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ABSTRACT In this paper, we propose a parametric adaptive control strategy for synchronization of
Takagi–Sugeno (T-S) fuzzy coronary artery system. We use the T-S fuzzy model to represent the coronary
artery system, because the coronary artery system has complicated nonlinear characteristic in reality. Based
on the new model, a fuzzy parametric adaptive output feedback controller is designed to achieve the
H∞ synchronization of coronary artery system with input nonlinearity and parameter perturbations. Some
simulation results are given to illustrate the effectiveness of our control strategy.

INDEX TERMS Coronary artery system, adaptive control, fuzzy model, input nonlinear, H∞
synchronization.

I. INTRODUCTION
Chaos synchronization has been paid considerable atten-
tion among the scientists from biological engineering field
such as epidemic diseases, nervous system and coronary
artery system(CAS) [1], [2]. From the perspective of biology,
CAS maintains our life by delivering oxygen and nutrition
to myocardium. Once blood vessel of the coronary artery
obstructed by thrombus, patients will suffering from a dan-
gerous disease named myocardial infarction(MI). Therefore
a lot of efforts have been done by the researchers among
various areas. It’s worth noting that Xu and Liu given the
dynamics model of CAS in [3] which described CAS as a
chaotic system:

ẋ1(t) = −bx1(t)− cx2(t),

ẋ2(t) = −(b+ 1)ωx1(t)− (c+ 1)ωx2(t)+ ωx31 (t)

+Ecosσ t (1)

where x1(t), x2(t) are the inner diameter and pressure changes
of the coronary artery vessel, respectively. Ecosσ t is used to
describe the periodic perturbation.

Many existing works are based on the aforementioned
model. In these researches, the treatment of MI are regarded
as designing an appropriate control strategy to make the
convulsionary vessel synchronize with a health one. In [4]
and [5], backstepping approach and nonlinear state feedback

method are used to the CAS synchronization. Reference [6]
utilizes sliding mode control method to achieve synchro-
nization of CAS under the bounded uncertainties, takes full
account of the presence of disturbances in the actual coro-
nary artery system. Furthermore, the CAS synchronization in
finite-time is achieved using high-order sliding mode adap-
tive control method in [7], makes the convulsionary vessel
synchronize with a health one in finite-time,to ensure the
control effect in the actual coronary artery system timeliness.
Considering the time delay caused by medication time and
drug absorption, a chaotic synchronization feedback con-
troller with input time-varying delay is design to guarantee
the control performance of CAS in [8]. The above articles are
effective in considering the actual problems of CAS.

However, the CAS has complicated nonlinear characteris-
tics. The nonlinear term in (1) will loss some information of
the system. In the past two decades, T-S fuzzy model exhib-
ited significant functions in approximating and describing
complex nonlinear systems [9]–[14]. In this paper, we give a
fuzzy CASmodel which can retainmuchmore information of
nonlinear characteristics. Therefore, the study on CAS base
on T-S fuzzy model compared to the previous research results
is closer to the actual CAS.

Nonlinear effect widely exist in the natural phenomenon.
The absorption and diffusion of drugs is also a nonlin-
ear effect. Therefore, the medical efficacy is regarded as a
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nonlinear inputs in our paper.Compared to [6], our study
is closer to the actual CAS. Furthermore, the parameters
uncertainties are considered in drive-response systems so that
the research has stronger robustness. Recently, adaptive fuzzy
feedback control approach [15]–[18] is proven to be effective
in nonlinear system control. Previous studies on CAS relied
on deterministic mathematical models. However, the existing
model is the approximation of CAS, there is a certain error.
For this reason, we design a fuzzy adaptive controller, so that
in the case of nonlinear input signal, the coefficient matrix
exists for the modeling uncertainty, the response system and
the drive system to achieve synchronization. In recent years,
the researchers have proposed some new control strategies
based on adaptive control and fuzzy control for different
nonlinear systems, such as adaptive fuzzy control [19]–[21],
observer-based fuzzy adaptive output-feedback control [22],
adaptive tracking Control [23]. Sliding mode control [24]
and adaptive control are the general control theory of chaotic
synchronization, there are some methods to combine sliding
mode control, such as adaptive sliding mode control [25],
optimal guaranteed cost sliding mode control [26], adaptive
fuzzy hierarchical sliding mode control [27]. However, as we
known, few researchers design control law based on fuzzy
system which can better approach the real CAS with input
nonlinearity and parameter perturbations.

Motivated by above discussions, we investigate the adap-
tive synchronization of CAS base on the T-S fuzzy model.
An effective adaptive control strategy is proposed to the H∞
synchronization of fuzzy CAS with the input nonlinear and
parameter perturbations. The effectiveness of this strategy
can be illustrated by the simulation in the following section.

A. CORONARY ARTERY FUZZY MODEL
In this paper, we use uncertain T-S fuzzy model to describe
CAS as follows:
Plant rule k: IF φ1(t) isMk1, φ2(t) isMk2, · · · , φr (t) isMkr ,

THEN

ẋm(t) = (Ak +1Ak )xm(t)+ (Bk +1Bk )p(xm(t), t)

+ q(t)(k = 1, · · · , v)

ym(t) = Cxm(t) (2)

where φj(t)(j = 1 · · · r) is the premise variable.
Mij(i = 1 · · · k, j = 1 · · · r) is the fuzzy set. r represents
the number of the fuzzy rule, xm(t), ym(t) ∈ Rn are the
state vector and output vector, respectively. p(xm(t), t) is the
nonlinear term. q(t) denotes a perturbation with certain
period. Ak ,Bk ,C ∈ Rn∗n are constant real matrices.
1Ak ,1Bk ∈ Rn∗n represent the uncertainties of system
which can be described as:

[1Ak ,1Bk ] = HF(t)[Eak ,Ebk ] (3)

where H ,Eak ,Ebk ∈ Rn are known constant matri-
ces and F(t) is an unknown matrix function satisfying:
FT (t)F(t) ≤ I .

Using the singleton fuzzifier, product fuzzy inference and
weighted average defuzzifier,the dynamic fuzzy model in (2)
can be represented by:

ẋm(t) =
v∑

k=1

hk (φ(t)){(Ak +1Ak )xm(t)+ (Bk +1Bk )

∗p(xm(t), t)+ q(t)}

ym(t) = Cxm(t) (4)

where hk (φ(t)) =
∏r
j=1Mkj(φj(t))∑v

k=1
∏r
j=1Mkj(φj(t))

(k = 1, · · · , v)
is the normalized grade of membership and it satisfies:∑v

k=1 hk (φ(t)) = 1, hk (φ(t)) ≥ 0.
The fuzzy response system is given as follows:
Plant rule k: IF φ1(t) isMk1, φ2(t) isMk2, · · · , φr (t) isMkr ,

THEN

ẋs(t) = (Ak +1Ãk (t))xs(t)+ (Bk +1B̃k (t))p(xs(t), t)

+ q(t)+ d(t)+ E�(u(t))(k = 1, · · · , v)

ys(t) = Cxs(t) (5)

where xs(t), ys(t) ∈ Rn is the state vector and the output
vector, respectively. p(xs(t), t) is the nonlinear term. d(t) rep-
resents external disturbance.E ∈ Rn∗n is constant real matrix.
1Ãk (t),1B̃k (t) ∈ Rn∗n denote the adaptive estimated value
of 1Ak ,1Bk . Similar to (4), we infer the fuzzy response
system (5) as:

ẋs(t) =
v∑

k=1

hk (φ(t)){(Ak+1Ãk (t))xs(t)+(Bk+1B̃k (t))

p(xs(t), t)+ q(t)+ d(t)} + E�(u(t))

ys(t) = Cxs(t) (6)

Defining e(t) = xs(t)−xm(t) , the error system can be written
as:

ė(t) =
v∑

k=1

hk (φ(t)){1Ukxs(t)+1Nkp(xs(t), t)}

+

v∑
k=1

hk (φ(t)){(Ak +1Ak )e(t)+ (Bk +1Bk )

∗pe(t)+ d(t)} + E�(u(t)) (7)

where

1Uk = 1Ãk (t)−1Ak = (akij)n×n (8)

1Nk = 1B̃k (t)−1Bk = (bkij)n×n (9)

pe(t) = p(xs(t), t)− p(xm(t), t) (10)

The system (4) and (6) will be asymptotically synchronized
if the synchronization error e(t) satisfies lim

t→0
e(t) = 0. In this

paper, we design an adaptive output feedback controller as
follows:

u(t) = −
γ (t)
2
Ce(t) (11)

where u(t) = [u1(t) . . . un(t)]T ∈ Rn is the control input
vector, �(u(t)) =

∑v
k=1 hk (φ(t))[ω1(u1(t)) . . . ωn(un(t))]T
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represents the nonlinear control input vector which satisfies
the following inequality:

ui(t)ωi(ui(t)) ≥ νi(ui(t))2 (1 ≤ i ≤ m) (12)

ν∗ = minνi (13)

ωi is function, γ (t) is an adaptive parameter and adjusted by
the following adaptive law:

γ̇ (t) = ν∗δ‖Ce(t)‖2, γ (0) > 0. (14)

where δ and ν are positive parameters. By applying of the
above adaptive controller, synchronization error e(t) will con-
verge to zero asymptotically. To obtain the synchronization
conditions, the following lemma and assumptions will be
used during the proof.
Lemma 1 [28]: For a symmetric matrix Z and appro-

priately dimensional matrices D, G and F(t) satisfying
FT (t)F(t) < I . Inequality Z+He{DF(t)G} < 0 is true, if and
only if the following inequality Z + εDDT + ε−1GGT < 0
holds for any ε > 0.
Assumption 1: The nonlinear function p(x(t); t) satisfies

the Lipschitz condition:

|p(xm(t), t)− p(xs(t), t)| ≤ |L(xm(t)− xs(t))| (15)

where L is the Lipschitz constant matrix.
Assumption 2: Matrix P > 0 and satisfies the following

equation:

ETP = C (16)

Remark 1: Assumption 1 is to deal with the nonlinear
characteristics of chaotic systems. It is generally known that
Assumption 2 is a matching condition in output feedback
control of nonlinear systems,which is referenced in many
papers [29], [30].

II. H∞ SYNCHRONIZATION OF CAS
In this part, a parametric adaptive control strategy for syn-
chronization of fuzzy CAS is proposed by utilizing above
lemma and assumptions.
Theorem 1: Considering the fuzzy coronary artery drive

and response systems (4) and (6), by applying the output
feedback adaptive controller (11) with adaptive law (14),
if existing symmetric positive definite matrix P and scalars
α, ε1 and ε2 > 0 for given σ > 0, satisfying the following
LMI:

01 PBk −P PH PH LT

∗ 02 0 0 0 0
∗ ∗ −σ 2I 0 0 0
∗ ∗ ∗ −ε−11 I 0 0
∗ ∗ ∗ ∗ −ε−12 I 0
∗ ∗ ∗ ∗ ∗ −I

<0 (17)

where

01 = PAk + ATk P+ I − αPEE
TP+ ε−11 ETakEak

02 = ε
−1
2 ETakEak − I (18)

the attention rate σ forH∞ synchronization in the disturbance
situation can be achieved.
Proof: In this segment, the Lyapunov-Krasovskii func-

tional can be constructed as follows:

V (t) = V1(t)+ V2(t) (19)

where

V1(t) = eT (t)Pe(t)+
∫ t

0

v∑
k=1

hk (φ(s))δ−1γ̇ (s)

∗(γ (s)− γ ∗)ds (20)

V2(t) =
v∑

k=1

n∑
i=1

n∑
j=1

[
1
2θk

a2kij(t)+
1

2ϕk
c2kij(t)] (21)

γ ∗ is a positive constants which will be defined later.
Taking the time derivative of V (t):

V̇1(t) = 2eT (t)Pė(t)+
v∑

k=1

hk (φ(t))δ−1γ̇ (t)(γ (t)− γ ∗)

=

v∑
k=1

hk (φ(t))
{
eT (t)

[
PAk + ATk P− αPEE

TP
]

∗e(t)+ eT (t)PHF(k)Eake(t)+ eT (t)ETakF
T (k)

∗HTPe(t)+eT (t)Bkpe(t)+pTe (t)B
T
k e(t)+e

T (t)

∗PHF(k)Ebkpe(t)+ pTe (t)E
T
bkF

T (k)HTPe(t)

+α‖ETPe(t)‖2+2eT (t)PE�(u(t))+δ−1γ̇ (γ (t)−γ ∗)

− eT (t)Pd(t)− dT (t)Pe(t)
}
+ 2eT (t)P

∗

v∑
k=1

hk (φ(t)){1Ukxs(t)+1Nkp(xs(t), t)} (22)

Utilizing (14), we can prove γ (t) always remains positive.
Assuming Ce(t) = ϒ(t)m×1 and ϒn(t) represents the n − th
element of ϒ(t). Considering the following statements:

(1)If ϒn(t) > 0, it is easy to get un(t) < 0. Therefore,
ϒn(t)ωn(un(t)) ≤ νnϒn(t)un(t) can be obtained by multiply-
ing ϒn(t) and dividing un(t) by both sides of (11).
(2)If ϒn(t) < 0, it is easy to get un(t) > 0. Therefore,

ϒn(t)ωn(un(t)) ≤ νnϒn(t)un(t) can be obtained by multiply-
ing ϒn(t), and dividing un(t) by both side of (11).
We can find the following inequality will always holds:

ϒn(t)ωn(un(t)) ≤ νnϒn(t)un(t). (23)

Using Assumption 2 ,(11) and (23) we obtain:

2eT (t)PE�(ν(t)) = 2
m∑
n=1

ϒn(t)ωn(un(t))

≤ 2
m∑
n=1

νnϒn(t)un(t)

≤ −ν∗γ (t) ‖ Ce(t) ‖2 (24)
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Let α = ν∗γ ∗, incorporating Assumption 1, (15) and (22),
we have:

V1(t) =
v∑

k=1

hk (φ(t))
{
eT (t)

[
PAk + ATk P+ L

TL − α

∗PEETP+(ε1+ε2)PHHTP+ε−11 ETakEak
]
e(t)

+ eT (t)PBkpe(t)+ pTe (t)B
T
k Pe(t)− e

T (t)Pd(t)

− dT (t)Pe(t)+ pTe (t)(ε
−1
2 ETakEak − I )pe(t)

}
+ 2eT (t)P

v∑
k=1

hk (φ(t)){1Ukxs(t)+1Nkp(xs(t), t)}

(25)

Parametric adaptive laws are selected as follows:

ȧ1ij(t) = −h1(φ(t))θ1lixsj(t)
...

ȧvij(t) = −hv(φ(t))θvlixsj(t)
ḃ1ij(t) = −h1(φ(t))ϕ1lipj(xsj(t), t)

...

ḃvij(t) = −hv(φ(t))ϕvlipj(xsj(t), t) (26)

where li represents the i−th element of 2eT (t)P. θv and ϕv are
known constants. The time derivative of V2(t) can be written
as follows:

V̇2(t) =
v∑

k=1

n∑
i=1

n∑
j=1

[
1
θk
akij(t)ȧkij(t)+

1
ϕk
bkij(t)ḃkij(t)]

= −

v∑
k=1

n∑
i=1

n∑
j=1

hk (φ(t))[akij(t)lixsj(t)+ bkij(t)

∗lipj(xsj(t), t)]

= − 2eT (t)P
v∑

k=1

hk (φ(t)){1Ukxs(t)+1Nkp(xs(t), t)}

(27)

Combining equations (25) and (27), we have:

V̇ (t) =
v∑

k=1

hk (φ(t))
{
eT (t)

[
PAk + ATk P+ L

TL − α

PEETP+ (ε1 + ε2)PHHTP+ ε−11 ETakEak
]
e(t)

+ eT (t)PBkpe(t)+ pTe (t)B
T
k Pe(t)− e

T (t)Pd(t)

− dT (t)Pe(t)+ pTe (t)(ε
−1
2 ETakEak − I )pe(t)

}
(28)

To investigate H∞ performance, we define J as follows:

J =
∫
∞

o
[eT (t)e(t)− σ 2dT (t)d(t)]dt (29)

Using zero initial condition, we have:

J ≤
∫
∞

o
[V̇ (t)+ eT (t)e(t)− σ 2dT (t)d(t)]dt

= ζ T (t)�ζ (t) (30)

where ζ T (t) = [eT (t) pTe (t) dT (t)],

� =

01 PBk −P
∗ ε−12 ETakEak − I 0
∗ ∗ −σ 2I

 , (31)

01 = PAk + ATk P+ I + L
TL − αPEETP

+ (ε1 + ε2)PHHTP+ ε−11 ETakEak . (32)

when � < 0, we can see that J < 0 and ‖e(t)‖2 < ‖d(t)‖2.
Using Schur complement lemma, (31) can be transformed
into (17), which completed the proof of Theorem 1.
Remark 2: Compared to the existing researches on chaotic

synchronization of coronary artery system, our strategy fully
considers input nonlinearity and parameter perturbations.

III. SIMULATION
The following numerical example is given to illustrate the
effectiveness of our control strategy. Consider the T-S fuzzy
coronary artery systems (4) and (6) with the following
parameters:

A1 = A2 =
[
−0.15 1.7
0.575 −0.35

]
, B1=B2=

[
0 0
0 −0.5

]
,

C =
[
1.5 0
0 0.8

]
, E=

[
3 0
0 3

]
, H =

[
1 0
0 2

]
,

Ea1 =
[
−0.025 0.05
0.025 −0.05

]
, Ea2=

[
0.025 −0.05
−0.025 0.05

]
,

Ed1 =
[
0 0
0 −0.1

]
, Ed2=

[
0 0
0 0.1

]
, L=

[
1 0
0 2

]
,

F(t) =
[
0.5cos(t) 0

0 0.5sin(t)

]
, d(t)=

[
0.05cos(3t)
0.1cos(6t)

]
,

�(u(t)) =
[
1+ 0.1sin(u1(t))u1(t)
1+ 0.2cos(u2(t))u2(t)

]
, σ = 0.3.

For the sake of analysis, we assume 1Nk = 0, θ1 =
35, θ2 = 3, The membership functions of the drive and

response systems are selected as: h1(φ(t)) =
x2m1
h2
, h2(φ(t)) =

1 −
x2m1
h2

and h1(φ(t)) =
x2s1
h2
, h2(φ(t)) = 1 −

x2s1
h2
(h2 = 5),

respectively. According to Theorem 1 and Assumption 2,
we can get P = diag{0.5 0.8

3 }, α = 15.5336, ε1 = 17.9871,
ε2 = 17.0300. Initial value of system (4) and (6) are selected
as:(xm1(0), xm2(0)) = (1.5,−0.2) and (xs1(0), xs2(0)) =
(0.5, 0.8), respectively. The following figures can explain
the effectiveness of our control strategy. Phase portrait of
the CAS (4) under aforementioned parameters are shown
in Figure 1(a), we can observe that the trajectory of CAS
exhibits a significant chaotic behavior. The errors between
system (4) and (6) with different initial value and without any
control are shown in Figure 1(b). It is obvious that the drive-
response systems are nonsynchronous. Time response of esti-
mation errors are displayed in Figure1(c). We can see that the
parameters of system (4) can’t be estimated accurately. From
Figure 2(c), we find that error systems can converge to zero
by applying the proposed adaptive feedback controller which
can be exhibited in Figure 2(a) and 2(b). Time response of
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FIGURE 1. Behavior of the CAS (4) and (6) without control. (a) phase
portrait of drive system. (b) synchronization errors. (c) time response of
parameters estimation errors.

FIGURE 2. Behavior of the CAS (4) and (6) with control. (a) control input
signal u1(t). (b) control input signal u2(t). (c) synchronization errors.
(d) time response of parameters estimation errors.

parametric estimation errors are given in Figure2(d). We can
clearly see that system (4) can be estimated accurately. Above
simulations demonstrated the effectiveness of our synchro-
nisation strategy under the input nonlinearity, parameters
uncertainties and external disturbances.

IV. CONCLUSIONS
In this paper, we utilize T-S fuzzy model to describe the CAS
and propose an adaptive synchronization strategy based on
this model. To be more conformable to reality, the drug effect

of CAS is regarded as input nonlinear and the parametric
adaptive control method is used to reduce the influence of
parameter perturbations. The effectiveness of our control
strategy can be demonstrated by the simulations. We inves-
tigated the coronary artery system based on T-S fuzzy model.
However, for the uncertainties in the membership functions,
the control strategies of the T-S fuzzy systems can not handle
it well. Recently, type-2 T-S fuzzy model has been widely
studied to deal with uncertain parameters existing in the
membership functions [26]. In the future, we will focus on the
chaos synchronization of the coronary artery system based on
the type-2 T-S fuzzy model.
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