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ABSTRACT The smart factory of Industry 4.0 has been regarded as a solution for handling the increasing
production complexity caused by growing global economy and demand for customized products. Besides,
it will make the interactions between humans, machines, and products become a highly competitive area
for market capitalization in the near feature. Nowadays, cloud computing with the high performance of
computing and self-service access plays an important role in realizing smart factor. To minimize the overall
cost of company in a heterogeneous cloud environment, including multiple public clouds, while ensuring
a proper level of quality-of-service, task placement across multiple public clouds is a critical problem,
where task deadlines and long-haul data transmission costs between smart factory and different clouds must
be considered. We formulate this task placement problem as an integer linear program (ILP) to minimize
company cost under the task deadline constraint. With extensive simulations, we evaluate the performance
of our proposed ILP model in heterogeneous public clouds with finite and infinite resources.

INDEX TERMS Cloud computing, heterogeneous cloud, integral linear programming (ILP), task placement.

I. INTRODUCTION
Automation and information systems such as enterprise
resource planning and manufacturing execution system make
factory productivity improve significantly. However, the cur-
rent industrial production facesmany critical challenges, such
as environmental pollution, energy consumption and ever-
shrinking workforce supply. Therefore, industrial processes
need to achieve high flexibility and efficiency as well as
low energy consumption and cost [1]. A strategic initiative
called ‘‘Industry 4.0’’ proposed and adopted by the German
government has already been proposed aiming to overcome
the drawbacks of the current production lines [2]–[4]. Other
main industrial countries have also been proposed similar
strategies, taken, ‘‘Industrial Internet’’ by USA and ‘‘Inter-
net +’’ by China for example. The Industry 4.0 describes
a cyber-physical system (CPS) oriented production system
that integrates production facilities, warehousing systems,
logistics, and even social requirements to establish the global
value creation networks [5].

The smart factory is an important feature of Indus-
try 4.0 that addresses the vertical integration and networked

manufacturing systems for smart production [2]. For smart
factory to be implemented, it needs to process large amounts
of data and large-scale calculation. That is why cloud comput-
ing is taken as the key technology to achieve the promising
prospects of smart factory.

Cloud computing enables the smart factory to utilize elastic
resources, such as servers, storage, software and so on over
the Internet, as a utility – just like electricity – rather than
having to build and maintain their own computing infras-
tructures [6]–[10]. Nowadays, multiple service providers can
offer cheap public clouds with high performance and avail-
ability. Examples include Amazon, Google App Engine and
Microsoft Azure. Smart factories are generally built on those
diversified public clouds to meet various needs.

Generally, the most frequently processed work-flows on
cloud computing are for commercial manufactures and busi-
ness managements, etc., which can be considered as a
multi-task project. Therefore, an important issue is how to
rent public clouds to carry out a multi-task project in a
cost-efficient manner, especially under task deadline con-
straints and heterogeneous cloud environments. Multiple
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public cloud providers create a heterogeneous cloud environ-
ment, in which different types of instances are offered with
various prices and performance. This leads to a complex opti-
mization problem: how to properly combine those instances
from different providers, such that the total cost can be mini-
mized while all computational tasks can be completed across
heterogeneous clouds within the given deadlines. Besides,
data transmission costs between the smart factory and clouds
must be taken into account as well.

The above problem can be taken as a task placement
problem. To come up with an optimal solution, the smart
factory needs to consider the following factors: (1) what types
of instances should be rented and from which providers;
(2) how much amounts of the instances should be rented
and how should the tasks be placed on them; and (3) what
is the optimal tradeoff among the cost of the smart factory
and service performance to meet the desired task deadline
constraints while minimizing the overall cost.

Several existing works have studied the task placement
problem in different ways. Gu et al. [11] exploit the dynamic
frequency scaling technique and formulate an optimiza-
tion problem to minimize cost, while guaranteeing the
expected response time as the quality-of-service metric.
LaCurts et al. [12] show that company can achieve a good
task placement by understanding the interplay of underlying
clouds and task demands. Shi et al. [13] focus on the problem
of scheduling embarrassingly parallel jobs composed of a
set of independent tasks and consider energy consumption
during scheduling. The objective is to determine both a task
placement plan and a resource allocation plan for jobs to min-
imize the Job Completion Time (JCT). In [14] a rule based
task scheduling method is presented for allocating tasks to
time slots of rented Virtual Machines (VMs) with a task right
shifting operation and a weighted priority composite rule.
A Unit-aware Rule-based Heuristic (URH) is proposed for
elastically provisioning VMs to task-batch based work-flows
to minimize the rental cost in DAG-based platforms (such as
Dryad, Spark and Pegasus). Pham et al. [15] introduce a novel
two-stage machine learning approach for predicting work-
flow task execution times for varying input data in the cloud.
In order to achieve high accuracy predictions, their approach
relies on parameters reflecting runtime information and two
stages of predictions.

To improve the energy efficiency of heterogeneous servers
in the cloud computing system, Zhang et al. puts forward a
non-cooperative game based task scheduling and computing
resource allocation algorithm [16]. They first use a non-
cooperative game to model the task scheduling and comput-
ing resource allocation process of the servers, and the server’s
utility function is modeled as the unit power efficiency. Then,
they prove the existence of a Nash Equilibrium point of
the game, and use a Lagrange multiplier-based distributed
iteration algorithm to solve the game. By considering task
placement for both elastic and inelastic tasks, the paper [17]
develops a resource management and allocation framework
to reduce energy consumption of datacenters.

Nevertheless, the above existing works only consider task
placement inside a private cloud, or between private cloud
and a single public cloud. Our work differs from them by
taking into account multiple public clouds in a heterogeneous
environment, as well as the long-haul transmission costs
between the smart factory and the public clouds. In particular,
we formulate an Integer Linear Program (ILP) to solve the
task placement problem and minimize the overall cost under
the task deadline constraints.

Our main contributions include:
(1) We formulate the task placement problem in heteroge-

neous cloud environment to minimize the cost of the smart
factory under the task deadline constraint, where an ILP
approach is adopted and transmission costs between the smart
factory and public clouds are considered.

(2) We evaluate the proposed model under scenarios
involving finite and infinite public cloud resources.

The rest of the paper is organized as follows: Section II
describes network model (including models for tasks and
multiple public clouds). Section III formulates task place-
ment into an ILP problem. Numerical results are presented
in Section IV and we conclude the paper in Section V.

FIGURE 1. Task placement in heterogeneous clouds.

II. MODEL
A. MULTIPLE PUBLIC CLOUD MODEL
As shown in FIGURE 1, each public cloud offers multi-
ple types of instance with different performance and prices.
Cloud providers charge the company for each renting instance
on an hourly basis. Nowadays, to assess the performance
of an instance, application-specific benchmarks will be run
on it, or to use some publicly available cloud benchmark-
ing services, such as CloudHarmony [18]. CloudHarmony
defines performance of cloud instances in the units named
CloudHarmony Compute Units (CCU).

Furthermore, we assume two scenarios: infinite and finite
public clouds. In the infinite scenario, the number of renting
instance is not limited. While in the finite scenario, the public
clouds impose constraints on the number of renting instances.
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B. TASK MODEL
We assume a multi-task project with independent tasks. Task
computation time, as measured by the running time on 1 CCU
instance without interruption, are assumed to be known and
constant. Generally, the deadline for tasks in one multi-
task project is the same. These tasks will be processed in
a heterogeneous cloud environment consisting of multiple
public clouds, as shown in FIGURE 1. Each task can only
be computed on one instance. Multiple tasks are processed
on the instance in a sequential manner as long as the deadline
constraint is not violated, and only one task can be processed
at the same time. It is notable that the order of tasks to be
processed in one instance is not important, because tasks are
independent from each other.

In our model, we also assume that each task needs to
process a certain amount of data that is stored on disk
of smart factory and the smart factory needs to pay for
data transmission from it to public clouds, whereas there is
no data transmission among tasks. For data-intensive tasks,
transmission cost may significantly contribute to the overall
cost [19]–[21]. We assume that data transmission rate from
the company to each public cloud is the same but the cost is
different.

III. PROBLEM FORMULATION
Based on the task and cloud models in Section II, in this
section we formulate the task placement problem into an
optimal ILP. It minimizes the total cost for placing the given
multi-task project across multiple public clouds by jointly
considering individual instance cost and performance, as well
as task deadline and data transmission cost.

A. NOTATION LIST
Parameters describing tasks:
I : The total number of all tasks.
si: The i-th tasks in multi-task project S, where S =
{s1, · · · si, · · · sI }.
di: The size of data needed to transmission for task si.
ai: The computation time of task si
t : the deadline for all tasks in one multi-task project.
Parameters describing public clouds:
M : The total number of candidate public clouds.
Nm: The number of instance types belonging to the

m-th public cloud, where m ∈ {1, 2, · · ·M}.
Kmn: The number of n-th type instances belonging to the

m-th public cloud, where n ∈ {1, 2, · · ·Nm}, m ∈

{1, 2, · · ·M}.
Parameters describing instance type :
cvmn: The cost for renting n-th type instance belonging to

the m-th public cloud per hour..
CCUmn: The performance of n-th type instances belong-

ing to the m-th public cloud in CloudHarmony Compute
Units (CCU).

Parameters describing data transmissions:
cdm: The cost of data transmission between smart factory

and m-th public cloud per MB.

ximnk : Binary variable. It takes 1 if si is put on the i-th task
on the k-th instance of the n-th type belong to the m-th public
cloud, and 0 otherwise.

B. ILP FORMULATION

Minimize

[
I∑
i=1

M∑
m=1

Nm∑
n=1

Kmn∑
k=1

(⌈
ximnkai
CCUmn

⌉
cvmn

+ ximnkdicdm

)]
(1)

s.t.
I∑
i=1

ximnkai < tCCUmn,

∀m ∈ {1, 2, · · · ,M}, n ∈ {1, 2, · · · ,Nm},
k ∈ {1, 2, · · · ,Kmn} (2)

M∑
m=1

Nm∑
n=1

Kmn∑
k=1

ximnk=1, ∀i ∈ {1, 2, · · · , I } (3)

ximnkai
CCUmn

≤ t, ∀i ∈ {1, 2, · · · , I } (4)

Objective (1) minimizes the total cost. The first term is
the cost of renting the instances, and the second term is the
cost of all data transmissions between the smart factory and
the public clouds. Which tasks can be put in one instance is
constrained by (2). Constraint (3) says that each task can be
placed onto at most one instance. Constraint (4) ensures that
all tasks can be completed before deadline. In the finite public
cloud scenario, the number of rented instance for each type
constrained by (5).
K∑
k=1

ximnk ≤ N0,

∀i ∈ {1, 2 · · · I }, ∀m ∈ {1, 2 · · ·M}, ∀n ∈ {1, 2 · · ·Nm}

(5)

TABLE 1. Instance parameters.

IV. NUMERICAL RESULTS AND DISCUSSIONS
We set simulation parameters on instances as in table 1.
Unlimited number of rented instances is assumed in the infi-
nite public cloud scenario. In contrast, we assume at most
10 rented instances for each type in the finite public cloud
scenario.

A. THE RELATIONSHIP BETWEEN COST AND
COMPUTATION TIME
In this experiment we assume three kinds of multi-task
project. The computation time of task which is con-
tained each multi-task project follows Gaussian distribu-
tion N (0.2, 0.05), N (0.5, 0.05) and N (1, 0.05), respectively.
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FIGURE 2. Relationship between cost and computation time.

Obviously, the mean of computation of time of above three
project is equal to the mean of Gaussian distribution and
increasing. The total number of tasks belonging to eachmulti-
task project is 50 and the size of transmitted data for each task
is the same 25 MB.

We simulate above three multi-task projects in infinite and
finite public cloud scenarios and the results are distinguished
by different line types shown in the legend of FIGURE 2.
FIGURE 2 shows that the total cost always decreases with
the deadline. This is because more tasks can be placed on one
instance for a large deadline, and thus decreases the required
total number of instances for all tasks. Constraint (2) plays
an important role on this. We can also see that the total
cost increases with the mean of computation time increas-
ing under the same deadline. This is due to constraint (3).
The reason is that if the mean computation time increases,
we have to rent high performance instances with a higher
price to complete all tasks in time, which will increase
the total cost. Note that there is no solution for the multi-
task project with computation time following N (1, 0.05) in
finite and infinite public cloud scenarios when the deadline
is 0.5 h. This is because that those tasks in the above multi-
task project can’t be finished even we rent highest perfor-
mance instance under the deadline is 0.5 h. This is caused by
constraint (4).

FIGURE 2 also shows that the total cost in the finite
public cloud scenario is much higher than that in the infinite
case. This is because the number of low price instances is
limited by constraint (5). Therefore, high price instances
must be rented to complete the tasks under the deadline
constraint.

B. THE RELATIONSHIP BETWEEN COST AND THE SIZE OF
DATA TRANSMITTED
In this experiment, we also assume three kinds of multi-
task project. The size of data to be transmitted for each
task which is contained in every multi-task project follows
satisfies Gaussian distributions N (25, 0.05), N (50, 0.05) and

N (75, 0.05) respectively. Obviously, the size of data to be
transferred is increasing. The total number of tasks of each
multi-task project is 50, and the computation time of each
task in all multi-task projects is the same which is 0.2h on
1 CCU instance.

FIGURE 3. Relationship between cost and data transmissions.

We also simulate the above three multi-task projects in
infinite and finite public cloud scenarios. Simulation results
are shown in FIGURE 3. The legend in FIGURE 3 is similar
to that in FIGURE 2. We can see that the total cost increases
with the size of the transmitted data growing. The second
part of the objective function plays an important role on this.
FIGURE 3 also shows that the total cost in the finite public
cloud scenario is much higher than that in the infinite case.
Again, this is because high price instances must be rented to
complete the tasks under the deadline constraint.

V. CONCLUSION
We studied the task placement problem under the task dead-
line constraint in a heterogeneous cloud environment contain-
ing multiple public clouds. An Integer Linear Program (ILP)
was formulated to solve this problem for total cost minimiza-
tion. The proposed ILP considers not only the cost of renting
various types of instances with distinct costs and performance
in different clouds, but also the transmission cost between the
company and the public clouds. Numerical results showed
that the total cost increases with the computation time and
the size of the transmitted data. Our results can be applied to
both computation and data intensive tasks.
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