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ABSTRACT The robot manipulator system is a complicated system with multiple-input and multiple-
output, high nonlinearity, strong coupling, and uncertainties, such as parameter disturbances, external
interference, and unmodeled dynamics. A robust adaptive Takagi-Sugeuo-Kang fuzzy cerebellar model
articulation controller (RATFC) is proposed and applied to a robot manipulator to achieve high-precision
position and speed control. A Takagi-Sugeuo-Kang fuzzy cerebellar model articulation controller is adopted,
and the parameters are regulated by the derived adaptable rules according to a Lyapunov function. The
robust compensation controller mitigates approximation-based errors. Finally, simulation results show that
the proposed RATFC can achieve improved tracking performance compared with other neural network
controllers.

INDEX TERMS TSK fuzzy system, cerebellar model articulation controller, robot manipulator system.

I. INTRODUCTION
Control systems for robot manipulators is a hot topic in
control problems. Due to its complicated physical structure
and highly coupled nonlinear kinetics, the dynamic charac-
teristics of the system are hard to represent with an exact
mathematical model. Thus, robot manipulators have trouble
tracking trajectories accurately. The mission becomes fur-
ther intensified when the system is subjected to a variety
of model uncertainties and immeasurable external interfer-
ence. There are several control algorithms for manipulator
path tracking. Traditional approaches include proportional-
integral-derivative control [1], robust control [2], computed
torque approach [3], variable structure control [4] and adap-
tive control [5]. Nevertheless, uncertainties such as modeling
errors, high frequencies, manipulator joint friction and signal
detection errors degrade the control system’s performance.
Thus, many of the traditional control system feedback algo-
rithms are not able to meet the control demands. Intelligent
designmethods (e.g., neural network [6] and fuzzy theory [7])

have nonlinear shift features and parallel computing capa-
bilities, which offer a valid method for intelligent control.
Thus, the contemporary trend of control methods is not only
to combine two approaches but also to develop new control
skills.

Neural nets have been used in several trajectory-tracking
control systems [8]–[14]. This type of algorithm possesses
strong learning capabilities and a parallel distribution struc-
ture to approximate nonlinear relationships with superior
robustness and error tolerance. The quality of neural net-
work adaptive control law is improved with the addition of a
Lyapunov steadiness norm. The application of neural net-
works to path-tracking robotic manipulators can be primar-
ily separated into two categories: I. The neural net is used
to approximate nonlinear or uncertain manipulator system
parameters (neural net approximation), II. The neural net
is accessed from within the manipulator system controller.
In the entire control course, due to the existence of the approx-
imate fault, the neural net is always regularly connected with
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other control approaches to make up for the effect of dynamic
nonlinearity and system uncertainties so that the system’s
steadiness, convergence and robustness can be enhanced.
Lin and Ting [8] suggested a recurrent wavelet neural net-
based adaptive control system for a two-link robot manipu-
lator system that used a recurrent wavelet neural network to
simulate an optimal controller online while offering smooth
and buffeting-free steadiness compensation via a bounding
compensator. The mechanism can achieve the desired track-
ing performance and robustness without the appearance of
buffeting during the control process. He et al. [9] showed an
adaptable neural net tracking control of a robot manipulator
with an input dead-zone and an output restraint. They applied
an obstacle Lyapunov function to remove the output restraints
and then employed an adaptive neural net to approximate
the dead-zone function and the unknown model of the robot
manipulator.

The precise mathematical model of the manipulator is
not needed in the adaptive fuzzy manipulator control; thus,
the experience of the control expert can be used [15], [16].
Adaptive fuzzy control of the robotic application complies
with some rules in different forms. There are two main
forms: I. Direct adaptive fuzzy control: its rules use con-
trol knowledge in accordance with the deviation between
the real system performance and the optimal performance,
which directly modifies the control parameters. II. Indirect
adaptive fuzzy control: its rules adopt the knowledge of
the controlled object to differentiate between the various
interference or compensation nomenclature and to bind them
correspondingly, which improves the model via online recog-
nition of the control object and then creates an on-line fuzzy
controller by considering the obtained model. Wai et al. [17]
introduced a fuzzy neural network control for robotic manip-
ulators that takes over the robust features of sliding-mode
control and achieves a high-precision path-tracing and steady
control performance. Lian [18] developed a self-organizing
fuzzy radial basis-function neural net controller for robot
manipulators, which dealt with the problem resulting from
an unsuitable choice of parameters in an SOFC and removed
the coupled dynamic influences on the degrees-of-freedom of
the robotic control system.

The goal of this paper is to create a real-time para-
metric TFCMAC neural net that can compensate for the
negative influence of friction and interference in the path-
tracing control of a robotic manipulator. Based on unmodeled
nonlinearities and uncertain interferences, cerebellar model
articulation controllers (CMAC) have the capability of recog-
nizing and controlling complicated nonlinear dynamic mech-
anisms because of its computational simplicity, rapid learning
and great generalization abilities [19]. Integrating fuzzy logic
control and CMAC into fuzzy CMAC (FCMAC) benefits
the function approximation accuracy based on the CMAC
weighting coefficients. The algorithm can provide a variable
method for modeling, nonlinear identification and control
of nonlinear dynamic systems, which are intrinsically not
certain and precise [20]. This paper is organized as follows.

FIGURE 1. Two-link robot manipulator’s architecture.

After the introduction, Section II shows the dynamical model
and computed-torque control of an n-rigid link robot manipu-
lator. In Section III, a TSKFCMAC is developed and used to
approximate the system model to create a robust controller.
The closed-loop control system and the adaptive laws in
the TFCMAC system are derived in the sense of Lyapunov
theory and the steepest decent algorithm in Section IV. The
simulation results of a two-link robotic manipulator indicate
the robust control performance of the proposed scheme in
Section V. Conclusions are drawn in Section VI.

II. DYNAMICS OF MANIPULATOR AND
COMPUTED-TORQUE CONTROL
A. THE DYNAMICAL MODEL
The nonlinear dynamic model of an n-link robot manipulator
is described by the following Lagrange form [21]

M (q)q̈+ V (q, q̇)q̇+ G(q)+ F(q̇)+ τd = τ (1)

where M (q) ∈ Rn×n is the symmetrical positive definite
inertia matrix, V (q, q̇) ∈ Rn is the centripetal and Coriolis
vector, Ṁ (q) − 2V (q, q̇) is the oblique symmetric matrix,
G(q) ∈ Rn is the gravity, F(q̇) ∈ Rn is the static and
dynamic friction, τd (t) ∈ Rn is a disturbance caused by load
changes or modeling errors, τ (t) ∈ Rn is the control input,
and q ∈ Rn is the joint variable vector.

B. COMPUTED-TORQUE CONTROL
The joint variables ensure the trajectory tracking. The desired
manipulator trajectory is denoted as qd (t), and the tracking
error is defined as

e(t) = qd (t)− q(t) (2)

The error-function is defined as

α = ė+3e (3)

where the selection of 3 = 3T
= diag[λ1λ2 · · · λn]T > 0; if

sn−1 + λn−1sn−2 + · · · + λ1, is a Hurwitz polynomial. This
result implies that while α→ 0, then e→ 0.

From (2) and (3), the following is obtained

q̇ = −α + q̇d +3e (4)
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and

M α̇ = M (q̈d − q̈+3ė) = M (q̈d +3ė)−Mq̈

= M (q̈d +3ė)+ V q̇+ G+ F + τd − τ

= M (q̈d +3ė)− Vα + V (q̇d +3e)+ G+F+ τd − τ

= −Vα − τ + f ∗ + τd (5)

where f ∗(x) = Mq̈r + V q̇r + G + F and q̇r = q̇d + 3e,
f ∗(x) contains all the information of model, i.e., all model
information can be expressed in f ∗(x).
Referring to the design method of [22], the control law for

system (1) can be written

τ = f̂ (x)+ Kvα (6)

where f̂ (x) is the approximation of f ∗(x), Kv = KT
v > 0 is a

chosen gain matrix.
Incorporating (6) into (5) yields

M α̇ = −Vα − f̂ − Kvα + f ∗ + τd
= −(Kv + V )α + f̃ + τd
= −(Kv + V )α + ξ0 (7)

where f̃ = f ∗ − f̂ , ξ0 = f̃ + τd .
Then, a Lyapunov function is defined as

L1 =
1
2
αTMα (8)

According to the oblique symmetry characteristic of the
robot manipulator αT (Ṁ − 2V )α = 0 [3], the derivative of
L1 will be

L̇1 = αTM α̇ +
1
2
αT Ṁα

= −αTKvα +
1
2
αT (Ṁ − 2V )α + αT ξ0

= αT ξ0 − α
TKvα (9)

This shows that if the Kv value is fixed, the stabil-
ity of the control system depends on ξ0, i.e., the approx-
imation accuracy from f̂ to f ∗ and the size of the
disturbance τd .

Therefore, a Takagi–Suegeno–Kang Fuzzy Cerebellar
Model Articulation Controller (TFC) is proposed to approxi-
mate the uncertain term f ∗ in this paper.

III. TAKAGI–SUEGENO–KANG FUZZY CEREBELLAR
MODEL ARTICULATION CONTROLLER
Because the exact information about the dynamic models
(i.e.,M (q), V (q, q̇), G(q) and F(q̇)) usually cannot be explic-
itly acquired; therefore, as presented in Fig. 2, a robust adap-
tive TFCMAC control system is developed to mitigate the
problem. The control system is characterized by

u = ûTFC + uR (10)

where ûTFC is the output of TFC, and uR is a robust compen-
sator.

FIGURE 2. Block diagram of RATFC control system.

If a TSK fuzzy CMAC is considered, then the fuzzy infer-
ence rules are put forward as follows

Rl : If X1 is f1jk and X2 is f2jk , . . . , and Xni is fnijk
then wjk = p1jkX1 + p2jkX2 + · · · + pnijkXni
for j = 1, 2, . . . , nj, k = 1, 2, . . . , nk , nl = 1, 2, . . . , nl

(11)

where Xi is the ith input, ni is the dimension of input; nj
is the number of layers of each input dimension; nk is the
number of blocks of each layer; nl = njnk is the number
of fuzzy rules; fijk is the fuzzy set for the ith input, jth layer
and kth block; and wjk is the weight of TSK-type output in
the consequent part. Compared with a fuzzy neural network,
this fuzzy CMAC is constructed with blocks and layers in the
input space, as presented in Fig. 3(a). A schematic diagram of
a 2-D (ni = 2) fuzzy CMACwith four layers (nj = 4) and two
blocks (nk = 2) in each layer is demonstrated in Fig. 3(b).
The TFC consists of input, association memory, receptive-

field, weight memory, and output. The signal propagation in
each space is identified in the following description.

1) Input space: For a given X =
[
X1, · · · ,Xi, · · · ,Xni

]T
∈

<
ni , where Xi stands for the ith input to the node of layer 1,

each input state variable Xi can be quantized into discrete
regions (called an element) according to the given control
space.

2) Association memory space (Membership function): The
accumulation of several elements forms a block. Each block
in this space performs the function of a receptive-field basis.
The Gaussian function is employed as a receptive-field basis
function that is described as

fijk (Fijk ) = exp(−F2
ijk
) for i = 1, 2, . . . , ni,

j = 1, 2, . . . , nj, and k = 1, 2, . . . , nk (12)

where Fijk =
Xi−mijk
vijk

, mijk is a mean parameter, and vijk is a
variance parameter of the Gaussian function.

3) Receptive-field space (Hypercube): The multidimen-
sional receptive field function is defined as

rjk =
ni∏
i=1

fijk (Fijk ) =
ni∏
i=1

exp

(
−

(
Xi − mijk
vijk

)2
)

for j = 1, 2, . . . , nj, and k = 1, 2, . . . , nk (13)
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FIGURE 3. Structure of a TFCMAC. (a) Architecture of a TFC.
(b) Organization of a 2-D fuzzy CMAC.

where rjk is associated with the jth layer and kth block, i.e.,
the ‘‘product’’ operation of the fired value in the antecedent
part of the fuzzy rules in (11).

The expression of the multidimensional receptive-field
functions can be expressed as a vector

r=
[
r11, . . . , r1nk , r21, . . . , r2nk , . . . , rnj1, . . . , rnjnk

]T
∈<

njnk

=
[
r1, . . . , rl, . . . , rnl

]T
∈ <

nl (14)

4) Weight memory (TSK fuzzy output weight): Each loca-
tion of a receptive-field of a specific adaptable value in the
weight memory space can be characterized as

w =
[
w11, . . . ,w1nk ,w21, . . . ,w2nk , . . . ,wnj1, . . . ,

wnjnk
]T
∈ <

njnk

=
[
w1, . . . ,wl, . . . ,wnl

]T
∈ <

nl (15)

where wjk = p1jkX1 + p2jkX2 + · · · + pnijkXni represents the
connecting weight value of the output associated with the jth

layer and kth block. Then, W can be expressed as

W =



w11
...

w1nk
w21
...

w2nk
...

wnj1
...

wnjnk



=



p111 p211 · · · pni11
...

...
. . .

...

p11nk p21nk · · · pni1nk
p121 p221 · · · pni21
...

...
. . .

...

p12nk p22nk · · · pni2nk
...

...
. . .

...

p1nj1 p2nj1 · · · pninj1
...

...
. . .

...

p1njnk p2njnk · · · pninjnk



×


X1
X2
X3
...

Xni

 ≡ PX (16)

where P ∈ <njnk×ni is the output parameter matrix and X =
[X1,X2, . . . ,Xni ]

T
∈ <

ni .
5) Output: The output of TFC is the algebraic sum of the

activated weight receptive-field and is represented by

uTFC = o =
nj∑
j=1

nk∑
k=1

wjkrjk = W T r = (PX )T r (17)

For this fuzzy CMAC, if only one element (neuron) can be
carried in each block, and each input space could only have
one layer, the fuzzy CMAC can be simplified as a fuzzy
neural network [23], [24]. Thus, the fuzzy CMAC is the
overall expression of the fuzzy neural network but is more
generalized, learns faster and recalls more than the latter.
Additionally, the fuzzy rule system in (11) (in this case)
could be reduced to a TSK fuzzy system [25]–[28].Moreover,
the system can return to a traditional CMAC after removing
the fuzzy rule system from the fuzzy CMAC and after reduc-
ing the output weights from TSK-type to singleton-type.

IV. THE ROBUST ADAPTIVE TSK FUZZY
CMAC CONTROLLER
Assume that an optimal u∗TFC exists to approach f ∗(x) such
that

f ∗(x) = u∗TFC (X ,P
∗,m∗, v∗)+ ε ≡

(
P∗X

)T r∗ + ε (18)

where ε is a minimum approximation error; P∗, m∗, v∗

and r∗ are the optimal parameter matrix and vector form of P,
m, v and r , respectively. Nevertheless, since the optimal f ∗(x)
cannot be acquired, the online estimation of f̂ (x) is used to
estimate the optimal TFC. From (17), the control law of (6)
can be expressed in the following form

τ = f̂ (x)+ Kvα − uR ≡ (P̂X )T r̂ + Kvα − uR (19)

where P̂, m̂, v̂ and r̂ are the estimates of P∗, m∗, v∗ and
r∗, respectively. uR is a robust term used to eliminate the
approximation error ε.
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Considering (18) and (19), the estimation error f̃ can be
rewritten as

f̃ = f ∗(x)− f̂ (x)

=
(
P∗X

)T r∗ + ε − (P̂X)T r̂ + uR
= XT P̃T r∗ + XT P̂T r̃ + ε + uR (20)

where P̃ = P∗−P̂ and r̃ = r∗−r̂ . Moreover, this linearization
technique is adopted to transform the receptive-field function
into a quasi-linear form. According to the design method
in [26], the Taylor series expansion of r̃ on m̃ and ṽ can be
rewritten as

r̃ = r∗ − r̂ = rTm m̃+ r
T
v ṽ+ Ot (21)

where m̃ = m∗ − m̂, ṽ = v∗ − v̂, and Ot ∈ Rnl is a vector of
higher-order terms.

Based on the nonlinear system demonstrated in (1), if the
definition of the control law is designed as in (19), then TFC’s
adaptation laws are developed using (22) to (24), while (25)
demonstrates the design of the robust controller.

˙̂P = η10r̂XTα (22)
˙̂m = η2rmP̂Xα (23)
˙̂v = η3rvP̂Xα (24)

uR = −µsgn(α) (25)

where µ = |ε + τd | denotes the uncertainty bound; 0 =
0T > 0 is the adaptive gain matrix; and η1, η2, η3 are the
learning rates of ˙̂P, ˙̂m, ˙̂v, respectively.
The Lyapunov function candidate is given by

L2 = L1 +
1
2η1

tr
(
P̃T0−1P̃

)
+

1
2η2

m̃T m̃+
1
2η3

ṽT ṽ (26)

Taking the derivative of the Lyapunov function (26) and
using (9) yields

L̇2 = L̇1 +
1
η1
tr
(
P̃T0−1 ˙̃P

)
+

1
η2
m̃T ˙̃m+

1
η3
ṽT ˙̃v

= αTM α̇ +
1
2
αT Ṁα +

1
η1
tr
(
P̃T0−1 ˙̃P

)
+

1
η2
m̃T ˙̃m+

1
η3
ṽT ˙̃v

= αT [−(Kv + V )α + f̃ + τd ]+
1
2
αT Ṁα

+
1
η1
tr
(
P̃T0−1 ˙̃P

)
+

1
η2
m̃T ˙̃m+

1
η3
ṽT ˙̃v

= −αTKvα +
1
2
αT (Ṁ − 2V )α + αT (f̃ + τd )

+
1
η1
tr
(
P̃T0−1 ˙̃P

)
+

1
η2
m̃T ˙̃m+

1
η3
ṽT ˙̃v

= −αTKvα + αT (XT P̃T r∗ + XT P̂T r̃ + ε + uR + τd )

+
1
η1
tr
(
P̃T0−1 ˙̃P

)
+

1
η2
m̃T ˙̃m+

1
η3
ṽT ˙̃v

= −αTKvα + αT (XT P̃T r̂ + XT P̂T
(
rTm m̃+ r

T
v ṽ
)
+ξ (t)

+ uR + τd )+
1
η1
tr
(
P̃T0−1 ˙̃P

)
+

1
η2
m̃T ˙̃m+

1
η3
ṽT ˙̃v

= −αTKvα + tr
[
P̃T
(
r̂XTα −

1
η1
0−1
˙̂P
)]

+ m̃T
[
rmP̂Xα −

1
η2

˙̂m
]
+ ṽT

[
rvP̂Xα −

1
η3

˙̂v
]

+αT (ε + uR + τd )
= −αTKvα + αT (ε + uR + τd ) (27)

In the expression above, the relationships αTXT P̂T rTm m̃ =
m̃T rmP̂Xα and αTXT P̂T rTv ṽ = ṽT rvP̂Xα are used as scaling
terms. Thus, the expression can also be defined as αXT P̂T r̂ =
tr
(
P̃Tαr̂XT

)
. Then, via (25), (27) can be rewritten as

L̇2 = −αTAα + αT (ε + uR + τd )

= −αTAα + αT (ε + uR + τd )

= −αTAα + αT (ε + τd )+ αT uR
= −αTAα + αT (ε + τd )− ‖α‖µ

≤ 0 (28)

V. SIMULATION RESULTS
The two-link robot manipulator shown in Fig. 1 is used to
examine the effectiveness of the proposed control scheme.
The adopted robot system’s dynamic model can be expressed
in the form of Eq. (1) as in [19]. The specific system param-
eters for robot manipulators are as follows in (29) shown at
the bottom of this page.

where q1 and q2 are the angle of joints 1 and 2, m1 and
m2 are the mass of links 1 and 2, l1 and l2 are the length of
links 1 and 2, and g is the gravity acceleration. Additionally,
the following nonlinear viscous and dynamic friction terms
of F(q̇) and unknown disturbances τd have been covered in
the manipulator dynamics.

l1 = 1.0 m l2 = 1.0 m m1 = 0.8 kg

m2 = 2.3 kg g = 9.8 m/s2 (30)

F(q̇) = 0.02sgn(q̇) τd = [ 0.2 sin(t) 0.2 sin(t) ] (31)

M (q) =
[
l22m2 + l21 (m1 + m2)+ 2l1l2m2 cos (q2) l22m2 + l1l2m2 cos (q2)

l22m2 + l1l2m2 cos(q2) l2m2

]
V (q, q̇) =

[
−l1l2m2q̇2 sin(q2) −l1l2m2(q̇1 + q̇2) sin(q2)
m2l1l2 sin(q2) 0

]
G(q) =

[
(m1 + m2)l1g cos(q1)+ l2m2 cos(q1 + q2)

m2l2g cos(q1 + q2)

]
(29)
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FIGURE 4. Simulated results of a computed torque position control
system on a radial basis function neural network. (a) Position tracking for
link 1; (b) Position tracking for link 2; (c) Speed tracking for link 1;
(d) Speed tracking for link 2; (e) Tracking error for link 1; (f) Tracking error
for link 2.

FIGURE 5. Simulated results of computed torque position control system
on a cerebellar model articulation controller. (a) Position tracking for
link 1; (b) Position tracking for link 2; (c) Speed tracking for link 1;
(d) Speed tracking for link 2; (e) Tracking error for link 1; (f) Tracking error
for link 2.
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FIGURE 6. Simulated results of computed torque position control systems
on a recurrent cerebellar model articulation controller. (a) Position
tracking for link 1; (b) Position tracking for link 2; (c) Speed tracking for
link 1; (d) Speed tracking for link 2; (e) Tracking error for link 1;
(f) Tracking error for link 2.

FIGURE 7. Simulated results of computed torque position control systems
on TSK-based fuzzy cerebellar model articulation controller. (a) Position
tracking for link 1; (b) Position tracking for link 2; (c) Speed tracking for
link 1; (d) Speed tracking for link 2; (e) Tracking error for link 1;
(f) Tracking error for link 2.
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FIGURE 8. Tracking error for joint 1 and 2 on four schemes. (a) Tracking
error for joint 1. (b) Tracking error for joint 2.

The initial state of the system is [q1d , q̇1d , q2d , q̇2d ]T =
[0.09 0 − 0.09 0]T , and the desired trajectory is expressed
as

q1d (t) = 0.1 sin t (32)

q2d (t) = 0.1 sin t (33)

and Kv = diag{20, 20}, µ = 0.3, 3 = diag{40, 40}.
The performance of the proposed adaptive TFCMAC con-

trol system is evaluated after it is applied on a two-linkmanip-
ulator, as shown in Fig. 1. To confirm the superiority and
the robustness of the TFCMAC control scheme, three other
neural network control methods (radial basis function (RBF)
neural network [18], CMAC [29] and recurrent CMAC [30])
are used to simulate and compare the position tracking and
the speed tracking of the joints. Based on Fig. 4, Fig. 5 and
Fig. 6, under the same coordinate presented Fig. 8, the error
tracking of four intelligent control schemes were compared.
Obviously, the robust adaptive TFCMAC is superior to the
other three control strategies in the error convergence rate of
the two joints.

Table 1 shows the root-mean-square error values obtained
for the four investigated neural network controllers, which
confirm once again that the robust adaptive TFCMAC is
superior to the other three control schemes in the robot
manipulator.

TABLE 1. RMSE values of tracking performance.

VI. CONCLUSION
A robust adaptive TFCMAC control strategy has been
presented and has effectively been used to solve inherent
performance problems associated with manipulator-tracking
control. The proposed control system consists of an adaptive
TFCMAC and a robust compensator. The developed TFC-
MAC is applied as the main tracking controller, while the
robust compensator is designed to mitigate the effects of
approximation errors. Therefore, the desired tracking perfor-
mance can be obtained. According to the simulation results,
the proposed intelligent adaptive control scheme can ensure
good tracking performance. Moreover, the quality of the per-
formance such as the RMSE, the computing time and the con-
vergence time, compared with RBF neural networks, CMAC
and recurrent CMAC controllers exceeds expectations. One
interesting future research topic is the extension of the pro-
posed methods to networked control systems, as shown
in [31]–[33], and large-scale fuzzy systems, as shown in [34]
and [35].
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