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ABSTRACT Spatial data clustering has played an important role in the knowledge discovery in spatial
databases. However, due to the increasing volume and diversity of data, conventional spatial clustering
methods are inefficient even on moderately large data sets, and usually fail to discover clusters with
diverse shapes and densities. To address these challenges, we propose a two-phase clustering method named
KMDD (clustering by combining K-means with density and distance-based method) to fast find clusters
with diverse shapes and densities in spatial databases. In the first phase, KMDD uses a partition-based
algorithm (K-means) to cluster the data set into several relatively small spherical or ball-shaped subclusters.
After that, each subcluster is given a local density; to merge subclusters, KMDD utilizes the idea that genuine
cluster cores are characterized by a higher density than their neighbor subclusters and by a relatively large
distance from subclusters with higher densities. Extensive experiments on both synthetic and real-world data
sets demonstrate that the proposed algorithm has a near-linear time complexity with respect to the data set
size and dimension, and has the capability to find clusters with diverse shapes and densities.

INDEX TERMS Spatial clustering, partition-and-merge strategy, diverse shapes and densities, efficiency on
large spatial databases.

I. INTRODUCTION
The advances in location-acquisition technologies, such as
Global Position Systems (GPS), Automatic Identification
Systems (AIS), sensor networks and mobile devices, have
resulted in accumulating large amounts of spatial data related
to people, vehicles, animals and natural phenomena. Knowl-
edge discovery in spatial databases, or called as spatial data
mining, is the process of extracting implicit knowledge about
spatial objects, spatial relations and discovery of interesting
spatial patterns that cannot be explicitly examined by peo-
ple [1]. Spatial clustering, which groups spatial data into
meaningful classes according to their similarities, is one
of the major tools for spatial data mining. It has attracted
attentions from diverse disciplines, given its importance in
numerous applications such as epidemiology, crime analysis,
intelligent transportation systems, urban computing, animal
movement, and natural phenomena [2]–[7].

Due to the increasing amount and complexity of spatial
data, a key challenge for clustering algorithms is to achieve

good time efficiency [8]. Scalability becomes more and more
important, and mainly manifests in two aspects: enormous
data volume and high dimensionality [9]. In addition, due to
the diverse nature and characteristics of spatial data sources,
clustering algorithms should have the capability to find the
clusters hidden in spatial datasets that may be of different
shapes and densities [10]. Despite some well-known cluster-
ing algorithms try to offer the solution for these two require-
ments at the same time, most of them become inefficient
even on moderately large datasets (both data volume and
dimension) or ineffective on datasets with diverse densities
and cluster shapes.

Recently, Rodriguez and Laio [28] proposed a significant
clustering algorithm called Density and distance-based clus-
tering (DD), of which the time consumption is high but the
core idea is novel. In this paper, motivated by their work, we
propose a new clustering algorithm KMDD for large spatial
datasets to overcome the above limitations of existing clus-
tering algorithms. KMDD is a two-phase algorithm, which
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uses K-means to cluster the data into several relatively small
subclusters in the partition phase, then uses the density and
distance-based concept from [28] to aggregate these subclus-
ters for finding the genuine clusters in the merging phase. The
contributions of our study are summarized as follows:

(a) So far, to the best of our knowledge, this is the first work
that employs the density and distance-based concept to aggre-
gate subclusters, which is different from existing agglom-
erative algorithms that primarily measure the connectivity
or disconnectivity between different sub-clusters or existing
and merged subclusters by using functions of distance or
probability.

(b) We introduce a new clustering method called KMDD
as an alternative to DD on large spatial datasets. We show
that the quality of its clustering result is closed to DD, and its
running time linear to the dataset size and dimension.

(c) We perform experiments on datasets containing clus-
ters with diverse shapes and densities and on datasets that
significantly larger than those used in the previous work to
our awareness. The experiments demonstrate that the new
clustering method can effectively identify clusters of diverse
shapes and densities for spatial datasets, and its scalabil-
ity outperforms some of the widely used spatial clustering
methods.

The rest of this paper is structured as: Section II reviews
previouswork related to ours. Section III provides preliminar-
ies and proposes KMDD clustering method. In Section IV, to
measure the performance of KMDD, extensive experiments
on both synthetic and real-world datasets are conducted.
Conclusions and possible further work on this research are
given in Section V.

II. RELATED WORK
In this section, to introduce some basic ideas and concepts,
we briefly review several kinds of widely used clustering
methods related to our work.

A. PARTITION-BASED CLUSTERING
K-means is one of the most widely used partition-based
clustering algorithms even though thousands of clustering
algorithms have been published after it [11]. It can be deemed
as a nice strategy to find subclusters in the partition phase
because it is ease of implementation, efficient, and success-
fully applied in many real-world case studies. The core idea
of K-means is to update the center of cluster which is repre-
sented by the centroid of data points, by iterative computation
and the iterative process will be continued until the criteria for
convergence is met.

Though K-means is simple and with a high computing effi-
ciency in general, there still exist some drawbacks. K-means
can easily converge to a local minimum. Other disadvan-
tages include: K is hard to select; the clustering result is
sensitive to K ; not suitable for finding clusters with non-
convex shape and relatively sensitive to the outliers. Like
K-means, PAM [12], CLARA [13], CLARANS [14] and AP
(Affinity Propagation) [15] are also typical partition-based

clustering algorithms. However, their time complexities are
reported to be higher than K-means and they also fail to find
non-convex shape clusters [16].

B. DENSITY-BASED CLUSTERING
Density-based clustering methods assume that regions of
points with high density in the data space are considered
as clusters. DBSCAN [10] is the most well-known density-
based clustering algorithm, which judges the neighborhood
of a point is dense or not using two parameters: the radius
eps of the neighborhood and the minimum number of points
MinPts in the neighborhood.

DBSCAN algorithm has been claimed for years that it can
terminate in O(n log n) time. However, Gan and Tao [17]
proved that it requires at least �(n4/3) time to solve the
problem with data dimension ≥ 3. Thus all varieties
of DBSCAN, such as OPTICS [18], ST-DBSCAN [19],
DENCLUE [20] are intolerably slow even on moderately
large n in practice. To replace DBSCAN on big data,
they proposed a grid-based approximation algorithm called
ρ-approximate DBSCAN that can be solved in linear O(n)
expected time. DBSCAN can find clusters of arbitrary shapes
but its performance is poor when clusters have greatly varied
densities.

C. GRID-BASED CLUSTERING
Grid-based clustering methods partition the original data
space into a grids structure with definite size for clustering.
STING [21], CLIQUE [22] and Wavecluster [8] are typical
algorithms of this kind and all their time complexity with
respect to the data size n is low (nearO(n)). However, scaling
these methods to higher dimensional spaces is difficult [9].
Take Wavecluster as a representative of down-top partition
methods: to partition the dataset with dimension d , md grids
must be imposed (m is the number of segmentations in each
dimension), which is a very large number for computation
even d is not that large. As a top-down partition method,
ρ-approximate DBSCAN uses a tree-like hierarchical grid
partition structure that only keeps non-empty grids in each
level. However, each non-empty grid must be divided into 2d

smaller grids of the same size until the side length of new grid
is at most eps∗ρ

√
d . In general, algorithms listed above lack

the capability of managing high dimensionality datasets.

D. AGGLOMERATIVE HIERARCHICAL CLUSTERING
Agglomerative hierarchical clustering methods successively
merge the most neighboring pair of clusters to form a clus-
ter hierarchy from down to top. Typical algorithms include
BIRCH [23], CURE [24], ROCK [25] and Chameleon [26].
BIRCH is to obtain an initial result by using a CF tree and
then refining the result using iterative relocation. The latter
three use hybrid methods that unite the pros of partition and
hierarchical clustering, namely, partition-and-merge strategy.
In the partition stage, CURE employs a combination of ran-
dom sampling and a partitioning method, while the partition
strategy of Chameleon is based on the k-nearest neighbor
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graph. ROCK is an improvement of CURE for dealing with
data of enumeration type. However, reported by [9] and [16],
BIRCH can only detect convex shape clusters and the time
complexity of CURE and Chameleon are relatively high
O(n2 log n) without sampling and O(n2) respectively).
There are many agglomerative strategies based on the dif-

ferent definitions for distance between two clusters, such as
single linkage (nearest neighbor), complete linkage, group
average linkage, median linkage, centroid linkage, Ward’s
method and probability-based method [27].

The partition-and-merge strategy is effective on discov-
ering clusters with diverse shapes and densities, thus we
integrate it in our work.

E. DENSITY AND DISTANCE-BASED CLUSTERING
DD in literature [28] is based on a straightforward idea about
the cluster centers: (i) cluster centers must with high local
density, namely, the number of data points near the cluster
center within a certain rangemust be large enough; (ii) cluster
center must be away from other data points that could be
the center of a cluster, namely, cluster centers are away from
other data points with high local density. A decision graph
based on ρ (local density of a point) and δ (distance between
a point and its nearest neighbor with a higher ρ) is used to
select the cluster centers, and the remaining data points are
assigned to their nearest cluster centers with higher densities.
The border region of each cluster is defined as the set of
points assigned to the cluster whose distances to data points
of other clusters are within a cutoff distance dc. The points in
the cluster whose density is lower than the border region are
considered as noises.

DD can deal with the datasets with arbitrary shape and is
insensitive to the outliers, yet it is not suitable for large-scale
datasets since the time complexity is O(n2) and the cluster
centers are hard to be chosen when hundreds thousand points
crowd into the decision graph.

F. OTHER RELATED CLUSTERING METHODS
Distribution-based clustering methods [41] [43] suppose that
in the original datasets there exist some different distribu-
tions, then the data ‘generated from the same distribution’
should be assigned to the same cluster.

Advances in sensing and storage technology and the dra-
matic growth in applications are leading to the collection
of many high-volume, high-dimensional, and real-time data
sets. Clustering for large-scale data is aim at overcoming the
challenge of clustering huge data points that with thousands
of features [42]. This needs algorithms which are both effi-
cient and with the capability of handling high-dimensions
data, such as K-means, BIRCH, CLARA, CURE and etc.
In addition, clustering for data streams and clustering in
parallel environments are also faced with the problem of data
explosion, for more detailed information, refer [40], [42].

III. MATERIALS AND METHODS
DD is feasible only in small datasets since its computation
time is strongly quadratic to n such that it will take an

intolerably long period to get the clusters precisely. In addi-
tion, K-means has an obvious drawback that it can only find
spherical or ball-shaped clusters. In this section, we overcome
their disadvantages by combining these two methods and
introduce the concept of KMDD designed to replace DD on
large datasets.

Take Fig. 1 to show the motivation of our method, in which
the 2D dataset [29] has 7500 points and 50 spherical clusters.
Fig. 1(a) shows the result of K-means that have been obtained
by running 5000 times the algorithm and taking the best
solution according to the objective function. Though K has
been set to the right value, the best solution still failed to reach
the global optimum. However, interestingly, if we obtain
more clusters (Fig. 1(b), by running K-means once) and then
merge them properly, the quality of result can be improved a
lot. Fig. 1(c) shows the result of KMDD by merging clusters
from Fig. 1(b), which approximates to the result of DD in
Fig. 1(d). Both KMDD and K-means got results instantly on
this dataset, yet DD consumed a longer time (288 seconds on
our machine). Therefore, if we set a lager K for K-means and
merge clusters properly, we can obtain a better result; even
obtain clusters with diverse shapes and densities. In addition,
as an approximate DD, KMDD can replace it on large-scale
datasets due to its computational efficiency and with fewer
points for choice in the decision graph.

A. NOTION OF CLUSTERS
Let X = x1, x2, . . . , xn be a set of n points in d-dimensional
space <d . Let S = s1, s2, . . . , sK be a set of K subclusters
obtained by partitioning X with K-means. |sk | denotes the
number of elements of sk . Dk is a |sk | × K matrix returned
by K-means, whose entries are distances from each point of
sk to all K centroids. We denote by dij the distance between
si and sj. dc is a cutoff distance. C = c1, c2, . . . , cG denotes
a set of genuine clusters hidden in X .
Lemma 1:When K is large enough, K-means can partition

datasets with arbitrary shapes and densities into relatively
small subclusters and ensure each belongs to only one gen-
uine cluster (hard partition). Namely, subclusters are small
enough so that all points in a subcluster will not belong to
two or more genuine clusters.

Proof: Let K = n, each subcluster has only one point
and it will not belong to two or more genuine clusters. �

Intuitively, for a dataset without noise and its clusters
are well separated by space, K is not very large compared
to n. When clusters are overlapping or datasets have too
much noise, a small K may be insufficient. At the worst
case, K must be set to n so that subclusters have the small-
est size (one point). In this condition our algorithm will
be precisely the same to DD. In practice, if less preci-
sion is demanded (i.e. a smaller K ), KMDD becomes more
efficient.
Definition 1: The minimum distance between points of si

and the centroid of sj is not always equal to that between
points of sj and the centroid of si. Thus, the distance between
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FIGURE 1. Results comparison among K-means, KMDD and DD. (a): K-means (K = 50). (b): K-means (K = 140). (c): KMDD (dc = 800).
(d): DD (dc = 800).

si and sj is denoted as the mean of the two:

dij = dji =
1
2

[
min
j
(Di.j)+min

i

(
Dj.i

)]
(1)

where Di.j is the jth column of Di and Dj.i is the ith column
of Dj.

We utilize the distance defined in (1) instead of the distance
between the centroids of subclusters. For finding non-convex
shape clusters, the former provides more information about
the closeness of two subclusters.
Definition 2: By rewriting the exponential kernel

from [30], the local density ρi of subcluster i can be
defined as:

ρi =

K∑
j=1

|sk | exp(
d2ij
d2c

) (2)

Definition 3: Theminimum distance δ between subcluster i
and any other subclusters with higher density is measured by:

δi = min
j:ρj>ρi

(dij) (3)

For the subcluster with highest density, δi = maxj (dij). The
neighbor of subcluster i (exception of the subcluster with the

highest density) is calculated by:

Ne(i) = arg min
j:ρj>ρi

(dij) (4)

Assumption 1: Each genuine cluster has only one core,
which is: (i) the subcluster with high local density; (ii) away
from other subclusters with high local density.

Based on this assumption, each non-core subcluster is
assigned to the same cluster as its nearest neighbor with a
higher ρ.
Assumption 1 suggests that one can choose cluster cores

from subclusters instead of points in the decision graph,
which makes the process of decision-making easier. In addi-
tion, since the subclusters extracted by K-means have nearly
the same size, noise can be considered as a set made up of
subclusters with low density.

Fig. 2 is an example illustrating how our method works.
The 2D dataset has been taken from [31], with 240 points
and 2 clusters. Since it has a non-convex shape, K-means is
not able to deal with it. However, if we partition the data into
some subclusters with K-means andmerge them by the aggre-
gation strategy above, this problem can be solved. Fig. 2(a)
shows the original data and Fig. 2(b) shows 25 subclusters
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FIGURE 2. An example illustrating the clustering process. (a) Original data. (b) Subclusters. (c) Clustering results. (d) The decision graph.

found by K-means. Then we chose subcluster 12 and 13 as
two cores and subcluster 19 as noise in the decision graph,
shown in Fig. 2(d). It is obvious that cluster cores we selected
are subclusters of relatively high δ and ρ in the decision
graph, i.e., points lie in the right up corner in Fig. 2(d).
A noticeable fact is that the decision graph here has only
25 points, while if we use DD, all original data will flood
into the decision graph. Moreover, Fig. 2(c) shows that the
2 clusters were correctly found by our method. Note that if we
didn’t choose subcluster 19 as noise, it would be assigned to
the cluster its nearest neighbor with a higher ρ (subcluster 25)
belongs to, namely, the cluster colored red in Fig. 2(c).

TABLE 1. The proposed algorithm.

B. ALGORITHM AND PERFORMANCE ANALYSIS
Table 1 outlines the partition-and-merge process of KMDD,
which mainly consists of four parts: K-means process
(Step 1), calculation of δ and ρ for each subcluster
(Steps 2-4), selection of cores (Step 5) and assignment of data
(Step 6-7). Detailed illustrations are shown in the flowchart
of the algorithm (Fig. 3), in which cl(sk ) stands for the cluster
label of sk , Ne(sk ) is the neighbor of sk , and point(sk ) returns
all points from subcluster sk .

Note that there is no neighbor for the subcluster whose
density is the highest, so it is always considered as a core
in the decision graph, which means that any dataset at least
covers one cluster. In addition, if one sets K = n, KMDD
is equivalent to DD; if one selects all points in the decision

FIGURE 3. The algorithm flowchart.

graph, KMDD is equivalent to K-means for no subclusters
will be merged in the second phase.
Lemma 2: The algorithm can solve the KMDD problem in

O(Knt) expected time, where K is the number of subclusters,
n is the data size and t is the maximum number of iterations
allowed by K-means.

Proof: It takes O(Knt) expected time to partition the
dataset into K subclusters with K-means in Step 1. The
expected time of computing the distance between each pair of
subclusters in Step 2, computing ρ in Step 3, and computing δ
in Step 4 are allO(K 2). We don’t consider the time consump-
tion of Step 5, since it is a manual operation to select cluster
centers in the decision graph. The run time for assignment
process in Step 6 and Step 7 are O(K ) and O(n) respectively.
Therefore, the overall time complexity isO(Knt+K 2

+K+n),
since K < n, the time complexity of the algorithm is
about O(Knt). �
According to our experiential knowledge, when K in the

algorithm is several times as big asG, a good quality of result
can be guaranteed. SinceG is far smaller than n in most cases,
KMDD can achieve a good efficiency. We perform exten-
sive experiments in the next Section, showing that its time
efficiency nears K-means, and like DD, it has the capability
to find clusters with diverse shapes and densities.
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FIGURE 4. Clusters discovered by KMDD, DD, DBSCAN and Chameleon (columns) for DS 1-6 (rows).

IV. RESULTS AND DISCUSSION
This section presents an empirical evaluation of the pro-
posed clustering method. Chameleon was implemented
through CLUTO package [32] and the rest algorithms were

implemented in the MATLAB R2013b 64-bit program.
All the experiments were run on a PC with Intel Core
i7–4790 CPU at 3.60 GHz, 32-GB RAM equipped with
Windows 7.
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A. DATASETS
We evaluate our method with both synthetic and real datasets
whose details are explained as follows.

1) SYNTHETIC DATA
(a) DS1 [31], DS2 [33] and DS3 [34] are of diverse shapes.
(b) DS4 [35], DS5 [36] andDS6 [37] are of diverse shapes and
densities. (c) Seed Spreader (SS) [17], which was generated
in a ‘‘random walk with restart’’ fashion. Each time a restart
happens, the spreader begins to generate a new cluster. The
underlying data space had a normalized domain of [0, 105]
for every dimension. We use it to analyze the impact of
parameters of KMDD and test the computational efficiency
of different algorithms on both data size and data dimension.

2) REAL SPATIAL DATA
We take a part set of taxicab data in NewYork City from [38],
which has 36382 taxicab coordinates produced from
June 2nd, 2014 to June 30th, 2014 within a range of longitude:
40.645◦ N ∼ 40.795◦ N and latitude: 73.85◦ W ∼ 74.02◦ W.

B. CLUSTERING RESULTS
To compare the effectiveness on clustering results, we bench-
mark KMDD against DBSCAN, Chameleon and DD on
DS 1-6 and the taxicab dataset. Partition-based clustering
methods are not discussed here for they lack the capabil-
ity finding clusters with diverse shapes and densities, while
DBSCAN and Chameleon are outstanding density-based
clustering method and agglomerative hierarchical clustering
method respectively and they are able to solve such problems.
To achieve better results in terms of visual inspection, all
parameters of the four algorithms were selected elaborately,
in which parameters of Chameleon were set to recommended
values by CLUTO package (-clmethod = graph, -sim = dist,
-agglofrom = 30).

TABLE 2. Results in adjusted rand index of each method for DS 1-5.

1) DS 1-6
All results for DS 1-6 are demonstrated in Fig. 4. We evaluate
the accuracy of clustering methods by visual inspection and
the Adjusted Rand Index (ARI), which is designed to com-
pare clustering results against the ground truth [39]. There’s
no available ARI for DS6 because it contains significant noise
points and is without the ground truth. Table 2 demonstrates
that DD has the highest ARI scores over all 5 datasets, which
means all results got byDD are exactly the same as the ground

truths. Followed by our KMDD, it also achieved high ARI
scores and outperformed DBSCAN and Chameleon on most
datasets.

For DS 1-3, both KMDD and DD can detect varied shapes
of clusters and their results are almost the same. DBSCAN
performs well on DS1 and DS3, but it detected some noise
points on DS1 and failed to find the right clusters on DS2 no
matter how to tune parameters. What’s more, results obtained
by DBSCAN are sensitive to parameters MinPts and eps,
required tuning carefully. Chameleon discovered the right
clusters in DS1 and DS2, but it has the worst performance on
DS3, one explanation is that it may merge subclusters which
are too close to each other.

We now proceed to inspect the performance of the four
algorithms on DS 4-6, which are composed of clusters with
diverse shapes and densities. KMDDandDDmanaged to find
the right clusters on all the 3 datasets and they obtained the
same results. Though DBSCAN discovered the right clusters
in DS5, it identified 3 clusters in DS4 and partitioned too
many points into noise in DS6. Chameleon outperformed
DBSCAN on DS 4-5, but it failed to cluster correctly in the
central region in DS6.

FIGURE 5. Subclusters and their centers discovered in the first phase of
KMDD for DS 1-6.

FIGURE 6. ‘The decision graphs of KMDD for DS 1-6. Points (subclusters
in Fig. 5) lie in the right up of decision graphs were considered as cores.

Fig. 5 shows subclusters and their centers discovered in
the first phase of KMDD for each dataset. It can be seen
from Fig. 6 that all subclusters selected as cores are those
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FIGURE 7. Clusters discovered by KMDD, DD, DBSCAN and Chameleon for the taxicab dataset. (a): 4 clusters and 4 noise points found by
KMDD, plotting on the background map. (b): 4 clusters found by DD. (c): 3 clusters and some noise found by DBSCAN. (d): 4 Clusters and
some noise found by Chameleon, highly overlapping in Manhattan region. (e) and (f): The decision graphs of KMDD and DD respectively.

FIGURE 8. Results returned by fixing K = 150, increasing dc from 100 to 14000 by a pace of 2000. (a) dc = 100, K = 150. (b) dc = 2000,
K = 150. (c) dc = 4000, K = 150. (d) dc = 6000, K = 150. (e) dc = 8000, K = 150. (f) dc = 10000, K = 150. (g) dc = 12000, K = 150.
(h) dc = 14000, K = 150.

points lie in the right up in the decision graphs, and it is
easy to identify these cores for their relatively bigger ρ and
δ comparing to other points. In addition, the results on most
datasets are robust with respect to the choice of dc and K .
Therefore, if a dataset is not visible, DD and our KMDD can
still perform well, but for DBSCAN and Chameleon, it is
difficult to choose parameters since it is difficult to evaluate
clustering results in this case.

2) REAL SPATIAL DATA
We also applied the 4 approaches to the New York City
taxicab dataset, with the aim of identifying the possible
functional regions on the map. This dataset poses a serious
challenge because there’s no ground truth can tell an ideal
partition of these points; thus, we check the results by visual
inspection. The results are presented in Fig. 7, in which
KDMM, DD and Chameleon discovered 4 clusters while
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FIGURE 9. The decision graphs for K = 150, dc from 100 to 14000 by a pace of 2000.

FIGURE 10. Results returned by fixing dc = 8000, increasing K from 10 to 290 by a pace of 40. (a) dc = 8000, K =10 (b) dc = 8000,
K = 50. (c) dc = 8000, K = 90. (d) dc = 8000, K = 130. (e) dc = 8000, K = 170. (f) dc = 8000, K = 210. (g) dc = 8000, K = 250.
(h) dc = 8000, K = 290.

FIGURE 11. The decision graphs for dc = 8000, K from 10 to 290 by a pace of 40. Subclusters in the left side of dashed line were considered
as noise.

DBSCAN discovered 3. It seems like that Chameleon got
the worst performance comparing to other 3 methods since
the 4 clusters and noise are highly overlapping in Manhattan

(region in the left up in Fig. 7(d)). DBSCAN clustered these
points into two main clusters (red and blue in Fig. 7(c)),
a small cluster (green in Fig. 7(c)) and some noise, showing
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FIGURE 12. Running time comparison among KMDD, ρ-DBSCAN, DBSCAN, DD, Chameleon and K-means. (a) SS, d = 5, n from 1k to 10m.
(b) SS, d = 7, n from 1k to 10m. (c) SS, d = 9s, n from 1k to 10m. (d) SS, d from 3 to 9, n = 50 million.

that its performance isn’t good when data have greatly varied
densities. For KMDD and DD, we selected 4 points along the
diagonal line as cores in their decision graphs (see Fig. 7(e)
and Fig. 7(f)) and present their clustering results in Fig. 7(a)
and Fig. 7(b) respectively. Generally, this dataset was well
partitioned by KMDD, and from Fig. 7(a) we can clearly see
4 noise points (the subcluster in left up corner in Fig. 7(e)),
and clusters which may stand for 4 regions. However, it can
be seen from Fig. 7(b) that DD merged points locating in
the west regions and separated points locating in the central
region.

All methods were fast when the dataset was small, e.g.,
DS 1-6. However, the running time of the 4 approaches for
the real dataset had a big difference: 5.07 seconds for KMDD,
6149.91 seconds for DD, 21.82 seconds for DBSCAN and
13.60 seconds for Chameleon.

C. IMPACT OF CHOICE OF dc AND K
We utilized the 2D SS dataset (1 start and 3 restarts,
1000 points) to analyze the robustness of results with respect
to the choice of parameters dc and K for KMDD.

First, we fixedK to 150 and increased dc from 100 to 14000
by a pace of 2000, and the results are shown in Fig. 8. From
Fig. 8(a) to Fig. 8(g), we can see that the 4 clusters returned
by KMDD in every panel are almost the same except some
difference on noise points.What’s more, we can always easily
find 4 cores in the decision graphs shown in Fig. 9. In other
words, the clustering results are almost invariable for a large
range of dc (from 100 to 12000).

Next, we fixed dc to 8000 and increased K from 10 to 290
by a pace of 40. Excluded the case of K =10, we regarded
noise as a set of subclusters whose densities were lower than
20% of the highest density. The results and decision graphs
are presented in Fig. 10 and Fig. 11 respectively. Again, we
can easily find 4 cores in the decision graphs, and our method
can effectively capture the main parts of 4 clusters for all K s.

D. COMPUTATIONAL EFFICIENCY
This experiment examines how each method scales with the
data size n and dimension d . For this purpose, we used SS
datasets of 5D, 7D, and 9D by varying n from 1k to 10m
to examine the running time of K-means, KMDD, DBSCAN
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(without R-tree), ρ-approximate DBSCAN (ρ-DBSCAN fol-
lowing, the fastest existing variety of DBSCAN), DD and
Chameleon. Parameters were set as: K-means (G = 1 +
restarts), KMDD (dc = 5000, K = 20, G = 1 + restarts),
DBSCAN (MinPts = 20, eps = 5000), ρ-DBSCAN
(ρ = 0.001, MinPts = 20, eps = 5000), DD (dc = 5000,
G = 1+ restarts) and Chameleon (G = 1+ restarts).
Fig. 12(a) to Fig. 12(c) present the running time of each

method for 5D, 7D and 9D datasets, note that the axis of
running time is in log scale. If an algorithm doesn’t have
results at a value of n, it means that it didn’t terminate within
12 hours. We can see that when n > 100k, there’s no results
for DD, 500k for DBSCAN and 1m for Chameleon. However,
KMDD, ρ-DBSCAN and K-means can all terminate in less
than 1500 seconds even for n = 10m.
It’s interesting that the time efficiency of our method isn’t

influenced by data dimension d too much, while the run-
ning time of ρ-DBSCAN increases obviously as d increases.
Fig. 12(d) shows that for n = 50m, KMDD can always
terminate in several hundred seconds no matter how large d
is, while the computation time of ρ-DBSCAN is strongly
polynomial to the dimension d .

V. CONCLUSIONS
In this paper, we proposed a novel spatial clustering method
called KMDD, which imposes a partition-and-merge strategy
to fast discover clusters with diverse shapes and densities in
spatial databases. Unlike traditional agglomerative hierarchi-
cal clustering methods, KMDD is the first one that employs
the density and distance-based concept to aggregate subclus-
ters. Extensive experiments on both synthetic and real-world
datasets demonstrate that KMDD does effectively identify
clusters with diverse shapes and densities, and its scalability
on data size and dimension outperforms some of the widely
used spatial clustering methods. In addition, we also show
that the clustering results are robust with respect to the choice
of parameters.

However, there still remain some problems need to be
further studied.

First, the selection of cores and noise is somewhat subjec-
tive, although KMDD reduces the number of points in the
decision graph comparing to DD, cores and noise are still
difficult to be determined in some cases. In a nutshell, we
need to find criterions for the automatic choice of the cluster
cores and noise as well as criterions for parameter selection.

Second, K-means is order-sensitive with respect to input
data, so that it may converge to different local minima if we
use random seeds (initialization centers), causing variation
of location of points in the decision graph. Despite the final
results of KMDD are nearly the same if we select proper cores
in these different decision graphs, generally speaking, its
results are unstable. In this paper, to ensure the reproducibil-
ity of experiments, on each dataset we produced the same
random seeds for K-means by using default settings of the
random number generator in our program. To overcome the
problem of algorithm stability, we can run K-means multiple

times and choose the best solution in practice or replace
it with another efficient and stable partition method in the
future.
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