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ABSTRACT We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD)
relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that
is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure
based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward
part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference
is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at
the FD relay node. To this end, a promising solution is outlined to address the two challenges, which
realizes consecutive FD realization at all times and forwards all the desired signal to the destination for
decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution,
which effectively reduces the circuit complexity and releases high power consumption at the FD relay node.
Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some
future research is also envisaged for WPT-aided FD systems.

INDEX TERMS Wireless power transfer, full duplex, relay, algorithms.

I. INTRODUCTION
Wireless power transfer (WPT)-aided relay communica-
tions are appealing in the scenarios where regular battery
replacement or recharging is inconvenient or even impossible
(e.g., in a toxic environment) [1], [2]. By harvesting energy
from source node, a WPT-aided relay can continuously assist
communication between source and destination. Thus the
network connectivity can be maintained, and the lifetime is
prolonged [3].

At the beginning, WPT-aided systems adopted half-
duplex (HD) transmission. Since HD needs orthogonal
time slots or frequencies for transmission and reception,
resource utilization efficiency in HD systems is inevitably
degraded [4]. There are two different splitting structures,
namely power-splitting [5]–[7] and time-splitting structures
[8], [9], to process signal at the receiver end. For the time-
splitting structure based WPT-aided HD relay systems, three
time slots are needed. In the first two time slots, the source

transmits signal to the relay, and the relay processes signal
and harvests energy by using amplify-and-forward (AF) or
decode-and-forward (DF) protocol. In the third time slot, the
relay consumes the harvested energy to forward the signal to
the destination. A similar time-splitting structure based bi-
directional HD system was considered in [10]. A dedicated
energy harvesting (EH) time slot is assigned at the downlink
in the first time slot, in which the base station (BS) and
the relay nodes send signal to the multiple users. Then the
uplink data transmission is performed by the users using the
harvested energy in the remaining time. On the other hand,
for the power-splitting structure based WPT-aided HD relay
systems, two time slots are needed. The source transmits
signal to the relay in the first time slot, however, only part
of the received signal at the relay node can be forwarded to
the destination while the rest is stored to support the relay’s
operation in the second time slot [8]. Similar power-splitting
structure basedHD systemswere researched by [11] and [12],
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where the receivers adopt power-splitting structure and only
part of the desired signal can be fed for decoding. In summary,
the aforementionedWPT-aided HD relay systems either need
extra time slots or only forward part of the desired signal to
the destination, incurring spectral efficiency (SE) loss due to
low resource utilization efficiency.

In an effort to overcome the SE loss by HD, full-
duplex (FD) has attracted extensive attention. With signal
transmitted and received simultaneously over the same fre-
quency, FD can approximately double the SE over HD [13].
This has also led to growing interest in applying FD for
WPT-aided systems [14]. Existing WPT-aided FD relay
systems are also based on time-splitting [15], [16] and power-
splitting [17], [18] structures. For the time-splitting struc-
ture based WPT-aided FD relay systems, two time slots are
required. In the first time slot, the source sends energy-
bearing signal to the relay for EH. In the second time slot, the
source sends information-bearing signal to the relay and the
relay forwards the received signal to the destination simul-
taneously [19]. As for the power-splitting structure based
WPT-aided FD relay systems, the relay splits part of the
received signal for EH, and forwards the remnant signal to
the destination for decoding [20].

Two critical challenges, however, need to be addressed
for WPT-aided FD relay systems. The first challenge is the
pseudo FD realization. It is because time-slitting structure
based WPT-aided FD relay systems adopt HD operation in
one of the time slots and FD operation is only realized in
the remaining time, while power-slitting structure based FD
can not forward all the received signal to the destination.
The second challenge is the high power consumption for
WPT-aided FD relay systems, because additional power is
triggered by self-interference cancellation (SIC) at the FD
relay. A solution was proposed by [15], [21] to release the
high power consumption by utilizing self-interference rather
than canceling it, and thus SIC is immune at the relay node.
However, the systems proposed by [15], [21] still belong to
pseudo FD realization, and FD is only realized in the second
time slot. Although a lot of research has been conducted
in WPT-aided FD relay systems, it is still unknown how to
realize consecutive FD transmission, and at the same time
to obtain a simple SIC design to reduce the high power
consumption at the FD relay node. Also, there still lacks of
a comprehensive survey to specifically identify the research
issues, challenges and opportunities for WPT-aided FD
relay systems. This motivates the work demonstrated in this
article:

1) A comprehensive investigation for WPT-aided FD
relay systems is presented. The specific classifications of
WPT-aided FD relay systems are discussed according to
different configurations, e.g., splitting structures, position
of WPT harvester, self-interference processing mode, relay
mode, antenna type, and the number of relays and users.
Then the research issues of WPT-aided FD relay systems are
summarized, e.g., SE, energy efficiency (EE), secrecy rate
and outage probability.

2) The critical challenges of WPT-aided FD relay systems
are presented, i.e., pseudo FD realization and high power
consumption. A promising solution is outlined to realize the
real FD operation, where FD can be performed at all time and
all the desired signal can be received by the destination for
decoding. This is fundamentally different from the existing
time-splitting structure based WPT-aided FD relay systems
that only operate FD in one of time slots, or power-splitting
structure based WPT-aided FD relay systems that only for-
ward part of the desired signal to the destination. Besides,
active SIC is not required by the proposed solution, which
effectively reduces the circuit complexity and thus is more
energy efficient than the conventional WPT-aided FD relay
systems.

3) Some potential research on WPT-aided FD systems is
envisaged, e.g., WPT-aided FD cooperative non-orthogonal
multiple access (NOMA) systems, FD ultra-dense heteroge-
neous systems and WPT-aided FD systems with non-linear
EH efficiency.

II. OVERVIEW OF WPT-AIDED FD RELAY SYSTEMS
In this section, the classifications of WPT-aided FD relay
systems are discussed. Then different self-interference sup-
pression/cancellation schemes and system performance met-
rics for WPT-aided FD relay systems are described.

A. CLASSIFICATIONS OF WPT-AIDED FD RELAY SYSTEMS
WPT-aided FD relay systems can be classified in different
ways as follows.

1) BY SPLITTING STRUCTURE
WPT-aided FD relay systems can be classified into power-
splitting based or time-splitting based structure. As aforemen-
tioned, the power-splitting based structure requires a fewer
number of time slots compared to the time-splitting based
structure, however, it only forwards part of the received signal
to the destination.

2) BY POSITION OF WPT HARVESTER
Based on the position of harvester, WPT-aided FD relay
systems can be classified into destination harvester [7], [22]
or relay harvester [23]. For the former case, the destination
harvests energy from the relay and the source (if the direct
link is not absent), and the received signal at the destination
is processed by the power-splitting or time-splitting receiver.
For the latter case, the relay harvests energy from the signal
sent by the source, and then the harvested energy is used to
forward the signal to the destination.

3) BY SELF-INTERFERENCE PROCESSING MODE
WPT-aided FD relay systems can be classified into utilizing-
self-interference [15], [21] or canceling-self-interference
structure [16]. Conventionally, self-interference is treated as
noise and needs to be canceled as much as possible by
SIC schemes. To this end, additional power consumption is
required, e.g., by analog or digital domain SIC. Differently,
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utilizing-self-interference structure utilizes self-interference
for energy recycling [21], because self-interference actually
comes from the FD relay’s transmitter and is known by the
relay node.

4) BY RELAY MODE
Based on the relay mode, WPT-aided FD relay systems can
be divided into AF relay systems [19], [21], [22] and DF
relay systems [24]. An AF relay amplifies the received signal
from the source and forwards the mixed signal, including the
desired signal, noise and self-interference, to the destination.
Therefore, AF relay systems are featured by simple circuit
design and low power consumption. However, noise and self-
interference are forwarded to the destination. A DF relay
decodes the received signal first, and forwards the re-encoded
signal to the destination. Hence, the residual self-interference
does not affect the relay-destination link directly. However,
a DF relay normally leads to higher power consumption and
latency than an AF relay due to its complex signal processing.

5) BY ANTENNA TYPE
According to the type of antennas at the relay node, WPT-
aided FD relay systems can be classified as shared-antenna
FD relay [4] and separated-antenna FD relay systems [25].
With the shared-antenna, only one antenna set is adopted for
both transmission and reception at the relay node. A duplexer
(circulator) is needed to route the received signal from the
antenna to the receive chain, and route the transmitted signal
to the antenna from the transmit chain. With the separated-
antenna, the relay can use separated antennas for transmission
and reception, respectively. In particular, separated-antenna is
preferable when multi-input multi-output (MIMO) is applied
at the relay node. This is because the SIC in MIMO is
more complex than that in single-input single-output (SISO)
systems, whereas the isolation offered by the duplexer may
be insufficient.

6) BY THE NUMBER OF USERS AND RELAYS
To improve the strength of the received signal and combat
high path loss (PL), a user may be assisted by multiple
relays [8], [9]. In this case, one can apply relay selection to
explore spatial diversity. Also, multiple users may be served
by one relay node. In a multiuser scenario, multiple access
technique, such as orthogonal frequency division duplex-
ing access (OFDMA), can be adopted [26]. Importantly,
the power of self-interference is different across subcarriers.
To achieve a better SIC performance, per-subcarrier SIC [27]
is desirable. Apart from OFDMA based multiuser systems,
MIMO can be applied to multiuser scenario as well [28],
where multiuser interference is canceled by proper beam-
forming design.

The time-splitting/power-splitting structure based
WPT-aided FD/HD relay systems are summarized in Fig. 1,
and the classifications of WPT-aided FD relay systems are
illustrated in Fig. 2.

FIGURE 1. Time-splitting/power-splitting structure based WPT-aided
FD/HD relay systems.

FIGURE 2. Classifications of WPT-aided FD relay systems.

B. SIC IN WPT-AIDED FD RELAY SYSTEMS
SIC is required if self-interference is treated as noise [16], and
hereby we give a brief introduction for existing SIC schemes.
There are two categories for SIC operation, namely passive
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suppression (PS) and active cancellation. Specifically, active
cancellation can be further divided into analog cancella-
tion (AC) and digital cancellation (DC).

1) PS
PS, as the first stage of SIC, mitigates self-interference in
the propagation domain, via directional antenna, antenna
placement and antenna shielding. Recent research has shown
that more than 70 dB of SIC amount can be achieved by
PS [4]. The advantage of using PS is that no additional power
consumption is required. a) A higher PL between relay’s
transmitter and receiver leads to a better PS performance.
In this case, antenna shielding between the relay’s transmitter
and receiver can be adopted. b) Besides, applying high-gain
antennas with narrow beamwidth allows the relay to concen-
trate the radiated energy in the desired directions, and the
main lobe of the beam of the relay’s transmitter is not routed
into its receiver. c) The application of directional antenna is
also beneficial to the cross-polarization, where transmit and
receive antennas in orthogonal polarization states (vertically
and horizontally polarized) can achieve 20 dB additional SIC
amount.

2) AC
After PS, self-interference can be further mitigated by AC
before signal goes through low noise amplifier (LNA) [4].
With the ready-made transmit chains and receive chains, there
are two kinds of AC designs: direct-conversion architecture
AC and non-direct-conversion architecture AC, as illustrated
in Figs. 3(a) and (b), respectively. The former deploys the
direct-conversion radio architecture to estimate the self-
interference and subtracts it at the relay’s receiver end. This
kind of AC circuit design does not need additional base-
band signal processing at the relay node and thus consumes
less power. The relay node processes the transmitted signal
from its transmitter to form the predicted self-interference in

the analog-circuit domain. While the non-direct-conversion
AC architecture generates the predicted self-interference in
digital domain, adjusts the gain/phase digitally, converts the
digital signal to analog signal and finally feeds the signal
to the receive chain for AC operation. Since baseband sig-
nal processing unit, digital-to-analogue converters (DACs),
mixers, low pass filters (LPFs), attenuators and adders are
required, the incurred power consumption is as high as the
equivalent transmit chains.

3) DC
DC is applied at the last stage, which subtracts the residual
self-interference after PS andAC in digital domain. It requires
accurate estimation of the residual self-interference following
PS and AC. Moreover, transmitter and receiver distortions
need to be captured by DC. Therefore, complex baseband
signal processing unit is required by the DC operation, which
also consumes non-negligible power consumption.

C. SYSTEM PERFORMANCE METRICS
1) SE
There have been active research for WPT-aided FD relay
systems in terms of SE [19], [22], [23]. Since the FD relay
transmits and receives signal simultaneously at the same
frequency, WPT-aided FD relay systems can achieve much
higher SE compared to its counterpart WPT-aided HD relay
systems [29]. In [19] and [23], EH and information transmis-
sion are decoupled into two orthogonal time slots. Since the
self-interference is treated as noise by the FD relay, SIC is
required at the FD relay. In [22], joint optimization design of
source and relay beamformers was researched in FD MIMO
AF relay systems, where the user is powered through WPT
from the relay node.

The authors in [30] and [31] researched the SE oriented
resource allocation in bi-directional WPT-aided FD systems,
where a FD BS sends the energy-bearing signal to multiple

FIGURE 3. Two typical AC designs in WPT-aided FD relay systems.
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users while the users send information to the FD BS concur-
rently. Since the self-interference is introduced at the BS, SIC
is required to ensure the uplink reception.

2) EE
EE, defined as the ratio between SE and power consump-
tion, makes a proper trade-off between SE and power
consumption. EE issue in bi-directional WPT-aided FD
systems was considered by [16], where a FD BS sends
information-bearing signal to the downlink user and energy-
bearing signal to the uplink user in the first time slot. In the
second time slot, the BS continues to send information-
bearing signal to the downlink user and simultaneously
receive information-bearing signal from the uplink user.
In [26], WPT in OFDMA based multiuser systems was
investigated, where the downlink users split part of the
received signal for EH while the remnant signal is fed for
decoding.

3) SECRECY RATE
Secrecy rate, defined as the difference of mutual information
between the normal expectation receiver and the eavesdrop-
per, is used tomeasure the physical layer security. To optimize
the secrecy rate, artificial noise, cooperative jamming and
beamforming techniques have been extensively investigated
[20], [33]–[36]. Since a FD relay can receive desired signal
and transmit jamming signal or artificial noise simultane-
ously, it is expected to provide high secrecy rate compared
to HD relay systems. Also, artificial noise can be gener-
ated by other communication nodes [37], [38], such as the
source and the destination, to jointly interfere with the passive
eavesdropper.

4) OUTAGE PROBABILITY
Outage occurs when the received signal-to-interference-and-
noise-ratio (SINR) (or achievable rate) is lower than the
required SINR (or targeted data rate) [9]. Due to the prior-
ity of WPT-aided FD in high SE, WPT-aided FD systems
can obtain lower outage probability over its counterpart
WPT-aided HD systems [39]. The outage probability in
WPT-aided cognitive radio systems was considered in [40],
where the cognitive transmitter communicates with the cog-
nitive receiver via an EH relay. Differently, the authors
in [41] investigated a three-node system, where a WPT-aided
HD relay was positioned to cooperate the communication
between the source and the destination. Finally, the splitting
factor at the relay node was optimized to minimize outage
probability.

The review of WPT-aided FD/HD relay systems is
summarized in TABLE 1.

III. CHALLENGES OF WPT-AIDED FD RELAY SYSTEMS
In this section, we discuss the critical challenges of
WPT-aided FD relay systems.

A. PSEUDO FD REALIZATION
As surveyed in Sections I and II, existing WPT-aided FD
relay systems can not realize real FD operation. For the time-
splitting structure based WPT-aided FD relay systems, two
time slots are required. FD is only realized in one of time
slots, while the systems operate in HD mode in the other
time slot. For the power-splitting structure based WPT-aided
FD relay systems, only part of the desired signal can be
forwarded to the destination’s decoder. In conclusion, how
to realize consecutive FD operation at all time and forward
all the desired signal to the destination for decoding is still
unknown.

B. HIGH POWER CONSUMPTION
Since a FD relay transmits or receives signal simultaneously
at the same frequency, its transmit and receive chains are
active all the time. Therefore, a FD relay naturally consumes
higher power than its counterpart HD relay. More impor-
tantly, additional power consumption is incurred by SIC at
the FD relay node if self-interference is treated as noise [19],
[30], [31]. As introduced in Section II, the AC operation
design needs DAC, adder, tunable attenuation and delay unit
to mitigate self-interference. The incurred power consump-
tion is even comparable with that of the equivalent transmit
chains. Also, the power consumed by the DC operation is also
non-negligible, which needs digital baseband signal process-
ing unit to calculate the equivalent baseband signal after PS
and AC operations, as summarized in TABLE 2.

IV. REALIZATION OF REAL WPT-AIDED FD
RELAY SYSTEMS
A. SYSTEM MODEL
To address the aforementioned two challenges, in this section,
we propose a solution to realize consecutive FD operation at
all time and forward all the desired signal to the destination.
Differently, conventional WPT-aided FD relay systems only
realize FD in one of time slots or only forward part of the
desired signal to the destination. Also, conventional WPT-
aided FD relay systems suppress self-interference as much
as possible [17], [18], [23], [30], [31], giving rise to power
consumption.

We consider a classical three-node model, where the
communication between the source and the destination is
supported by an AF relay. The relay receives the desired
signal from the source as well as the self-interference from
its own transmit antennas, and simultaneously amplifies the
mixed signal to the destination. Thus, at the destination, the
desired signal is mixed together with self-interference and
noise. Assume that the source transmits x[i] to the relay with
transmission power ps in time slot i. The received signal r[i]
at the relay node can be expressed as

r[i] =
√
pshsrx[i]+

√
prhsit[i]+ nr [i], (1)

where hsr and hsi denote the channel responses of the source-
relay and the self-interference channels, respectively; t[i] is
the signal transmitted by the relay node with transmission
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TABLE 1. Summary of WPT-aided FD/HD relay systems.

power pr . nr [i] ∼ CN (0, σ 2
r ) is the complex additive white

Gaussian noise (AWGN) at the relay. Therefore, the received
signal at the destination can be expressed as

y[i] =
√
prhrd t[i]+ nd [i], (2)

where hrd denotes the channel response of the relay-
destination channel; nd [i] ∼ CN (0, σ 2

d ) is the complex
AWGN at the destination. In AF relay systems, the transmit-
ted signal t[i] by the relay node is

t[i] = βr[i− 1], (3)

where β is amplification factor by the AF protocol. Based
on the AF protocol, the amplification factor is generally set

to β =
√

pr
ps|hsr |2 + pr |hsi|2 + σ 2

r
[43]. Substituting (3) into

(2) yields

y[i] = β
√
prhrd (

√
pshsrx[i− 1]+ hsit[i− 1]+ nr [i− 1])

+ nd [i]. (4)

The SINR at the destination is calculated by

SINR

=
pspr |hsr |2|hrd |2

pr |hrd |2(pr |hsi|2+σ 2
r )+(pr |hsi|2+σ 2

r )σ
2
d + ps|hsr |

2σ 2
d

,

(5)

The first term in the denominator in (5) is the power of the
self-interference, while the sum of the second and the third
terms in the denominator is the power of the noise introduced
at the relay and the destination. Since the self-interference
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TABLE 2. Summary of power consumption and EE challenges for different SIC schemes.

is treated as noise by the conventional methods, the self-
interference is mitigated as much as possible to obtain a tiny
value of |hsi|2.
By the proposed solution, the self-interference is utilized

and harvested by the destination, and thus a tiny value of
|hsi|2 is not desirable. However, to guarantee that the desired
signal is not overwhelmed by the self-interference, we need to
make the power of the desired signal at the destination com-
parable with that of the self-interference. Hence, we obtain
an inequality that pspr |hsr |2|hrd |2 ' pr |hrd |2(pr |hsi|2 + σ 2

r )
based on (5), which can be further derived into ps|hsr |2 '
pr |hsi|2. To make the inequality hold, PS and power adapta-
tion can be applied.

According to the state-of-the-art PS technique [45], more
than 70 dB can be achieved by applying PS at the relay node,
which does not consume additional power as surveyed in
Subsection II-B. On the other hand, Fig. 4 shows the signal
propagation from the source to the relay via the source-relay
channel hsr , featured by the 3GPP technical specification
group [44] at 2 GHz. As seen from Fig. 4, the propagation
attenuation of the channel hsr is lower than 70 dB within a
reasonable communication distance, meaning that the chan-
nels hsr and hsi have similarmagnitudes and the desired signal
is not overwhelmed by the self-interference. Besides, joint
transmission power adaptation at the source and relay can also
guarantee the relative power of the desired signal and the self-
interference. In AF FD relay systems, since the transmission
power pr has much higher impact on the self-interference
than the transmission power at the source ps [43], one can

FIGURE 4. Signal propagation from the source to the relay node via the
channel hsr , featured by the 3GPP technical specification group at
2 GHz [44]. Transmission power at the source ps = 100 dBm.

properly improve the transmission power ps at the source and
reduce the transmission power at the relay pr , which also
helps ps|hsr |2 ' pr |hsi|2 hold. As a result, by PS technique
and joint power adaptation, the proposed solution can control
the power of the self-interference to the level comparable with
that of the desired signal.

B. SIGNAL SEPARATION AT THE DESTINATION
At the destination, the received signal consists of the desired
signal, self-interference and noise, which can be separated
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and extracted by applying blind or semi-blind equalization
method. Then the desired signal is routed to the destination’s
decoder to recover the original transmitted signal, while the
self-interference is used for EH.

The proposed solution realizes consecutive FD operation at
all time, which reduces the number of the required time slots
compared to the time-splitting structure based FD systems.
Besides, all the desired signal from the source can be for-
warded to the destination and extracted for decoding, while
the power-splitting structure based WPT-aided FD relay sys-
tems only feed part of the desired signal to the destination,
leading to low SE and EE. Last but not least, active SIC, i.e.,
AC and DC, is not required by the relay node and the self-
interference is utilized rather than canceled, which is much
more energy-efficient than the existing systems in [17], [18],
[23], [30], [31].

V. POTENTIAL FUTURE RESEARCH
A. WPT-AIDED FD COOPERATIVE NOMA SYSTEMS
In the research on WPT-aided FD systems, it has been
assumed that orthogonal multiple access is adopted. In fifth
generation (5G) communications, NOMA has received con-
siderable attention due to its potential on high SE, where users
are operated to transmit at the same time, code and frequency,
but with different power levels [46]. The key concept of
NOMA is that users’ signals are linearly superimposed at the
BS with different transmission power. At the receiver end,
successive interference cancellation is applied to remove the
multiuser interference before detecting its own signal [46].
Normally, two users are clustered in each group to reduce
the complexity at the receiver end. By incorporating MIMO
and NOMA, additional degrees of freedom are obtained and
multiple users can be clustered into different groups by beam-
forming design [47]. For example, NOMA can be used for
inter-grouping while MIMO can be adopted for canceling
inter-cluster interference, as shown by Fig.5 (a).

In order to further improve the SE performance of NOMA
technique, cooperative NOMA systems have been proposed
recently. Different from the conventional non-cooperative
NOMA in [46]–[55], cooperative NOMA derives from the
fact that the strong user can always decode the weak user’s
data, due to its better receiving condition than the weak user.
Therefore, the strong user can act as a relay node and forward
signal to the weak user to improve the system SE via diver-

FIGURE 5. a) WPT-aided FD cooperative NOMA systems. b)FD ultra-dense
heterogeneous systems.

sity techniques. Related research has been conducted in HD
cooperative NOMA systems in terms of outage probability
[56], [57] and SE performances [58], [59]. In the first time
slot, the BS sends the superimposed signal to both strong
user and weak user, while the strong user forwards the signal
to the weak user in the second time slot. However, since
the aforementioned cooperative NOMA systems assume that
the strong user operates in HD mode, additional time slot is
required and significant SE loss is generated. To this end,
FD can be integrated into cooperative NOMA systems to
recover the SE loss [60], [61]. In [61], the user pairing issue in
FD cooperative NOMA systems was investigated, while the
outage probability was analyzed for FD cooperative NOMA
systems in [60]. The literature review of WPT-aided FD
cooperative NOMA systems is summarized in TABLE 3.

There are more fundamental challenges that need to be
addressed in FD cooperative NOMA systems. For example,
how to achieve high EE transmission is still challenging,
which requires a trade-off between SE and power consump-
tion. By applying FD cooperative NOMA, additional power

TABLE 3. Summary of FD/HD cooperative/non-cooperative NOMA systems.
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TABLE 4. Summary of EH efficiency models in WPT-aided systems.

is consumed at the strong user end, while the existing research
ignores the additional power consumption on the transmit
chain, which is even higher than the consumed transmission
power.

B. FD ULTRA-DENSE HETEROGENEOUS SYSTEMS
Ultra-dense heterogeneous small cell communication is one
of characteristics of 5G systems to provide seamless cover-
age [62]. Small cells are formed by micro, pico or femto
nodes, which are featured by low cost and low power con-
sumption. With ultra-dense small cells, users are easier to
capture signal and thus high SE is obtained, as shown
by Fig.5 (b). The authors in [63] pointed that by applying
FD small cells, SE can be significantly improved due to
the shortened communication distance. FD MIMO systems
with heterogeneous cells were researched in [64] and [65]
to improve SE. In [64], FD was applied to small cell BS
while HD was applied to macro cell BS to relax the coverage
reduction. In [65], the performance of massive MIMO wire-
less backhaul systems was investigated, where small cells
adaptively work in FD or HD mode and each macro cell
BS serves its small cell BS by using zero forcing beam-
forming. However, high density of small cells increases the
possibility of inter-cell interference, and system performance
may be significantly degraded by inter-cell interference and
multiuser interference. How to determine the density of small
cells, and how to organize adjacent small cells for coopera-
tive communications, interference management andWPT are
challenging.

C. WPT-AIDED FD SYSTEMS WITH NON-LINEAR
EH EFFICIENCY
Linear EH efficiency has been extensively assumed in the
current research. With a linear harvesting efficiency ζ , the
harvested power can be calculated as Pharvest = ζPrec, where
the harvested power Pharvest is proportional to the received
signal power Prec. Due to the simple expression, the linear
model has been extensive adopted in algorithm design [21],
[30], [32]. However, as verified by the field measurement, the
actual harvesting circuit demonstrates a non-linear behavior.
The authors in [66] proposed a non-linear model by adopting
the Taylor series expansion of the diode current. The har-
vested power is calculated by Pharvest = aP2rec + bPrec + c,
where a, b and c are constants related to the specific EH
circuit, respectively. However, the model does not capture the
saturation effect of the harvesting circuit at a high power level.

To further improve the accuracy of EH model, the authors
in [67] adopted a logistic function based model Pharvest =
Pmax (1−e−aPrec )
1+e−a(Prec−b)

, where Pmax denotes the maximum harvested
power when the harvesting circuit is saturated. The values of
Pmax , a and b are related to the specific EH circuit design
and can be determined by the curve fitting method, such as
the turn-on voltage of the diode and the maximum output
power of the rectifier. Compared to the first two models, the
logistic function based model well captures the saturation and
the diode breakdown effects.

With the non-linear EH models, several algorithms were
proposed to maximize the total harvested power or SE for
HD systems [67]–[69]. However, how to apply the non-linear
EH model into FD systems is still untouched, which makes
algorithm design more complicated. The literature review of
EH efficiency models is summarized in TABLE 4.

VI. CONCLUSION
This article presents an overview of the research issues,
challenges and opportunities for WPT-aided FD relay
systems. The two critical challenges, pseudo FD realization
and high power consumption, are demonstrated. We further
outline a technical solution to enhancing the performance of
WPT-aided FD relay systems, which can realize FD operation
at all time with self-interference recycling and forward all
the desired signal to the destination. Different WPT-aided
FD relay classifications and performance metrics are dis-
cussed, such as SE, EE, secrecy rate and outage probability.
Finally, we envisage the future research for WPT-aided FD
systems, such asWPT-aided FD cooperative NOMA systems,
FD ultra-dense heterogeneous systems and WPT-aided FD
systems with non-linear EH efficiency.
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