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ABSTRACT Different operation phases in batch processes cover distinguishing behaviors, so establishing
statistical models for each identical phase become an effective way for batch monitoring. In this paper, a new
adaptive phase partition and online fault detection method is proposed, which can track the phase’s transition
by time sequence and has less reliance on parameters’ selection. The discussion and analysis of this proposed
method follows. In this proposed method, the information contained in every sample time will be evaluated,
and the change tendency of feature is demonstrated on a batch prospect. Then, two control bounds are
designed for the feature tendency, the stable, and the transitional phases that have a different feature level and
play certainly roles in process operation, will be identified automatically. For onlinemonitoring, the new fault
detection strategy is composed of modeling the PCA and PLS statistical methods for each identified phase,
three statistics are established to ensure the data-decomposing reliable. The proposed method is applied to
the industrial penicillin fermentation process, and the experimental result shows better performance in phase
partition and fault detection.

INDEX TERMS Multi-phase monitoring, adaptive phase partition method, information evaluation, feature
tendency, fault detection strategy.

I. INTRODUCTION
The scale of product and process flow has sharply risen with
the development of modern industry. The quality and safety
of production attract increasing attention. Batch processes, as
a significant production method, are widely used in the fields
of chemicals, semiconductors, food, etc. Its multi operation
character contributes to produce a product step by step safely
and allows us to achieve high-quality production at a low cost.

The monitoring and fault detection model of industrial
batch process is generally established from historical produc-
tion data, apart from keeping the product program on an effi-
cient, safe and stable operational status, themonitoringmodel
also helps to find and eliminate abnormal situations in time by
analyzing the statistical information among measured data.
Multi-way principal component analysis (MPCA) [1]–[3]
and Multi-way partial least squares (MPLS) [4]–[6], both
are multivariate statistical process control (MSPC) meth-
ods, have commonly been used in data analysis and process
monitoring. Duchesne and Mcgregor [6] first applied MPLS
method to monitor the quality of batch production. The pro-
posed method takes all the history data as model’s input to

extract the relative features between the process variables and
quality-related variables. However, the MPLS model fails to
consider the high correlation contained in measured data and
the influence of the phase reaction in local regions, both of
them have great impact on the final production quality.

In fact, the industrial batch process has many inherent char-
acteristics, such as multi-phases and local reactions. Multi-
phases based process monitoring method has been widely
reported [7]–[9]. Zhao et al. [8] proposed that the correla-
tion of variables in the batch process does not vary with
time, but closely relate to the process’s operation and mecha-
nism. For example, the injection process can be divided into
three phases according to the product program. Among these
phases, the measured variables show different data character-
istics in different operation states and modes, while the corre-
lation of measured variables keeps stable in the same mode.
From a statistical view, the mean, variance, and correlation of
the measured variables show the phases’ diffidence. There-
fore, the multiphase method is widely used in quality-related
fault monitoring [9]–[11]. Duchesne and Mcgregor [6]
proposed the multi-block PLS trajectory method for fault
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detection. This method extracts the features that related to
the multi-phases and quality with the information of middle
process variables. However, the intermediate quality informa-
tion is rare in actual process, which limits its actual appli-
cation. Lu and Gao [12] extracted the principal components
of time slice along the time duration to indicate the transi-
tion of phase’s characteristics. They found that the phase’s
characteristics keep similar in the same phase and differ
between phases. Finally, the k_mean clustering algorithm is
employed to phase’s identification, and the result performs
well. Zhao et al. [13] proposed the soft partition method
for phase identification to overcome the shortcomings of
k_mean algorithm, such as hard division for each sample data.
The basic idea of phase partition based on the cluster-based
method [12]–[16] is that process features follow with phases’
switch and keep similar in the same phase. These methods
can effectively capture the dynamic characteristics without
filling the unknown and missing data. However, there are
still some deficiencies in these methods. For example, the
cluster-based algorithm doesn’t consider the time sequence
of phase duration, and it easily leads to the time crossover
of sample data. In addition, the neglect of the characteristics
from one phase to another also descends the accuracy of
the representative model. Moreover, the clustering methods
are often limited by the choice of parameters, such as the
initial center, the initial number of clusters, and the minimum
phase’s time duration.

In order to overcome the shortcomings of cluster-based
method in phase identification, it is beneficial to analyze
the inherent nature of process at each sample time in
which we could capture the time-variant phase’s informa-
tion [11], [17]–[19]. Therefore, an indicator that has the
ability to reveal the change of the phase’s features in a running
process is required. In fact, a number of phase partition meth-
ods based on feature indicator have been developed in recent
years [20]–[24]. Sun et al. [20] track the cumulative percent
variance of the principal component to get a phase division
effect. However, it fails to capture the variation in different
batches, and be insensitive to phase switch. Chang et al. [21]
have proposed a two-step phase partition method by tracking
the variation of principle components’ number and direction.
After the two-step program finished, the stable and transition
phase will be identified according to the tendency of mean
load matrix’s similarity. Zhao et al. [22] have proposed an
SSPP algorithm which considers the time sequence for phase
partition, the phases and transition patterns are in fact identi-
fied by capturing their influences onmonitoring performance.
In addition, many effective indicators had been designed for
phase partition [23]–[25], such as the dissimilarity index,
where the information of neighbor time slice is integrated for
phase partition.

Commonly, all of the phase partition methods mentioned
above not only analyze the information contained in sam-
ple times but also develop a process monitoring model for
each phase. However, none of them consider the changing
information from whole batch’s prospect, the phase partition

results are often constrained by the local phase duration view,
in other words, they lacks a unified and global index to
compare the information in different time slices that are not
in neighbor sample times. The hiddenMarkov model (HMM)
chain [26], [27] is an effective pattern recognition method, its
rich mathematical structure enables it to learn a system state’s
transition progress from training data, which is suitable to
explain and assess the change of information from a global
prospect [28]–[30].

In this paper, a new adaptive phase partition method and
online fault detection method is proposed. It can track the
phase’s transition by time sequence from a batch’s prospect.
Here, we assume the batch duration is the same for different
batches. To begin with, the information contained in every
sample time will be evaluated, and the change tendency
of feature is demonstrated on a batch prospect. The ten-
dency of feature revolution not only implies phase’s duration
length, but also provides the information of state transition.
The stable and the transitional phases that have different
feature level and play certainly roles in process operation,
will be identified automatically, meanwhile, the short time
duration between phases and the transition process are also
well described. Discussion and analysis are followed. When
the partition program finished, the batch duration will be
divided into several time intervals. For online monitoring,
the PLS-based monitoring method aims to extract the relative
information between process variables and quality variables,
but fails to provide interpretation to the residual part of pro-
cess variables, which brings the confusion to fault location
and reduces the monitoring model’s accuracy. The new fault
detection strategy is composed of modeling the PCA and PLS
statistical methods in each identified phase, three statistics
are established to ensure the data decomposition reliable.
The proposed method is applied to a typical batch process,
industrial penicillin fermentation process. The experiment
proves that the proposed method has a better performance in
monitoring and fault detection.

The remained of paper is organized as follows. The phase
partition method, with less reliance on parameter selection, is
proposed to separate the process duration into several phases
automatically and discussion is conducted in section II.
In section III, a monitoring frame is established for batch
processes, online and offline model is discussed. A typical
industry batch process is used to confirm the efficiency of
multi-phase identification and fault detection, the analysis
follows in section IV. Finally, we present our conclusions
in section V.

II. METHODOLOGY
A. PCA AND PLS METHOD
Partial least squares (PLS) [3], [4] is one of the important
data-decomposed methods in multivariate statistical analysis.
It focuses on finding the most relative and explainable direc-
tions to extract low-dimensional features between matrixes
X and Y . These explainable directions pay attention to pre-
dictive ability from input space to output space. Multi-way
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partial least squares method (MPLS) is an extensive method
of PLS. It firstly transforms the 3-dimensional matrix into
2-dimensional matrix with the variable or batch unfolded
method, and then PLS is employed to extract low-dimension
feature on those 2-dimensional matrixes subsequently. These
two unfolded methods mentioned above not only preserve
the nonlinear time-vary character of batch data, but also keep
the average trajectory cross batches. Generally, the variable
unfolded method does not need to predict the unknown data,
and it also does not require the same batch duration. The
batch unfolded method refers to the equal duration of batch’s
trajectory, and the unknown data must be filled. The MPLS
data-decomposed form for 2-dimension matrixes X and Y
follows:

X = TPT + E =
k∑
i=1

tipi + E

Y = UQT + F =
k∑
i=1

uiqTi + F (1)

Where the matrixes T and P are the score and load matrix
of X . U and Q are the score and load matrixes of Y . k is the
number of latent variables retained. E and F are the residuals
matrixes of X and Y , respectively.
The PLS method is a predictive regression method, which

is responsible for the data space decomposition from one
to another. For online process monitoring, the traditional
PLS-based monitoring method pays more attention to the
relevant information between process variables and qual-
ity variables than the fault information’s location that may
appears in a less relevant correlation. In other words, there
may be a large variable information exist in the X ’s residual
matrix E . In order to ensure the integrity of the monitoring,
the PCA method is further carried out to extract the residual
information in matrix E , and the extracted residual form is as
follows:

E = TxPx + Ẽ

Tx = EPx (2)

The matrix X can be further decomposed into the following
form:

X = TPT + TxPx + Ẽ (3)

When the MPLS and PCA method are devoted to monitor-
ing model, the statistics and corresponding control limits are
calculated from off-line training data, as TABLE 1 shows:

TABLE 1. Statistics and corresponding control limits.

Among them, tij is the jth principal component vector in the
PLS model corresponding to the ith sample. σj is the standard
deviation of the j principal component, k is the number of
principal components, K is the number of training samples,
and Xi,j and X̃i,j are the measured value and the reconstructed
value of the ith sample. g = vk/2mk, h = 2mk/vk , mk ,
vk , respectively, represent the mean and variance of all Qi
statistics at the kth time interval, and Q is the calculated
control limits.

For on-line monitoring, the new collected data xnew(1× J )
is standardized by the training data, the low-dimensional
principal component score vector tnew and residual vector
enew are obtained by the following form.

tnew = xneww/(pTw)

enew = xnew − tnewpT (4)

Among them, w is the weight coefficient of X in the PLS
model, which reflects the influence of elements in xnew.
Furthermore, the detection statistics Tnew and Qnew are

calculated based on tnew and enew. If Tnew > T 2 orQnew > Q,
the process may be out of control, which indicates that there
may be a fault and the specific situation needs further analysis
and verification.

B. HIDDEN MARKOV MODEL CHAIN
The hidden Markov model (HMM) [25], [26] chain is a
probabilistic model of time series. It describes a transit pro-
cess for an unobservable random state sequence to infer an
observable data’s generation probability. The HMM model
can be symbolized as λ = (A,B, π). The state probability
transition matrix A and the state probability vector π jointly
confirm a Markov chain, and both of them also generate an
unobservable hidden state sequence. The observable proba-
bility matrix B and state sequence commonly determine an
observable data’s generation probability. FIGURE 1 shows a
process of hidden state sequence transit with in HMMmodel.

FIGURE 1. A process of hidden state sequence transit in HMM model.

The HMM model’s parameters are defined as follows:
1) State probability transition matrix A = [aij]N×N. A

is the transit probability for hidden state qj transfer
to qi when the sample time t steps to t + 1, where
aij = p(St+1 = qi|St = qj), i = 1, 2..,N , j = 1, 2, ..,N

2) Observation probability matrix B = [bkj]M×N, bj(k) =
p(ot = vk |St = qj), k = 1, 2, ..,M , j = 1, 2, ..,N ,
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where bj(k) is the probability of observable data vk that
generated by state qj on tth sample time.

3) State probability vector π , π is the initial probability of
the state qi, where πi = p(S1 = qi), i = 1, 2, ..,N .

A new parameter training method of the HMMmodel was
proposed in paper [31], [32]. Setting the initial state number
as N , the dimension of the initial probability distribution
vector and the output observation data as M , which is deter-
mined by experience and cross validation, the state transition
probability matrix A has a discrete distribution, and the output
observable matrix B has a continuous distribution, both of
them are learned by the forward algorithm [31]. The observ-
able probability matrix B is generated by a Gauss Mixture
model on each hidden state, bk(o) =

∑M
j=1 ckjG(o, ukj, σkj),

where o is the observable data vector and ckj, ukj, σkj cor-
respond to the mixture coefficient, mean vector and covari-
ance matrix of the jth Gauss component on kth hidden state,
respectively. The number of random state sequences in the
HMMmodel will affect the performance of the system, there-
fore, our paper uses Bayesian information criterion [10] to
determine the state sequence’s number as 5 and the number
of Gauss component in Gauss Mixture model as 5.

The information contained in the observable data O =
{o1, o2, .., oM } are assessed by the HMM model as follows:

Iest = P(o1, o2, o3, ..oN ) = log(
N∏
j=1

bj(k)) (5)

Where bj(k) = P(ot = vk |St = qj), k = 1, 2, ..,M and
j = 1, 2, ..,N . Iest is generated by the inner Markov chain in
HMMmodel, which is evaluated by the transit of inner hidden
state. Its value represents the relevant level for observable
data O = {o1, o2, . . . , ok, . . . , oM }, therefore, when the oj
is closer with other vector in data set O, the larger Iest is, in
other words, more closer in the data space.

C. PHASE PARTITION METHOD

Industrial batch process has many operation phases, and dif-
ferent phases present different data distribution. For online
monitoring, a single PLS-based model trained by whole
batches data proves poor monitoring performance. It is
necessary to develop multi-phase models for batch pro-
cess to handle the features contained in smaller and local
phases.

In the current work, the assumption is that the batch dura-
tion is the same for different batches. The three-dimensional
historical batch data X (I × J × K ) will be transformed into
a 2-dimensional matrix by the batch or variable unfolded
method. Where, I refer to the batch’s number, J is the dimen-
sion of process variable, K is the batch duration. The batch
method keeps the main dynamic characteristics along time
and batches, and the variable method retains the nonlinear
time-varying trajectory. The advantages of twomethods men-
tioned above can be integrated in actual practice. X (I×J×K )
is firstly arranged as X (J × IK ) by the variable unfolded

method, and its class quantities are eliminated. Then,
X (J × IK ) is transferred as time slices X (I × JK ) with
batch unfolded method. The proposed method views Xi(I ×
J ), i = 1, 2, ..,K , as a basic time slice unit to capture
the time-varying feature along the time direction. The time
slice based on batch unfolded method implies the phase’s
transition information, which allows us to track the ten-
dency of process’s feature revolution from batch and time
prospect. The basic phase partition program is shown in
FIGURE 2.

In this section, an adaptive phase partition method based
on time slice is delivered. It mainly takes the principle com-
ponents of each time slice unit into consider. The phase
partition progress we proposed is consists of two parts, gener-
ation of features tendency and segment of features tendency.
1)Generation of features tendency. The PCAmethod is often
used to extract the principle components (PCs) in time slice
unit. It has the ability to find the largest explanatory orthog-
onal basis for data distribution, which provides a feature
extraction scheme for every sample time. While the PCA
method lacks the ability to compare and assess the infor-
mation in two different time slices. Therefore, an indicative
index is required to be designed to effectively show the fea-
ture change in batch process. In this paper, The HMMmodel,
due to its powerful mathematical structure, is employed to fit
system status. When all time slices’ PCs had been extracted
by PCA, the features tendency of batch process will get
with the help of HMM’s overall evaluation from batch view.
2) Segment of features tendency. The features tendency
shows the relevant level of changing features with time
sequence, and the distribution character of features tendency
is adopted for the phase partition. Finally, the batch duration
will be divided into three type phases: the stable phases, the
transition phases, and the shorter phase duration intervals of
batch process are well described. What’s more, the shorter
phase duration intervals that have fast feature shifts are com-
monly identified, and a merging strategy is carried out to
handle these special regions.

This phase partition method relies on the information con-
tained in time direction, and the phase result follows with
time sequence. The proposed phase partition method pays
less attention to parameter selection and helps to reduce prior
experience on a special condition in practical application.

1) DATA PREPROCESSING
First, the history process data X (I ×J ×K ) is standardized to
X̄ (IK×J), whose mean is 0 and variance is 1 according to the
variable unfolded method. Second, the data matrix X̄ (IK ×
J ) is transformed into

_

X (I × KJ ) by the unfolded forms are
shown in FIGURE 3; the basic time slice matrix is

_

X k (I ×J ),
where k = 1, 2, 3, ..,K

2) TIME SLICE’s INFORMATION EXTRACTION
The principal component’s information is extracted using
the PCA method in all K time slices, and the number of
principal components (PCs) is determined from the variance
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FIGURE 2. The program for phase partition.

FIGURE 3. Three-dimensional matrixes with the batch and variable
unfolded methods.

accumulation rate (>90%), recording the maximum number
of PCs in all K time slice as c. To guarantee the comparison
of the changing information in each time slice, the degree of
principal information held in all K time slices is unified by
the number c. The PCA information extraction for the kth time
slice matrix is as follows.

_

X k = TkcPkc + E

Tkc =
_

X kPkc (6)

Among them, Tkc and Pkc are the score and load matrix of
time slice

_

X k (I×J ) and c is themaximumnumber of principal
components in all K time slices.

3) GENERATION OF FEATURES TENDENCY
After the principal components of each time slice has
been extracted by the PCA method, all K load matrix Pkc

FIGURE 4. Time slice correlation analysis based on the HMM model.

are obtained. The K load matrixes represent the data space
distribution of time slices.We use the HMMmodel to fit these
data information, and the quantitative the correlation analysis
evaluated by HMM model is shown in FIGURE 4 and the
detailed assessment program follows:
a) Using all K load matrix Pkc to train the HMM model.
b) The trained HMM model is used to evaluate the corre-

lation of allK load matrix Pkc, and the evaluation index
I iest is attained by equalization (5), where i = 1, 2, ..,K .

This evaluation index is based on the overall signifi-
cant system fitness where comprehensively evaluate between
the current ith sample time and the other sample time that
excludes the ith.

4) SEGMENT OF FEATURES TENDENCY
The evaluation index I iest shows a stable variation degree in
some time intervals, some switch rapidly and last short, which
corresponds to the longer duration operation phase and the
transition period in the industrial process mode. Therefore,
the variation degree of evaluation in the sample time inter-
val can be viewed as the basis for phase division, which is
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reasonable for multi-phase identification and helpful to
improve the detection accuracy and sensitivity of the moni-
toring model.
a) Calculating the mean and variance of all K time slice

evaluation index I iest, as Iesti_mean and Iesti_std.
b) Recording the ith time slice evaluation index as I iesti and

the control upper and lower bounds of I iest value as

Iesti_h = Iesti_mean + αIesti_std

and

Iesti_l = Iesti_mean − αIesti_std

Where, α is the control bound factor that determines
the result of phase identity. The larger α is, the less
the identical phase’s number is. The smaller α is, the
easier to exert shorter time duration and more phases.
Therefore, the selection of α should be following actual
process data. The value of Pindex (i) shows the control
area of the ith time slice hold.

Pindex(i) =


−1 I iesti < Iesti_l
0 Iesti_l < I iesti < Iesti_h
1 I iesti > Iesti_h

(7)

c) Continuous time intervals with different lengths are
obtained by merging the sample time points with the
same Pindex (i) values, and p is set as the minimum time
duration length of a phase. Define a time interval whose
length is shorter than p as relatively short time dura-
tion of a phase. The single sample time or short time
intervals L jmin are obtained by the serial positioning of
all time intervals. The short time intervals L jmin means
the short phase duration of swift features, and they may
appear in a stable operation or a transition operation
of the batch process. We carry out a precise scheme
to handle such conditions. Thus, the merge direction
of short time interval L jmin is determined by using the
following form.

abs(mean(I jesti)− I
prev
esti )− abs(mean(I

j
esti)− I

next
esti )

=

{
> 0 j ∈ next
< 0 j ∈ prev

(8)

Among them, Iprevesti and Inextesti are the average values of Iesti
in the continuous time interval before L jmin and after L jmin,
where their phase duration length is larger than p. The abs(∗)
and mean(∗) are the operation of absolute and mean in math,
respectively. I jesti ∈ L

j
min, j = 1, 2, .., h, h < K .

D. DISCUSSION AND ANALYSIS
With the segment of feature tendency, the batch duration is
divided into multi-phases. The advantage to use correlation
evaluation as an indicator for phase partition is that it offers
a significant correlation evaluation in a global perspective.
Furthermore, the changing degree of time slice information
evaluation in the stable and transitional phases is devoted to
identify multi-phases in the whole batch duration.

1) THE UNIFIED INFORMATION CONTAINED IN TIME SLICES
Time slice is viewed as the basic analytical unit, because
different information contained in sample time point of batch
process. To ensure the comparability of information between
time slices, the PCA method is applied to extract the infor-
mation of time slice whose principal components number is
determined by the cumulative variance rate (> 90%) method,
and the largest number of principal components in all the time
slices is considered as a unified information reserve. This
makes the information of a time slice comparable and ensures
the consistency of HMM model information evaluation.

2) PHASE IDENTIFICATION AND MERGING STRATEGY
When the phase partition method is employed to identify the
stable and transition phases in batch process, all sample time
will be collected into several time intervals with diffident
length. Pindex(i) shows the index of I iesti in the ith time slice,
which is relative to control limits Iesti_h and Iesti_l. The stable
phase often performs a long time interval and same Pindex
value, while in the transition phase whose features shift fast
as well as the Pindex(i) value, the time interval with same
Pindex(i) value has a short duration and out of rule. We can
partition phases roughly according to the duration length of
continuous Pindex value. The sample time point with the same
Pindex(i) will be collected in a continuous interval, then, many
time intervals with different lengths are obtained. Define a
time interval whose length is shorter than p as relatively short
time duration of a phase. Therefore, the time intervals can
be divided into three kinds roughly, stable intervals, transi-
tion intervals, single time points and short duration intervals.
Single time points and short duration intervals means shorter
phase durations with swift features, and they may appear in a
stable operation or a transition operation of a batch process.
We carry out a precise scheme to handle such conditions.
The merge direction of a short time interval will be deter-
mined by using the following form. If they stay between
transition intervals, it is reasonable to attribute them to tran-
sition intervals with the transition operation’s characteristics.
If their neighbors are stable operations, they may be discrete
time intervals or single sample times in the normal process
condition; it is better to classify them as partials of stable
intervals, instead of abandoning them. If the single time point
and short duration intervals hold as narrow stable intervals
and transition intervals, the mean of I iesti of the three intervals
above will be compared to make sure of the certain merging
direction of the short duration intervals. Finally, the whole
reaction time of the process is divided into the stability phases
and transition phases adaptively.

III. ONLINE MONITORING STRATEGY
To obtain the process monitoring model, batches process
variable data X (I×J×K ) and quality data Y (I×M×K ) are
arranged asX (IK×J ) and Y (IK×M ) by the variable unfolded
method, where their mean and variance are standardized
to 0 and 1. Second, X (IK × J ) and Y (IK ×M ) are rearranged
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FIGURE 5. The fermentation process of penicillin production.

as X (I × JK ) and Y (I ×MK ) by the batch unfolded method.
The time slice Xi(I × J ) is viewed as the basic unit for the
phase partition, where i = 1, 2, ..,K . After n phases have
been identified, the PLS and PCA models are used to set up
the quality-relatedmonitoringmodel in each identified phase.
Finally, as the TABLE 1 depicted, the statistical control limit
T 2 is established for T 2

y and T 2
x , and the statistical control

limit Q is established for the residual matrix Ẽ .
When the new process data Xnew(1× J ) is sampled online,

it is firstly normalized by mean and variance obtained from
historical training data, and the standardized data xnew(1× J )
is obtained. Then, the statistics ty, tx and e are calculated in
the corresponding phase’s model with xnew(1× J ).

ty = xneww/(pTw)

x̃ = xnew − tP

tx = x̃Px
e = x̃ − txPx (9)

Online fault detection and monitoring is conducted by
continuously comparing the statistics ty, tx with T 2 or and
ewithQ. If any statistic is beyond the statistical control limit,
the process may be out of control, there is a fault. Otherwise,
the process is in the normal state.

IV. ILLUSTRATION AND DISCUSSION
A. PROCESS DESCRIPTION
The proposed phase partition and process monitoring method
is applied to the actual multiphase process in this section. This
phase partition method is effective in separating the stable
operation phases for batch process. The transition process
between neighbor’s phases can also be expressed clearly.
It overcomes the specific problems, such as time crossover
and phase disorder, and the partitioned result follows with

time sequence, which enhances the phase’s interpretability.
After the phases have been identified, online fault detection
strategy is composed of modeling the PCA and PLS statistical
methods in each identified phase, three statistics are estab-
lished to assure the data-decomposing reliable. The effect of
parameter α on monitoring performance is also analyzed.
Penicillin is one of the most widely used antibiotics in clin-

ical medicine. It is a typical semi-batch process, which cov-
ers nonlinear, dynamic, and multiphase characteristics. The
penicillin fermentation process is a two-microbe metabolic
process. In the first phase, the growth and reproduction of
the bacteria are carried out under certain conditions. When
the concentration of the bacteria reaches the required level,
penicillin is produced as a metabolite. In the penicillin fer-
mentation process, in order to ensure the final penicillin
production, the concentration of the bacteria must be main-
tained at a certain level. Therefore, sugar, nitrogen and other
nutrients need to be added continually. FIGURE 5 shows the
program for the penicillin fermentation production process.
The temperature and pH are under closed-loop control, and
the feeding process is under open-loop control.

Ali Cinar led his team in 2002 to develop a penicillin
production simulation model Pensim 2.0. As a standard test
platform, the model has been widely used in the field of batch
process monitoring and fault diagnosis. This platform is a
standard platform for researchers to process monitoring for
home and abroad, with which you can simulate the microbial
concentration, pH, carbon concentration, CO2 concentration,
penicillin concentration, oxygen concentration and heat gen-
eration under different operating conditions in the penicillin
production process.

The penicillin fermentation production process can be
divided into three phases: the cell growth period, the initial
fermentation period and the fermentation period. Its batch

VOLUME 6, 2018 1255



A. X. Ye et al.: Time Sequential Phase Partition and Modeling Method for Fault Detection of Batch Processes

FIGURE 6. (a) The correlation results of each time slice evaluated by HMM model (solid line). The control bounds
are based on the evaluation result distribution (point line), and the dashed line is the average evaluation level;
(b) the phase division result according to the phase division method when the control factor α = 0.25.

reaction time is 400 hours, and the sample time is 1 hour.
In this experiment, 10 process variables and 2 quality vari-
ables are selected for quality-fault monitoring, as shown in
TABLE 2. In order to make the training data reliable and
adequate, this paper has produced 80 batches normal data
as the reference database for model training. Among them,
70 batches are model training data, and 10 batches are test
data.

TABLE 2. Process and quality variables in the monitoring of penicillin.

The fault types of the penicillin fermentation process can
be introduced by setting the amplitude and fault time for
three variables. They are the aeration rate, agitator power,
and substrate feed rate. The introduction of the specific form
is shown in TABLE 3. All training batches are assume to
have equal duration, which results in the three-way array
data matrix X (I × 10 × 400) and the quality data matrix
Y (I × 2 × 400), where I denotes the number of batches
for normal and fault cases. 70 normal batches data are used
for model development, and the other 10 batches are used for
model test. The form of the fault cases is in TABLE 3.

B. PHASE PARTITION DEVELOPMENT
Firstly, the principal component’s information of all time slice
matrices is extracted by PCA method, and the number of

TABLE 3. Fault types of the penicillin fermentation process.

principal components is determined by the variance accumu-
lation rate (>90%). In order to guarantee the comparison of
the changing information in all time slices, the maximum PCs
number of time slices in this partition procedure is 6. Accord-
ing to the phase partition method in section 2, setting the
control factor α = 0.25 and theminimumphase duration time
p = 10. FIGURE 6 shows the numerical evaluation deter-
mined by the HMMmodel and the phase partition results with
the control factor α = 0.25. It can be seen from FIGURE 6 (a)
that when the time is50, the value of the evaluation curves
rises and Iesti crosses the lower bound, the Pindex value is
different from the time point before 50, moreover, the length
of the time interval around 50 with the same Pindex value
is less than the minimum phase duration p, which should
be viewed as a relatively short time interval for subsequent
merger to determine where this time period belongs to. It is
known from FIGURE 6 (b) that the shorter time interval
around 50 is determined as same as the continuous stable time
interval before 50. In addition, the Pindex value has 7 times
change in time interval [300, 400] in FIGURE 6 (a), 3 phases
are identified according to the minimum time duration and
the characteristics of Iesti’s mean in the neighbor time interval
in FIGURE 6 (b).
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FIGURE 7. The selection of the different control boundary factors α for the phase division method and its phase partition results.

FIGURE 7 shows the phase partition results when different
control factors α are selected. It can be seen that the smaller
α is, the more phases we divide. Fewer long time duration
phases mean swifter change degree of the process feature.
As the α value increases, the phase that we had identified
gradually decreases, the number of the stable and long period
phases increases, and more sample times are considered to
be similar with each other and attributed to the same stable
phase. The transition patterns are missing since they are
accommodated into neighboring phases, and the transition
patterns are the time intervals with short time durations or
the single points between the stable neighbor phases. For
example, when α is set to 0.25, 10 phases are separated from
the batch process, including 3 stable phases and 7 transition
phases. When the α value increases to 0.75, the number of
transition phases reduces to 4. Especially, the phase partition
method that we proposed loses its ability when the value
of α is larger than 1.3.it is noted that the partition phase
is agreeable with the actual penicillin fermentation process
when α value falls in the interval [0.75, 0.9]. In addition, the
transition process between the stable phases is also shown to
improve the monitoring process.

From the result, it is clear that the proposed phase partition
method can divide the whole process into several continuous
time duration intervals as time series. What’s more, the tran-
sition and stable phases can be expressed, and the transition
between phases has shorter time interval that more dynamic
process characteristics than the stable ones. The division
results using the proposed method are more direct and easy
to understand, and no extra post-processing is required.

C. PHASE MONITORING MODEL
Based on the proposed phase partition method, differ-
ent multi-statistical space models are developed for each
identified phase and transition phase by the variable unfolded

method, and batch data is assigned to the same time segment.
To show the feasibility and ability of process monitoring,
FIGURE 8 (a) shows proposed method for a normal batch
with α is 0.75. Compared with FIGURE 8 (b), we can
find that the detection limit follows as the phase partition
in FIGURE 8 (a), which shows the continuity of phase’s
characteristics. When α is 0.75, the process is divided into
6 phases, including 3 stable and long duration time phases.
In FIGURE 8 (a), the detection limit T 2

y does not show the
multi phase character because the numerical statistical limits
are close in the first few phases. The detection limit Qx is
more indicative to the phase division. Considering the detect
results of the normal batch, the results of the proposedmethod
have more advantages than the PLS-based method, and the
statistics of the normal batches are overall distributes below
the statistical limit in FIGURE 8 (a). While, theQ2 statistic of
the PLS method in FIGURE 8(b) leads to the error detection
at the beginning of the process, and this phenomenon last
for a long time, which can provide error guidelines for the
operation and product safety.

The cause of fault 4 is shown in TABLE 2. The Fault 4
occurs at the 100th time point and lasts until the end of the
process. FIGURE 9 (a) shows the detect result of the proposed
monitoring method for fault 4 when control factor α is 0.75,
the control limit T 2

y has detected the fault happen at the 100th
time point and lasts until the end of the process, which shows
better fault detection capabilities. FIGURE 9 (b) shows the
detect result for fault 4 according to the PLS-based method.
The control limit T 2 fails to detect the fault at the 100th time
point, what’s worse, its fault missing and detection rate is
low after the fault occurs, and fails to indicate the fault start
time and duration of fault 4.The control limitQ2 appears error
detection at the beginning of the process, which reduces the
reliability of the monitoring. In addition, the Q2 statistic has
an obvious numerical jump when the fault occurs and lasts to
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FIGURE 8. (a) α = 0.75, the detection results of the proposed method for
a normal batch. (b) The detection result of the traditional PLS method for
a normal batch. The solid line corresponds to the detection limit at 95%
confidence, and the point line is the calculated statistic.

the end of the process. From the detect results we can come to
the conclusion that the proposed method has better detection
performance than the traditional PLS-based method in pro-
cess monitoring because the global monitoring model needs
to handle the high correlation contained in training data, while
the proposed method partition the data into several phase
models, which enhance and strengthen the influence of local
reaction processes that contribute to monitoring performance.

D. DISCUSSION OF THE CONTROL FACTOR α
Considering the influence of α value on the detection effi-
ciency and fault recognition capability, FIGURE 10 and 11
show the fault detection rate (FDR) and the missing detection
rate (MDR) detection results of the proposedmulti-phase PLS
method with different α values. Among them, the FDR is
defined as the rate of the fault detection in the time interval
[100, 400], and MDR is the rate of the normal sample error
to judge as the fault one before the fault occurs. As the
TABLE 3 figures out, fault 1 occurs at the 100th time point,
corresponding to the process variable x1, has an increasing
magnitude of 5%. FIGURE 10 (a) shows that the proposed
multi-phase PLS method has a higher FDR, the FDR is
more than 0.92 at different α value, which reveals a good
detection performance. The control limit T 2

y has the highest

FIGURE 9. (a) α = 0.75, the detection results of the proposed method for
fault 4. (b) The detection results of the traditional PLS method for fault 4.
The solid line corresponds to the detection limit at 95% confidence, and
the point line is the calculated statistic.

detection rate at α value interval [0.7, 0.9], which is defined
as the optimal α interval for T 2

y , and the phase partition results
are shown in FIGURE 7. The FDR of control limitQ2

x reaches
its maximum point at α value interval [0.3, 0.6], but the FDR
is less than T 2

y ’s. In FIGURE 10 (b), theMDR of control limit
T 2
x is the lowest and has the best monitoring ability. Due to

the α interval of the maximum FDR for Q2
x has a largerMDR

when compares to the optimal α interval of T 2
y , the value

of control boundary factor α is appropriate in the numerical
range [0.7, 0.9].

FIGURE 11 shows the FDR and MDR detection results
of the proposed multi-phase PLS method for fault 3 with
different α values. The FDR of detection limit T 2

x and Q2
x

are below 0.5, which shows poor detection ability, and the
FDR of detection limit T 2

y keeps increasing in the α interval
[0.8, 1] and remains above 0.8 in FIGURE 11 (a).As we can
see in FIGURE 11 (b), the T 2

x statistic has the minimum
MDR and remains unchanged at 0 with different α values.
The minimum MDR of detection limit Q2

x exists in the α
interval [0, 0.5], and the maximum FDR of α interval for T 2

y
corresponding to the maximum MDR is approximately 0.14.
Compared with detection limit T 2

x and Q2
x, the FDR of the
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FIGURE 10. (a) FDR of fault 1 with different α values; (b) MDR of fault 1
with different α values.

FIGURE 11. (a) FDR of fault 3 with different α values; (b) MDR of fault 3
with different α values.

statistical limit T 2
y ’s distribution has a great advantage in

detection performance. When the α is 0.9, the detection rate
of T 2

y is approximately 0.85, while the maximum detection
rate of Qx and T 2

x are 0.3 and 0.25, although the MDR of
T 2
y statistic is slightly larger than that two when α is 0.9.

Therefore, combining the actual detection results, the α value
should be selected in interval [0.85, 1].

V. CONCLUSION
In view of the multi-phases characteristics in batch processes,
a new phase partition and online fault detection method is
proposed to improve the precision and sensitivity of process
monitoring. The time slice contains the potential features
information about the batch phases, which is viewed as
unit cell to partition batch process into several phase dura-
tion. The stable and the transitional phases, reveal different
statistical character, will be identified automatically. It not
only strengthens interpretation for process, but also reduces
the complex of model. For online monitoring, online fault

detection strategy is composed of modeling the PCA and PLS
statistical methods for each identified phase, which aims to
assure the data-decomposing reliable. The proposed method
is applied to the industrial penicillin fermentation process.
The experimental result covers better performance in phase
partition and fault detection.

REFERENCES
[1] Z. Ge, Z. Song, and F. Gao, ‘‘Review of recent research on

data-based process monitoring,’’ Ind. Eng. Chem. Res., vol. 52, no. 10,
pp. 3543–3562, 2013.

[2] Z. Lv, J. Qingchao, and Y. Xuefeng, ‘‘Batch process monitoring based on
multi subspace multi-way principal component analysis and time-series
Bayesian inference,’’ Ind. Eng. Chem. Res., vol. 53, pp. 6457–6466, 2014.

[3] B. Wang, Q. Jiang, and X. Yan, ‘‘Fault detection and identification using
a Kullback-Leibler divergence based multi-block principal component
analysis and Bayesian inference,’’ Korean J. Chem. Eng., vol. 31, no. 6,
pp. 930–943, 2014.

[4] A. Höskuldsson, ‘‘PLS regression methods,’’ J. Chemometrics, vol. 2,
no. 3, pp. 211–228, 1988.

[5] Z. Ge, Z. Song, S. X. Ding, and B. Huang, ‘‘Data mining and analytics in
the process industry: The role of machine learning,’’ IEEE Access, vol. 5,
pp. 20590–20616, 2017, doi: 10.1109/ACCESS.2017.2756872.

[6] C. Duchesne and J. F. MacGregor, ‘‘Multivariate analysis and optimization
of process variable trajectories for batch processes,’’ Chemometrics Intell.
Lab. Syst., vol. 51, no. 1, pp. 125–137, 2000.

[7] X. Chen, X. Gao, Y. Zhang, and Y. Qi, ‘‘Enhanced batch process moni-
toring and quality prediction based on multi-phase multi-way partial least
squares,’’ in Proc. Comput. Appl. Chem., 2011, pp. 32–36.

[8] C. Zhao, F. Wang, Y. Yao, and F. Gao, ‘‘Phase-based statistical model-
ing, online monitoring and quality prediction for batch processes,’’ Acta
Automat. Sinica, vol. 36, no. 3, pp. 366–374, 2010.

[9] L. Zhao, C. Zhao, and F. R. Gao, ‘‘Phase transition analysis based quality
prediction for multi-phase batch processes,’’ Chin. J. Chem. Eng., vol. 20,
no. 6, pp. 1191–1197, 2012.

[10] C. Undey and A. Cinar, ‘‘Statistical monitoring of multistage, multiphase
batch processes,’’ IEEE Control Syst., vol. 22, no. 5, pp. 40–52, Oct. 2002.

[11] Y. Yao, W. Dong, L. Zhao, and F. Gao, ‘‘Multivariate statistical monitoring
of multiphase batch processes with between-phase transitions and uneven
operation durations,’’ Can. J. Chem. Eng., vol. 90, no. 6, pp. 1383–1392,
2012.

[12] N. Lu and F. Gao, ‘‘Stage-based process analysis and quality prediction for
batch processes,’’ Ind. Eng. Chem. Res., vol. 44, no. 10, pp. 3547–3555,
2005.

[13] C. Zhao, F. Wang, N. Lu, and M. Jia, ‘‘Stage-based soft-transition multiple
PCA modeling and on-line monitoring strategy for batch processes,’’ J.
Process Control, vol. 17, no. 9, pp. 728–741, Oct. 2007.

[14] X. T. Doan, R. Srinivasan, P. M. Bapat, and P. P. Wangikar, ‘‘Detection
of phase shifts in batch fermentation via statistical analysis of the online
measurements: A case study with rifamycin B fermentation,’’ J. Biotech.,
vol. 132, no. 2, pp. 156–166, 2007.

[15] S. K. Maiti, R. K. Srivastava, M. Bhushan, and P. P. Wangikar, ‘‘Real time
phase detection based online monitoring of batch fermentation processes,’’
Process Biochem., vol. 44, no. 8, pp. 799–811, 2009.

[16] F. Shen, Z. Ge, and Z. Song, ‘‘Multivariate trajectory-based local monitor-
ing method for multiphase batch processes,’’ Ind. Eng. Chem. Res., vol. 54,
no. 4, pp. 1313–1325, 2015.

[17] W. Li, C. Zhao, and F. Gao, ‘‘Sequential time slice alignment based
unequal-length phase identification and modeling for fault detection of
irregular batches,’’ Ind. Eng. Chem. Res., vol. 54, no. 41, pp. 10020–10030,
2015.

[18] Y-Q. Chang, Y.-S. Lu, F.-L. Wang, S. Wang, and S.-M. Feng, ‘‘Sub-
stage PCA modelling and monitoring method for uneven-length batch
processes,’’ Can. J. Chem. Eng., vol. 90, no. 1, pp. 144–152, 2012.

[19] N. Lu, F. Gao, Y. Yang, and F. Wang, ‘‘PCA-based modeling and on-line
monitoring strategy for uneven-length batch processes,’’ Ind. Eng. Chem.
Res., vol. 43, no. 13, pp. 3343–3352, 2004.

[20] W. Sun, Y. Meng, A. Palazoglu, J. Zhao, H. Zhang, and J. Zhang, ‘‘A
method for multiphase batch process monitoring based on auto phase
identification,’’ J. Process Control., vol. 21, no. 4, pp. 627–638, 2011.

VOLUME 6, 2018 1259

http://dx.doi.org/10.1109/ACCESS.2017.2756872


A. X. Ye et al.: Time Sequential Phase Partition and Modeling Method for Fault Detection of Batch Processes

[21] Y. Chang, S. Wang, S. Tan, F. Wang, and Z. Mao, ‘‘MPCA based phase
identification method and its application to process monitoring,’’ in Proc.
IEEE Conf. Decision Control, Dec. 2012, pp. 1245–1252.

[22] C. Zhao and Y. Sun, ‘‘Step-wise sequential phase partition (SSPP) algo-
rithm based statistical modeling and online process monitoring,’’ Chemo-
metrics Intell. Lab. Syst., vol. 125, pp. 109–120, Jun. 2013.

[23] W. Dong, Y. Yao, and F. Gao, ‘‘Phase analysis and identification method
for multiphase batch processes with partitioning multi-way principal
component analysis (MPCA) model,’’ Chin. J. Chem. Eng., vol. 20,
pp. 1121–1127, Dec. 2012.

[24] L. Y. Jiang, B. J. Xu, J. H. Xi, and G. X. Fu, ‘‘Application of phase division
based on dissimilarity index in batch process monitoring,’’ Adv. Mater.
Res., vol. 566, pp. 134–139, Sep. 2012.

[25] C. Zhao, F.Wang, F. Gao, N. Lu, andM. Jia, ‘‘Adaptive monitoring method
for batch processes based on phase dissimilarity updating with limited
modeling data,’’ Ind. Eng. Chem. Res., vol. 46, no. 14, pp. 4943–4953,
2007.

[26] J. D. Bryan and S. E. Levinson, ‘‘Autoregressive hiddenMarkovmodel and
the speech signal,’’ Proc. Comput. Sci., vol. 61, pp. 328–333, 2015.

[27] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard,
‘‘Learning and reproduction of gestures by imitation,’’ IEEERobot. Autom.
Mag., vol. 17, no. 2, pp. 44–54, Jun. 2010.

[28] H. Cao, D. Jiang, J. Pei, E. Chen, andH. Li, ‘‘Towards context-aware search
by learning a very large variable length hidden Markov model from search
logs,’’ in Proc. Int. Conf. World Wide Web, Madrid, Spain, Apr. 2009,
pp. 191–200.

[29] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, ‘‘Wavelet-based statistical
signal processing using hidden Markov models,’’ IEEE Trans. Signal
Process., vol. 46, no. 4, pp. 886–902, Apr. 1998.

[30] M. Gales and S. Young, ‘‘The application of hidden Markov models in
speech recognition,’’ J. Found. Trends Signal Process., vol. 1, pp. 195–304,
Jan. 2008.

[31] L. Bahl, P. Brown, P. de Souza, and R. Mercer, ‘‘Maximum mutual
information estimation of hidden Markov model parameters for speech
recognition,’’ in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
vol. 11. Apr. 1986, pp. 49–52.

[32] W. L. Kendall, G. C. White, J. E. Hines, C. A. Langtimm, and J. Yoshizaki,
‘‘Estimating parameters of hidden Markov models based on marked indi-
viduals: Use of robust design data,’’ Ecology, vol. 93, pp. 913–920,
Apr. 2012.

A. XIAOFENG YE received the B.Sc. degree
in electronic and information engineering from
Hangzhou Dianzi University, Hangzhou, China, in
2015, where he is currently pursuing the master’s
degree with the Institute of Electron Devices and
Application. His main research interests include
process monitor modeling and fault detection.

B. PEILIANG WANG received the B.Sc. degree
in industrial electrical automation and the M.S.
degree in control theory and control engineering
from Zhejiang University, Hangzhou, China, in
1986 and 2005.

From 2008 to 2009, he served as a Visiting
Scholar with Zhejiang University and the Univer-
sity of Duisburg-Essen (2015), Germany. He is
currently a Professor with the School of Engineer-
ing, Huzhou University, China, and a part-time

Master Tutor with Hangzhou Dianzi University and the Zhejiang University
of Technology, China. He is currently a member of the committee on the
fault diagnosis and safety of technical process of the Chinese Association of
Automation, the Executive Director and the Deputy Director of the Teaching
Committee of the Zhejiang Association of Automation, and the Chairman of
theHuzhouAssociation of Automation. His research interests include pattern
recognition and intelligent control, process monitoring and diagnosis, and
industrial automation.

C. ZEYU YANG received the B.Sc. degree
in electronic and information engineering from
Wenzhou University, Wenzhou, China, in 2014,
and the master’s degree from the Institute of Elec-
tron Devices and Application, Hangzhou Dianzi
University, Hangzhou, China, in 2017. He is cur-
rently pursuing the Ph.D. degree with the Institute
of Industrial Process Control, Zhejiang University.
His main research interests include process con-
trol, fault detection, and identification.

1260 VOLUME 6, 2018


	INTRODUCTION
	METHODOLOGY
	PCA AND PLS METHOD
	HIDDEN MARKOV MODEL CHAIN
	PHASE PARTITION METHOD
	DATA PREPROCESSING
	TIME SLICE's INFORMATION EXTRACTION
	GENERATION OF FEATURES TENDENCY
	SEGMENT OF FEATURES TENDENCY

	DISCUSSION AND ANALYSIS
	THE UNIFIED INFORMATION CONTAINED IN TIME SLICES
	PHASE IDENTIFICATION AND MERGING STRATEGY


	ONLINE MONITORING STRATEGY
	ILLUSTRATION AND DISCUSSION
	PROCESS DESCRIPTION
	PHASE PARTITION DEVELOPMENT
	PHASE MONITORING MODEL
	DISCUSSION OF THE CONTROL FACTOR 

	CONCLUSION
	REFERENCES
	Biographies
	A. XIAOFENG YE
	B. PEILIANG WANG
	C. ZEYU YANG


