reaching the target point. Unfor-
tunately, only the FLC-Expert could complete the task; the
other methods (FL, F-PSO) diverged after the first obstacle,
as seen in Figure 48. This is mainly due to the overlaps and
gaps within the membership functions, which mislead the
robot controller in complex situations.

E. TIME TO ARRIVAL TO TARGET
Distance is linearly related to time for a fixed speed, but both
motors of the Scout-II do not have the same speed and are not
synchronized with a preset velocity. Thus, every module had
full control of each motor.

In all scenarios, the FLC-Expert had the best time for
arriving at the target because the speed was better tuned, and
both motors had an optimal control strategy.

The results of the analysis are summarized in Table 7.

TABLE 7. Comparison between the Naive, FG, F-PSO and FLC-Expert
modules.

V. CONCLUSIONS
Mobile navigation through unknown and complex environ-
ments is still an open area of research, either in the controls
field or in multi-sensor fusion. The approach taken in this
paper targeted a combination of different algorithms, includ-
ing fuzzy-logic, PSO, and genetic algorithms towards differ-
ent decision making approaches. The goal was to identify the

optimal navigation path, both with and without the constraint
of obstacle avoidance, based on sensor data acquired from
a laser rangefinder and an array of ultrasonic sensors on the
PowerBot navigation robot platform.

The experimental results showed that the Naive, FG, F-
PSO and Expert modules are competitive for navigation and
simple obstacles avoidance. However, FG and F-PSO failed
in complex obstacle avoidance scenarios. The alternative
using an expert generated better results. Thus, designing a
system with the aid of an expert can provide intelligent algo-
rithms at the expense of availability and cost.
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