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ABSTRACT Proper tuning of hyper-parameters is essential to the successful application of SVM-classifiers.
Several methods have been used for this problem: grid search, random search, estimation of distribu-
tion Algorithms (EDAs), bio-inspired metaheuristics, among others. The objective of this paper is to
determine the optimal method among those that recently reported good results: Bat algorithm, Firefly
algorithm, Fruit-fly optimization algorithm, particle Swarm optimization, Univariate Marginal Distribution
Algorithm (UMDA), and Boltzmann-UMDA. The criteria for optimality include measures of effectiveness,
generalization, efficiency, and complexity. Experimental results on 15 medical diagnosis problems reveal
that EDAs are the optimal strategy under such criteria. Finally, a novel performance index to guide the
optimization process, that improves the generalization of the solutions while maintaining their effectiveness,
is presented.

INDEX TERMS Support vector machines, medical diagnosis, heuristic algorithms, particle swarm opti-
mization, density estimation robust algorithm, boltzmann distribution.

I. INTRODUCTION
Support Vector Machines (SVMs) represent a machine learn-
ing model used to solve pattern recognition tasks such as
classification, regression and outlier detection [1]. The effec-
tiveness of a classifier derived from this model is highly
dependent of a kernel function which maps original data to
higher dimensional spaces to deal with non-linearly separable
data [2]. A kernel function may require a number of param-
eters to be adjusted by the user; these are commonly known
as hyper-parameters of the SVM and their values can affect
substantially the performance of SVM classifiers. Properly
adjusting the hyper-parameters of a machine learning algo-
rithm requires knowledge of the algorithm, experience, and
typically, trial and error. However, in order to systematically
and efficiently obtain the best possible solution, this task
can be posed as an optimization problem given an adequate
objective function that captures the predictive performance of
the classifier in terms of the hyper-parameter configurations.

Many different approaches have been shown to be
successful in solving the problem of hyper-parameter
tuning, from the simplest Grid Search (GS) and Random

Search (RS) [3], [4], to more complex metaheuristic algo-
rithms such as evolutionary algorithms [5], bio-inspired
algorithms [6]–[9] and estimation of distribution algo-
rithms (EDAs) [10]. Mostly, their success is due to the fact
that the number of hyper-parameters is usually small and
there are regions (rather than points) of the search space that
result in the highest performance of the classifier. Thus, the
question to be answered is not whether a particular approach
can solve the problem of SVM hyper-parameter tuning, but
rather, which of the existing proposed techniques can do it
optimally.

To answer this research question, a systematic evaluation
of different novel approaches for hyper-parameter tuning is
presented, including popular bio-inspired metaheuristics and
EDAs because these types of optimization algorithms are the
most recently proposed and the most successful. This com-
parative evaluation is carried out using measures of optimal-
ity: effectiveness, efficiency, generalization and complexity.

Usually, the objective function employed to guide the
optimization in hyper-parameter tuning of an SVM classi-
fier is the classification accuracy within a cross-validation
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scheme. Although this measure provides a good indication
of a classifier’s performance, it can also be an ambiguous
measure of hyper-parameter optimization, because several
hyper-parameter configurations can produce classifiers with
very similar accuracy. In order to reduce this ambiguity,
in this work, a measure of SVMs generalization, the propor-
tion of support vectors (PSV), is employed in conjunction
with the classification accuracy to evaluate the effectiveness
of the optimization algorithms. Efficiency is measured in
terms of the proportion and distribution of function calls
(PFC) required by each algorithm; PFC is employed instead
of computational time because it is independent of computer
architecture. Complexity is examined in terms of the algorith-
mic complexity and number of parameters intrinsic of each
optimization technique. All of the experiments are carried
out on real datasets from medical diagnosis problems. This
is an area that has received much attention from the machine
learning community and that provides interesting benchmark-
problems and recent real problems.

The main contributions of this paper are the following:
(i) Different recent and successful techniques are reviewed
and compared under strict criteria of optimality on medical
problems. (ii) Novel tools are developed to systematically
rank these techniques under said criteria and to improve the
measure of generalization (PSV) while maintaining effective-
ness (Accuracy). (iii) Through comprehensive experimental
evaluation the EDAs are identified as the optimal technique.

The remaining sections of this paper are structured as
follows: Section II provides a theoretical background about
SVMs and optimization strategies. Section III presents the
state of the art regarding the hyper-parameters optimization
for SVM classifiers. The experimental materials and methods
are described in Section IV. Experimental results are reported
and discussed in Section V. Finally, conclusions and further
directions to extend this research are offered in Section VI.

II. THEORETICAL BACKGROUND
A brief introduction of relevant concepts used in this paper
regarding support vector machines (subsection II-A) and
optimization strategies (subsection II-B) is provided in this
section.

A. SUPPORT VECTOR MACHINES
Support Vector Machines are supervised learning models
with many applications including classification, regression
and outlier detection [2]. For pattern classification, SVMs
solve binary (i.e. two-class) problems by using the formula-
tion provided below [11], [12].

Given a set of training data: {zi, yi}Ni=1, where zi∈RD is
the i-th input vector and yi∈ {+1,−1} its corresponding
class label, the basic SVM obtains the optimal separating
hyperplane:

h(z) =wTz+b (1)

where the weight vector w is defined by a linear combina-
tion of relatively few data points called support vectors and

b is a scalar known as bias. When data is not linearly-
separable, the separating hyperplane is obtained by means
of a set of slack variables, {ξi}Ni=1 and solving the following
quadratic programming problem:

min
1
2
wTw+C

N∑
i=1

ξi

s.t. yi(wTzi+b) ≥ 1−ξi, ξi > 0 for i = 1, . . . ,N (2)

where C is a scalar parameter called the penalty factor. Intro-
ducing the nonnegative Lagrange multipliers λ and following
the Karush-Kuhn-Tucker conditions [12], the problem in (2)
becomes the following dual problem:

max L (λ) =
N∑
i=1

λi −
1
2

N∑
i=1

N∑
j=1

yiyjλiλjK (zi, zj)

s.t. C≥λi ≥ 0 ∀i= 1, . . . ,N , and
N∑
i=1

λiyi = 0 (3)

Given two arbitrary input vectors, z and z′, the function
K
(
z, z′

)
in (3), defined onRD

×RD is called a kernel if there
exists a mapping to the Hilbert space φ:RD

→ H such that
K
(
z, z′

)
= 〈φ(z), φ(z′)〉 [12]. This latter formulation of the

SVM problem is called C-SVM and can be solved through
several strategies [13]. The PSV (proportion of vectors zi
with corresponding λi > 0, i = 1, . . . ,N ) has been proved
to be a good estimate of the generalization capability of an
SVM under the premise that with fewer support vectors, the
decision boundary will be less complex, i.e less prone to
overfitting [14].

The kernel function can take many different forms; a func-
tion that has beenwidely used since the beginning of the SVM
theory is the Radial Basis Function (RBF or Gaussian) kernel,
KRBF

(
z, z′

)
= e−γ‖z−z

′‖
2
. The kernel function can add

parameters, like the size of the basis function γ , to the SVM
formulation that may significantly affect the performance of
this classifier. Optimization techniques that can be used to
solve the hyper-parameter tuning problem are introduced in
the next section.

B. OPTIMIZATION STRATEGIES
In the following exposition, the solution- or search-space is
the d-dimensional space conformed by the d parameters that
have to be optimized. The search consists of traversing this
space while evaluating the objective function for the different
parameter configurations (d-dimensional points) and finally
reporting the best configuration found.

The simplest technique for exploring the search space is
by means of a uniformly spaced grid, this is called Grid
Search (GS). The technique is only useful when the search
space is composed of very few dimensions; since GS is an
exhaustive method and the number of intersections in the
grid grows exponentially with the number of dimensions
to be explored [15]. Even whenever feasible, GS is not an
efficient search strategy. A more efficient method, known as
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Random Search (RS) was developed in the 1960s [15]. There
are many variations to the original method. Nevertheless,
both techniques may be effective in finding a local optimal
solution and they are typically employed for simple problems,
including hyper-parameter tuning [4]. The advantage of RS
over GS is that the former techniquemay evaluatemuch fewer
points than the latter to achieve the same solution, and thus
dimensionality is generally not considered a problem with
RS. Whenever a particular probability distribution other than
the uniform distribution is used to generate new solutions, the
algorithms belong to a new family known as EDAs [16].

EDAs explore the solution space by iteratively building and
sampling explicit probabilistic models of candidate solutions
that guide their search. The generic procedure is conceptually
simple: EDAs start with a population of solutions uniformly
drawn from the solution space. Next, these solutions are
ranked by means of an objective function related to the prob-
lem at hand, and a fraction of the best solutions is selected
to construct an estimate of their probability distribution.
By sampling this distribution new solutions are generated to
update the model. Thus the estimated probability distribu-
tion is improved. The process is repeated until a termination
criterion is met (usually, when a sufficiently good solution
has been found or when a predefined number of iterations
have been performed). The pseudocode of the generic EDA
is shown in Figure 1.

FIGURE 1. Pseudocode of the general EDA.

Hauschild and Pelikan [16] state that ‘‘The important step
that differentiates EDAs from many other metaheuristics is
the construction of the model that attempts to capture the
probability distribution of the promising solutions.’’ Depend-
ing on the specific probabilistic model built, an EDA takes a
particular name. Two of these particular cases of probabilistic
models are considered in this work: the Univariate Marginal
Distribution Algorithm (UMDA) [17] and the Boltzmann
Univariate Marginal Distribution Algorithm (BUMDA) [18].
These are reviewed below.

Univariate marginal distribution algorithms are designed
to deal with problems where the components of a solu-
tion are independent; in other words, these algorithms are
restricted to problemswhere the solution variables show no or
weak correlation between them. The advantages of working
under the independence assumption are simplicity and low

computational cost. The UMDA builds a Gaussian model
from a set of solutions, S = {xi}Mi=1 with parameters:

µk =
1
M

M∑
i=1

xi,k

σk =

(
1

M − 1

M∑
i=1

(
xi,k − µk

)2)1/2

(4)

where M is the number of solutions considered to compute
these parameters and xi,k represents the k-th component of
solution xi, that in general is a d-dimensional vector in Rd .
The BUMDA modifies the UMDA by employing a model

based on the Boltzmann distribution, which in turn is approx-
imated by a Gaussian model through analytical minimization
of the Kullback-Leibler divergence between the two distri-
butions [18]. Mühlenbein and collaborators have shown that
Boltzmann distribution-based EDAs converge to the optimum
of the objective function [9], [11], [16]. Also, the BUMDA
incorporates a truncation selection method which is designed
to accelerate convergence as well as to free the user from
having to set the number of samples that are selected for
parameter estimation. The parameters of the Gaussian distri-
bution used by the BUMDA are computed as follows:

µk =
1
g̃

M∑
i=1

xi,kg(xi)

σk =

(
1

g̃+ 1

M∑
i=1

(
xi,k − µk

)2 g(xi))1/2

(5)

where M is automatically adjusted by a truncation selection
method, g(xi) is the objective function value of the i-th solu-
tion, and g̃ represents the sum of the objective function values
over the M selected solutions.

Through recent years, many biology-inspired optimization
algorithms have been developed. Within these, a large num-
ber of population-based algorithms that model the collective,
emerging behavior of multiple biological organisms such as
flocks of birds, schools of fish, colonies of ants, swarms of
bats, fruit flies, fireflies, etc. have been proposed. The success
of these methods has led to an ever increasing interest on a
whole new research area, known as swarm intelligence. The
pseudocode of the generic swarm intelligence optimization
algorithm is shown in Figure 2.

The most recognized representative (with more than
12,000 citations to date) of swarm intelligence algorithms is
Particle Swarm Optimization (PSO), developed by Kennedy
and Eberhart [19] in 1995 . Presently, there exist at least two
dozen variants of the PSO algorithm andmany hybridizations
of PSO with other swarm intelligence or evolutionary algo-
rithms. In its most basic form, PSO maintains a population
of particles, each consisting of a position (a solution to the
problem at hand) and a velocity (the adjusting data in Fig. 2)
that is used to change the particle’s position iteratively.

A global optimum over the population of particles is used
to guide the movement of the particles, so that convergence to
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FIGURE 2. Pseudocode of the general swarm intelligence algorithm.

this optimum is achieved. Meanwhile, a random factor intro-
duced into the particles’ velocities ensures that the particles
are not trapped in local optima and that solution diversity is
preserved throughout the optimization procedure.

III. RELATED WORK
The idea of using metaheuristics to optimize the hyper-
parameters of SVM classifiers dates back several years.
In 2008, Lin and collaborators reported on the study of sim-
ulated annealing [22] and of PSO [9] for hyper-parameter
determination and feature selection in SVMs. They compared
the metaheuristic methods against grid search on 11 and 17
datasets from the University of California at Irvin (UCI)
Machine Learning Repository, respectively. Unfortunately,
the conclusion offered from both studies, although presented
separately, is virtually the same: the authors conclude in each
case that their proposed approach is superior to the other
approaches, including a genetic algorithm (GA) approach
developed by Huang et al. [23], in terms of classification
accuracy of SVM classifiers with RBF kernel. The two pro-
posed approaches were not compared to each other.

In 2011, Zhao et al. also proposed the use of a GA to
simultaneously optimize the feature subset and the hyper-
parameters of an SVM classifier with RBF kernel func-
tion [5]. The approach was tested on 12 datasets from UCI
Machine Learning Repository under a 10-fold cross valida-
tion scheme. The GA approach with feature selection man-
aged to produce SVMs with slightly superior classification
accuracy than GS over all datasets employed.

In 2015, Zhang and Zhang [24] compared the Social
Emotional Algorithm (SEOA) against the PSO algorithm
on six datasets from the UCI Repository. Interestingly, they
employed the accuracy (Acc.) together with the PSV to guide

the optimization process; this was done by minimizing their
weighted difference, namely: 0.8Acc. – 0.2PSV. Both of the
optimization algorithms found SVMs with very similar accu-
racy. Also, the average difference in the PSVwas only 1.34%.
Thus, no significant difference between PSO and SEOA was
found. Further, a disadvantage of the SEOA is that it depends
onmany inter-related parameters, making its use difficult. For
this reason, PSO is included in this work.

Also in 2015, Chao and Horng [7] applied the firefly
optimization algorithm, FA [20], for tuning of the SVM
hyper-parameters with RBF kernel together with the
Lagrange multipliers representing the solution of the SVMs.
From experiments on ten datasets from the UCI Repository
and another medical diagnosis dataset, they found that the FA
produced SVMs with higher accuracy than PSO and GS. The
FA is included in this work.

Later in 2015, Mantovani et al. [4] presented the case
in favor of using a simple RS method to adjust the hyper-
parameters of SVM classifiers. Based on seventy datasets
from the UCI Repository and SVM with RBF kernel, they
found RS and even GS to be as effective as other meta-
heuristic approaches, including PSO, GA and an EDA [25].
It is worth noticing at this point that the effectiveness of the
simpler methods such as GS and RS is not under question.
As the study of Mantovani et al. demonstrates, these algo-
rithms can produce solutions that on average are as good as
those found by more sophisticated algorithms. The focus of
the present study is on the question of optimality.

Recently, Shen et al. [8] tested the Fruit fly Optimization
Algorithm (FOA) on four biomedical datasets from UCI
Repository. FOA was compared against GS, PSO, GA and
Bacterial ForagingOptimization. In experiments with 10-fold
cross validation, FOA obtained higher classification accuracy
in most of the test datasets. The comparison also showed that
FOA required less computational time than its competitors.
Because of these recent results, the FOA is included in the
experimental comparison presented in this work.

Even more recently, Tharwat et al. [6] compared the Bat
Algorithm (BA) [26] against PSO, GA and GS for the opti-
mization of SVM hyper-parameters with RBF kernel, also in
classification. The method was tested on 9 datasets from the
UCI Repository. Experiments with 10-fold cross validation
showed that BA achieved the lowest error rates in the vast
majority of the test datasets. Due to its theoretical advantages
and recent results, BA is included in this work.

Most recently, Padierna et al. [10] compared UMDA and
BUMDA against GS and RS for the optimization of SVM
hyper-parameters. From a comparison on eleven datasets
from UCI Repository, they concluded that the EDAs are sig-
nificantlymore efficient (in terms of PFC) than theGS andRS
methods, and more importantly, that the individual solutions
that were explored by the EDAs are more closely distributed
around the optima. Besides the classification accuracy, the
PSV was also examined, although it was not used by the
algorithms to guide their search of the solution space. UMDA
and BUMDA are considered in this work.
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TABLE 1. Set of experimental and operational parameters used in previous works.

FIGURE 3. Pseudocode of the experimental methodology.

IV. MATERIALS AND METHODS
A. EXPERIMENTAL METHODOLOGY
The general process employed to carry out our experiments
consists of the steps shown in Figure 3. The function Meta-
heuristic in line 8 performs the hyper-parameter tuning of
SVMs with RBF kernel and receives an initial population
POP0i per experimental trial. User-defined parameters for the
metaheuristics are shown in TABLE 1.

Internally, the individual solutions correspond to SVMs
trained with the LIBSVM solver [27] and evaluated by
10-fold cross-validation. In each experimental trial all the
metaheuristics are evaluated using the same data folds and
initial population to make the comparison between them as
fair as possible. Results are stored into P.Info(m, d, i) for each
metaheuristic evaluation, these include: accuracy and PSV
of the best SVM obtained, and the PFC used by the m-th
metaheuristic, on the d-th dataset in the i-th experimental
trial. The whole population of solutions is also stored for
subsequent analysis.

For the sake of reproducibility, the specific rules for gen-
erating individuals of the algorithms in this work are sum-
marized in TABLE 2; their computational complexity, given
by the sum of: initialization (A), global best calculation (B),
population updating (C) and computation of extra informa-
tion (D), is also reported. Notice that evaluating a set of d
hyper-parameters on an SVM trained with N samples, has
a complexity of O(N 3). TABLE 1 shows the values of the
optimal parameters reported in previous studies. Based on
these, the parameters used for all algorithms in this work
were set and are shown in the last column. Prior to any other
processing, the data in the test datasets were scaled to the
range [−1, 1] to prevent large data values from dominating
the solutions. The algorithms were allocated a budget of
function calls to find the optimal solution. Some algorithms
perform more function evaluations per iteration than others,
so the number of function calls used by each algorithm is the
more objective measure of efficiency.

An early stopping criterion consisted in testing whether the
variance of the top 25% solutions maintained by an algorithm
was smaller than a threshold value (the threshold was set
to 0.01, stressing the search further than this threshold did
not lead to significant improvements in our experiments);
if true, this condition signals the convergence of the algo-
rithm. Algorithms that converge earlier are more efficient,
although theymay be less effective if their best solution found
is suboptimal. All experiments were performed on an x3650
M4 IBM server with 16 Intel Xeon CPUs running at 2.6 GHz
and 32 GB of RAM. The algorithms were implemented in
the Java programming language using multithreading, where
each thread executed an independent call of theMetaheuristic
function presented in Figure 3.

B. DESCRIPTION OF MEDICAL DIAGNOSIS DATASETS
The experiments were performed on fifteen datasets from the
UCI Machine Learning Repository. These datasets represent
important disease diagnostic problems and were selected
because of their current relevance and because there is still
room for improvement in classification performance. All the
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TABLE 2. Solution-generating rules of different optimization algorithms.

TABLE 3. Details of the medical diagnosis datasets employed

datasets are two-class classification problems and correspond
to the following medical diagnosis problems (short labels
are enclosed in parentheses and the datasets are sorted with
respect to these labels): 1. Breast cancerWisconsin diagnostic
(BCWD); 2. Breast cancer Wisconsin original (BCWO);
3. Breast cancer Wisconsin prognostic (BCWP); 4. Diabetic
retinopathy from U. of Debrecen (DR); 5. Fertility
(Fertility); 6. Haberman’s survival after surgery for breast
cancer (HBCS); 7. Chronic kidney disease (Kidney);
8. Liver disorders (Liver); 9. Parkinson speech (Parkinson1);
10. Oxford Parkinson’s disease detection (Parkinson2);
11. Pima Indians diabetes (PID); 12. Statlog heart disease
(SHD); 13. Thoracic surgery survival after surgery for lung
cancer (TLCS); 14. Vertebral column (VC); 15. LSVT voice
rehabilitation (VR). Most of these datasets have been used in
previous works, so that data are available regarding the best
classification accuracy reported so far, see TABLE 3.

C. PERFORMANCE INDEX
Asmentioned in Section III, Zhang and Zhang [24] combined
the PSV with Accuracy to guide the optimization of hyper-
parameters. In this work, a newmeasure of SVMperformance
is presented as a function of Accuracy and PSV. Provided
that these are percentages, the Performance Index for SVM
classifiers (PISVM ) is proposed as:

PISVM (Acc,PSV )=exp

(
−κ
(
PSV+(100−Acc)2

)
200−PSV−Acc+ε

)
(6)

where κ > 0 is a constant factor that shapes the function
(in this work, κ = 0.1) and ε is a small number to prevent
a division by zero. The PISVM is bounded in the range [0, 1]
and can be used as an alternative to the fitness function based
solely on accuracy appearing in the majority of previous
works. Notice that, contrary to the idea in [24], the EISVM
does not describe a linear relationship between Accuracy and
PSV. The PISVM is employed to better examine the perfor-
mance of the algorithms and, in a final experiment, it is tested
to lead the optimization of the best algorithm identified.

V. RESULTS AND DISCUSSION
This section is divided into four subsections. The main results
are presented in subsection V-A. Statistical analysis is carried
out in subsection V-B. Subsection V-C contains detailed per-
formance analysis. Finally, the results regarding performance
improvement are reported in subsection V-D.

A. EXPERIMENTAL RESULTS
The results obtained from the experiments described above
are summarized in this section. TABLE 4 shows the average
classification accuracy over the 35 trials. TABLE 5 shows the
corresponding average PSV, used by the SVM classifiers that
achieved said accuracies. TABLE 6 contains the average PFC
required by the algorithms to produce the reported results of
accuracy and PSV. All of these results are presented as per-
centages, and the standard deviation is provided in brackets.
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TABLE 4. Best accuracy as percentage: Avg. over 35 trials (Std. Dev.).

TABLE 5. PSV as Percentage: avg. Over 35 Trials (Std. Dev).

In each case, the best result per dataset is shown in bold
typeface. Finally, Tables TABLE 7 and TABLE 8 present the
best hyper-parameters found by each of the metaheuristics.

TABLE 6. PFC as percentage: avg. over 35 trials (Std. Dev.).

In general, the results in TABLE 4 coincide with those
reported in previous works (cf. TABLE 3); the only exception
is with respect to the results reported in [6] on datasets
Liver and PID where the BA achieved higher accuracies. The
corresponding PSV and PFC however, have not been reported
before. These are shown in the following tables.

Tables TABLE 4 to TABLE 6 report an average perfor-
mance of the algorithms. Particularly, TABLE 6 shows the
average of SVM evaluations required by each metaheuristic
to find the best hyper-parameters. However, average results
do not illustrate the complete behavior of the algorithms.
For instance, algorithms obtaining the same PFC index may
explore the solution space differently. A closer examination
reveals the following patterns:

1. All methods except for EDAs use the total function
calls allocated (PFC=100) on datasets: DR, BCWD, and
Parkinson1.

2. All algorithms obtained similar Accuracy and PSV, but
there is a notorious advantage in PFC for EDAs on datasets:
Kidney, Parkinson2 and BCWO.

3. All methods obtained good Accuracy and PSV except
for FOA; in terms of PFC, EDAs stand out by achieving
second and third best places on datasets: SHD and BCWP.

4. All algorithms show small variations in Accuracy and
PSV; there is a notorious advantage for FOA in terms of PFC
on datasets: Liver, HBCS, PID, and VC.

5. All methods obtained identical Accuracy and similar
PSV; the clearest differences between algorithms are in PFC
without a clear winner, on datasets: Fertility and TLCS.
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TABLE 7. BEST C values: avg. over 35 trials (Std. Dev.).

6. Dataset VR could not be included in any of the groups
described above.

The best values of hyper-parameter C found by each meta-
heuristic are shown in TABLE 7. As can be observed, all
methods reach similar values for most of the classification
problems. The relatively large deviations around the best
average values of C indicates that for each problem there
exists a range of values for which the best SVM performance
was found; in other words, there is a weak influence of the
C parameter on the performance of the SVM classifiers.
TABLE 8 reports the best values of the hyper-parameter γ
found by each metaheuristic. In this table, the opposite effect
to the one described for the hyper-parameter C is observed.
The small deviations around the average values of γ indicate
that this parameter possesses a strong influence on the perfor-
mance of the SVM classifiers.

B. STATISTICAL ANALYSIS
Following the recommendations of García et al. [31] for the
comparative evaluation of multiple methods, three different
non-parametric statistical tests were performed to test the sta-
tistical significance of the differences between the results of
the metaheuristics. These tests are: the Friedman test (differ-
ences between each pair of index values are equally weighted
independently of their magnitude); the Aligned Friedman test
(problems are equally weighted regardless of their difficulty,
a general behavior of all datasets as a group can be observed);
and the Quade test (rankings are weighted based on the

TABLE 8. Best γ values: avg. over 35 trials (Std. Dev.).

difficulty of each problem) [31]. The average rankings,
according to each of these statistical tests, are presented in
TABLE 9. The corresponding p-values are also shown in this
table and when a value is smaller than the significance level
of 0.05, it is shown in bold typeface.

Results in TABLE 9 demonstrate that there exist significant
differences between at least two methods under all perfor-
mance indexes. To identify which methods are different from
each other, post hoc tests were carried out. It was found that,
with statistical significance:

1. In Accuracy: BUMDA is better than all other algorithms,
except for FA (F. test). FA is better than FOA and PSO
(A-F. test). BUMDA is better than FOA and BA (Q. test).

2. In PSV: FA is better than FOA and UMDA (A-F. test).
FA is better than FOA (Q. test).

3. In PFC: UMDA is better than FA, PSO and BA (F. test).
UMDA is better than all other methods, except for BUMDA
(A-F. test). FOA is better than FA and PSO (Q. test).

To derive the main conclusion from the previous statistical
results, notice the following two facts: 1. the FA and BUMDA
methods compete for the first two places in terms of Accuracy
and PSVwhile being statistically equivalent according to post
hoc tests. 2. UMDA and FOA obtained the best two places in
terms of PFC, but none of them is statistically different to
BUMDA according to post hoc test. From these two observa-
tions it follows that under these evaluation criteria, BUMDA
is the best method, since it is as effective as FA, PSO and BA
while remaining as efficient as UMDA and FOA.
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TABLE 9. Average Ranking and p-Values with the RBF kernel.

FIGURE 4. Prototype frequency distributions of function calls over accuracy.

C. PERFORMANCE ANALYSIS
To carry out a detailed performance analysis, the complete
set of solutions evaluated over all iterations and 35 trials are
examined. The objective is to determine the way in which
each of the algorithms explores the solution space. This
will show which of the algorithms makes better use of the
allocated budget of solutions, for instance, by not wasting
effort in the evaluation of bad solutions. With six different
algorithms and fifteen datasets, there are ninety frequency
distributions to be examined. For the sake of clarity and due
to space limitations, these ninety distributions have been clas-
sified into one of six different prototypes shown in Figure 4.
The behavior of the algorithms is analyzed with respect to
these prototypes, labelled as Type-A to Type-F distributions
(Fig. 4-a to 4-f, respectively).

Type-A distributions (Fig. 4a) correspond to very effi-
cient algorithms since a vast majority of the solutions
obtained the highest classification accuracy. Type-B distri-
butions (Fig. 4b) correspond to efficient algorithms, where
increasing number of solutions obtained ever higher accuracy.
Type-C distributions (Fig. 4c) show a tendency towards

the central values. These correspond to moderately-efficient
algorithms, because many function calls were used to
evaluate solutions that are not too good. Type-D dis-
tributions (Fig. 4d) correspond to moderately-inefficient
algorithms, because the same amount of function calls were
used to evaluate any kind of solution. Type-E distribu-
tions (Fig. 4e) correspond to inefficient algorithms that
evaluate almost as many bad solutions as medium-and-
good solutions taken together. Type-F distributions (Fig. 4f)
correspond to very inefficient algorithms that use a vast
majority of their function calls to evaluate bad solu-
tions; these algorithms may reach an optimal solution only
exceptionally.

Based on these prototype distributions, the following rank-
ing of the algorithms is presented:

1. BUMDA is very efficient, with distributions of type:
A=5, B=7, D=2 and E=1.
2. UMDA is very efficient, with distributions of type: A=4,

B=8, D=2 and E=1.
3. BA is an efficient algorithm, showing distributions of

type: A=4, B=7, D=2, E=1 and F=1.
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4. FA is moderately efficient, with distributions of type:
A=3, B=5, C=3, E=3 and F=1. This algorithm typically
uses many more function calls than the rest, cf. TABLE 6.

5. PSO is an inefficient algorithm, showing distributions of
type: A=2, D=4, E=8 and F=1.
6. FOA is very inefficient, with distributions of type: A=2,

B=1, D=4, E=1 and F=7.

FIGURE 5. Plot of performance index vs PFC.

In order to visualize the observations described in this
section, Figure 5 presents the plot of the normalized PISVM
defined in (6) against normalized PFC of the different meta-
heuristics, per dataset (so there are 15 points for each algo-
rithm). This plot is a valuable visualization tool that allows
one to directly compare the different metaheuristics. In this
plot, the best algorithm has PISVM = 1 and PFC=0, cor-
responding to the right-bottom corner of the unit-square
depicted. Circles with different radii around that point have
been drawn, to represent distances from the optimum.

It can be observed that BUMDA has 5 instances within
0.2 units from the optimum, 3 more instances within 0.4, and
other 3 more instances within 0.6 of the optimum. UMDA
is similar, but not superior, with 4, 2 and 4 instances within
0.2, 0.4 and 0.6 from the optimum, respectively. In contrast,
neither FA nor FOA have any of their instances within these
ranges. In summary, this plot clearly shows that both EDAs
are significantly superior to all other algorithms considered.

D. PERFORMANCE IMPROVEMENT
Besides performance visualization, the PISVM can also be
used to guide the optimization process itself, which means
that the algorithms will search for solutions that opti-
mize classification accuracy as well as PSV simultaneously.
To illustrate this, one extra experiment was performed with

the BUMDA algorithm (the best ranked algorithm so far),
to compare the solutions found with accuracy-based fitness
against the solutions with PISVM used as the fitness function.
Results are reported in TABLE 10. The best results are shown
in bold typeface.

TABLE 10. Performance as percentage of BUMDA and BUMDA using
PISVM : average over 35 trials (Std. Dev.).

From TABLE 10 it can be observed that the PISVM led
BUMDA to obtain solutions with notably lower PSV. This is
achieved without a loss in Accuracy, although a price on the
efficiency is paid (reflected by higher PFC). As can be seen,
optimality may be defined under different, often opposing
criteria; in this case, a trade-off between generalization and
efficiency must be made. However, in the context of medi-
cal diagnosis, higher performance (effectivity + generaliza-
tion) is preferred over efficiency of the optimization process.
As discussed in Section III, a previously proposed objective
function combining Accuracy and PSV [24] did not lead to
any substantial improvement; in contrast, the proposed PISVM
leads to noticeable improvement, probably due to its nonlin-
ear nature. Therefore, based on these arguments, the use of
the PISVM is recommended. Up to this point, the considered
metaheuristics have been evaluated under six different mea-
sures. The final ranking of the algorithms under eachmeasure
are presented in TABLE 11.
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TABLE 11. Final ranking of the Metaheuristics under optimality criteria.

The Effectiveness-Accuracy criterion refers to results in
TABLE 4, Generalization-PSV to results in TABLE 5 and
Efficiency-PFC to those in TABLE 6. The ranking of these
three criteria coincides with the ranking from the statistical
analysis summarized in TABLE 9. Efficiency-Exploration
criterion relates to the analysis presented in subsection V-C.
The Complexity-Parameters and Complexity-Algorithmic
criteria were ranked according to the information in TABLE 1
and TABLE 2, respectively. Based on these criteria a final
ranking of the algorithms is presented. The conclusion is
that the EDAs are the optimal strategy while the rest of the
algorithms are grouped together in a lower category.

VI. CONCLUSIONS AND FUTURE WORK
The most important conclusion is that, supported by our
experimental results and under the established criteria, the
EDAs are the optimal methods for hyper-parameter tuning of
SVM classifiers. With respect to the rest of the algorithms,
it is important to consider that their performance is depen-
dent on the specific values of their user-defined parameters.
Despite using the best reported parameters, these algorithms
were ranked significantly lower than those with one or no
user-defined parameter. In addition, the use of an optimiza-
tion method that requires the setting of more parameters than
the problem dimensionality should be avoided. Particular
conclusions about the bio-inspired metaheuristics are:

BA realized the best exploration among the bio-inspired
metaheuristics. It also obtained average ranking under algo-
rithmic complexity and PFC. Its main disadvantage is the
large number of user-defined parameters; these make it
difficult to use and can negatively affect its performance.
FA obtained the lowest place in PFC and algorithmic com-
plexity; this is balanced out by its good performance in
Accuracy and PSV. In other words, FA is an algorithm that
achieves very good solutions, but it employs far many SVM
evaluations, as reflected by its ranking under the exploration
criterion. FOA placed second best according to PFC; this

apparent efficiency is linked to the lowest ranking in Accu-
racy, PSV and Exploration. Despite favorable results reported
in previous works, FOA appears to be very sensitive to its
own parameters. PSO obtained low performance indexes in
general. In the performance analysis, it was found that many
of the solutions explored by PSO were centered on local
optima. This may be due to PSO keeping a local best for each
particle, which is not done by the other methods.

In all the considered datasets, most of the algorithms were
able to reproduce the results reported in previous works.
There are three diagnostic problems that had not been evalu-
ated previously: Chronic kidney disease (Kidney), Parkinson
speech (Parkinson1) and LSVT voice rehabilitation (VR).
Our results show that Kidney is an easily solvable classifi-
cation problem, but VR and Parkinson1 require more effort.
We consider that the experimental methodology followed
in this work is more reliable than those in previous stud-
ies because a larger number of experimental trials are car-
ried out under several relevant performance criteria, while
other works have focused only on classification accuracy
and sometimes PSV. In addition, optimization methods not
included in this work can also be compared according to the
proposed criteria and evaluation methodology.

It was shown that the proposed performance index (PISVM )
provides two advantages over the Accuracy measure. First,
the plot of PISVM vs efficiency (in this work measured by
PFC) becomes a visualization tool that allows the direct
comparison of the algorithms in terms of efficiency, effective-
ness and generalization, simultaneously. A more important
advantage is that through the PISVM , better solutions (with
lower PSV) were found, thus demonstrating that the proposed
index leads to a better exploration of the solution space. In this
work, the PISVM was tested with the best ranked algorithm;
in the future, a more extensive evaluation of this performance
index will be conducted. Also, considering the success of the
methods on medical diagnosis problems, a natural extension
of this work is to test our findings on other important appli-
cations. Finally, the criteria used to evaluate the optimality
of hyper-parameter-tuning methods can be applied in other
problem domains, such as SVM regression, SVM density
estimation, etc.
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