
Received October 27, 2017, accepted November 22, 2017, date of publication December 4, 2017,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2779131

What Do Software Developers Need to Know
to Build Secure Energy-Efficient
Android Applications?
JOSÉ A. MONTENEGRO, MÓNICA PINTO , AND LIDIA FUENTES
CAOSD Group, Andalucía Tech, Universidad de Málaga, 29071 Málaga, Spain

Corresponding author: Mónica Pinto (pinto@lcc.uma.es)

This work was supported by FEDER funds under Project Magic P12-TIC1814 and Project HADAS TIN2015-64841-R.

ABSTRACT Green computing is a growing trend in computing, pursuing the goal of helping software devel-
opers to bemore aware and produce energy-efficient software. This is especially relevant for battery-powered
mobile applications, where a minimal energy consumption is desired to both mitigate the greenhouse effect
and extend the battery lifetime. In this paper, we analyze the energy consumption and execution time of
cryptographic primitives in Android devices. Our ultimate goal is to help Android application developers,
especially those who are not experts in security, to choose the most energy-efficient cryptographic algorithms
considering different security providers and security transformations. Information tomake a tradeoff between
energy and time consumption is also provided, being especially useful when the differences in energy
consumption of different alternatives are not so significant. We have conducted our experiments with an
energy profiling tool based on the PowerTutor application, which has been adapted to automate the energy
profiling. Our results show that this type of power consumption studies is necessary, because selecting the
most energy-efficient configuration depends on many factors, and some of the choices are not obvious to
developers.

INDEX TERMS Cryptographic primitives, Android, energy consumption, execution time, energy-efficient
configurations.

I. INTRODUCTION
The percentage of global emissions attributable to Informa-
tion Systems is expected to further increase in the coming
years, due to a proliferation of Internet-connected mobile
appliances (e.g., mobile phones or tablets). As a result,
the development of applications for battery-powered mobile
devices should consider minimizing the energy consumption
to be of the highest priority to both mitigate the greenhouse
effect and extend the battery lifetime. However, developers
are not always aware of the energy consumed by their soft-
ware solutions [1], [2]. Trying to address this issue, Energy-
aware software development (or Green Computing [3]) is a
growing trend in computing, pursuing the goal of helping
software developers be more aware of the energy-efficiency
of software [4]–[7].

People principally use mobile devices to send and receive
more or less private information, which makes security
an important concern in the development of mobile appli-
cations. Cryptographic algorithms are used to provide

authentication, confidentiality and integrity, providing dif-
ferent security levels. Traditionally, the implementation of
cryptographic primitives requires significant energy to pro-
cess data, and some recent studies show that this is also true
for mobile phones [8], [9]. Therefore, software developers
should be aware of the impact on power consumption using
cryptographic algorithms in their applications has.

Recently, several experimental studies have been con-
ducted to investigate the energy consumption of concrete
implementations of cryptographic algorithms and security
protocols for different devices [8], [10]. However, they
focus on other aspects of security (e.g., secure communica-
tions) or try to answer different questions. In many cases,
the main goal of these studies is to compare the power con-
sumption of different cryptographic primitives of a concrete
implementation (i.e., a concrete security provider or API),
neglecting the point of view of the developer who may
be interested in exploring the use of alternative crypto-
graphic providers. Indeed, these studies do not cover all the

1428 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0002-5376-742X


J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

security alternatives from different viewpoints, i.e., different
cipher modes and padding, specific default configurations for
each provider and different security levels, with many open
research questions remaining.

In this paper we focus on studying the energy consumption
of cryptographic primitives from the point of view of the
application developer. We have tailored this study to Android
devices, the most popular operating system of mobile devices
in recent years. So, our goal is to help Android applica-
tion developers to choose the most energy-efficient cryp-
tographic algorithms, considering different implementation
libraries (i.e., cryptographic providers). The target audience
of the experimental study presented in this paper is a software
developer, non-expert in security issues, specifically with
poor knowledge of crypto algorithms’ internals and who is
interested in knowing the energy consumed by alternative
security providers under different conditions.

We have applied our experiments to three different
providers (IAIK, BC and SC), and several different primi-
tives (encrypt, decrypt, sign, verify and mac) and the most
used cryptographic algorithms for each primitive. In addi-
tion the different combinations of the primitives’ parameters
have been considered (e.g., different key sizes, modes and
paddings for the cipher algorithms). In this paper we intent to
provide empirical evidence to answer specific questions that
developers concerned about power consumption should ask.
Considering Android devices and different crypto providers,
our research questions try to give developers recommen-
dations as to which crypto provider to use, or to explore
the relationship between security and energy consumption.
In addition, considering software developers tend to use the
default security transformation offered by providers (i.e.,
the default configurations), we have measured the energy
consumption of these transformations to see the cost of incre-
menting the security in each crypto provider, in terms of
energy. The purpose of this is to be able to advise Android
developers on replacing the default mode with more secure
ones where the energy cost is not too high. Although assess-
ing power consumption is our primary aim, execution time is
also measured and used in our analysis to make a tradeoff
between energy and time when differences in energy con-
sumption are not so significant.

We have used an energy profiling tool that is based on
the PowerTutor [11] application. Section III explains our
motivation behind using a software tool. Energy profiling
tools are the preferred solution since they allow finer-grained
measurements and also because the experiments can be repro-
duced, which, with hardware solutions is not always possible.
PowerTutor has been adapted to automate the profiling pro-
cedure, but without modifying the energy model procedures.
The application uses a theoretical energy model built for
the phone models HTC G1, HTC G2 and Nexus One. Due
to the large amount of information generated, in this paper
we only show the data from our experiments for the Nexus
One. However, a HTC G1 has also been used to validate the
results. Both phones provide similar results. Note that the

PowerTutor application, in addition to many other profiling
mechanisms [12]–[15], provides an estimation of the power
consumption. However, this is not a limitation because, for
our study the exact number of milliwatts that are consumed
by a certain configuration is not relevant. Rather, we are
interested in establishing comparisons between the energy
consumed by different configurations. Note, that considering
that a high percentage of mobile applications use crypto-
graphic algorithms [16], and that they are executed inmillions
of devices, a small energy saving in a single device will result
in huge global energy saving.

Following this introduction the paper is organized as fol-
lows. Section II describes the energy profiling tool used to
perform our experiments. Then, our experimental setup, dis-
cussing first the high variability of cryptographic providers,
primitives and configuration parameters and then selecting
the ones considered in our study is described in Section III.
The experimental results are presented and analyzed in
Section IV, and the threats to validity are discussed in
Section V. Finally, Section VI presents the related work and
Section VII the conclusions and future work.

II. RELATED WORK
Energy consumption has become a central issue for mobile
applications. Applications providing similar services can
have different energy consumption and both software devel-
opers and mobile users need to be aware of these differences.
The number of papers that focus on the generation of energy
profiles of different characteristics of mobile applications has
considerably increased in the last few years. Some of them
are [8]–[10] and [17]–[22]. Other papers focus on analyzing
the energy consumption of real market Android applica-
tions [23] or on defining mobile applications’ development
guidelines for energy [24]. As we do in this paper, the final
goal of these proposals is providing guidelines to software
developers, so that they can develop more energy-efficient
applications. Additionally, based on such results, which anal-
yse the energy consumption of applications, it is possible to
improve the code to reduce the energy consumption [25].
Although many of these proposals [9], [17]–[20], [22], [23]
are for the Android platform, not much attention has been
paid to the energy consumption of Android cryptographic
primitives, with the exception of the work presented in [26]
and [27].

Thus, in this section we focus on those proposals that
generate energy profiles for cryptographic primitives [8],
[10], [21], [26], [27], and especially [26], [27] which are the
closest to our approach. Many of these proposals focus on
generating energy profiles for mobile applications [8], [10],
[21], [26], [27], but only [26], [27] consider the Android
operating system. All these papers calculate and compare
the energy consumption of different cryptographic primitives,
varying different parameters, such as the key sizes and the
operations. In some of them the ultimate goal is to move
beyond the mere comparison of levels of energy consump-
tion. For instance, the work in [8] focuses on encryption

VOLUME 6, 2018 1429



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

in secure communications and the work in [21] analyzes
the consumption of cryptographic primitives in the context
of the SSL protocol. However, only the work in [8] takes
into consideration that the algorithms can work in different
modes (e.g. ECB, CBC, CFB, OFB, CTR and CCM). The
rest of the proposals do not give any information about the
mode they are using. Moreover, none of them consider dif-
ferent paddings or different security providers and they do
not indicate the ones they are using in their experiments.
The default modes selected by the providers are not consid-
ered either. Since the provider, the mode and the padding
can influence the security level it is impossible to really
know the security level that these proposals are analyzing.
Moreover, since the provider, the mode and the padding that
are used in the experiments are unknown, the experiments
cannot be reproduced and the results of different proposals
are not comparable with each other. The main differences
between these approaches and our work is that our analysis
takes into consideration all the parameters that may influence
enegy consumption of cryptographic primitives—i.e., dif-
ferent crypto providers, different algorithms and operations,
different modes and different paddings. Concretely, we focus
on those transformations (algorithm/mode/padding) that are
the default ones selected by the providers and those that are
the recommended ones by security standards. An exception
is the work in [26], where the execution time, voltage and
memory consumption are compared for the AES and the
PRESENT cryptographic algorithms in Android. There are
however important differences with our work. Firstly, in this
paper only two cryptographic algorithms are considered so
the scope of the study is very limited. Secondly, the authors
carry out the experiments using a homemade implementation
of the algorithms, rather than widely used implementations
of security energy providers. This makes the comparison of
the energy consumption of existing security providers impos-
sible. Moreover, only one key size is considered for each
algorithm. Finally, the modes and paddings of the security
transformations are not taken into account in the experiments.
In conclusion, the results obtained in this paper cannot be
easily reused by other Android software developers. Similar
work is presented in [27], where the authors investigate the
energy spent by the most popular crytographic algorithms.
They focus on cyber security and their results indicate that it
is possible to develop a more green and secure Internet. They
consider the same classes of algorithms as in our approach
(encryption, hashing and message authentication), with dif-
ferent key sizes and different traffic loads over the network,
but they do not consider different modes and padding for
the encryption algorithms or different providers (only the BC
provider is considered). The most important difference is that
they do not really measure energy consumption as we do.
Instead, they just exploit the relationship between the CPU
usage and the consumed power.

An approach with similar goals to ours, but focusing
only on performance evaluation instead of energy and time-
consumption evaluation, is [28]. In this paper the authors

consider different cryptographic providers for Android,
including those considered in our study, and evaluate the
performance of different algorithms taking into consideration
not only the key length and the different primitives, but also
the mode and the padding selected in the transformations.
In our study, we have taken the algorithms’ requirements for
developing secure applications from this paper, since they
were recopilated based on the information available in the
different security standards. There are other publications that
contain similar performance studies of cryptographic primi-
tives but focusing on wearable Android devices [29] or IoT
platformas and operating systems [30].

III. ENERGY PROFILING TOOL
Several proposals exist for estimating the energy consump-
tion of mobile applications in Android [11]–[15]. As stated
in [5], the main differences lie in whether they are hard-
ware or software-based and in the measurement granu-
larity (application, process, thread or method). Many of
them [11]–[13] are based on the definition of a power model
based on direct measurements in specific devices. These
models generally provide quite precise estimations, although
they are built for just a few devices. Others [31] use the power
information provided by a mobile processor and thus applies
to all devices with that processor. Since our analysis is based
on the comparison of the energy consumption of different
combinations of provider/operation/algorithm/parameters,
and thus we are not concerned with the absolute consumption
values, our approach should provide similar results with any
of these tools.

Unfortunately, there are few trustworthy energy profiling
tools for Android. We first tried with the Trepn Profiler [31]
application, because power profiling is available for all
devices with a Qualcomm Snapdragon processor. However,
energy profiling at the method level does not work properly
in Trepn Profiler for short duration methods, as is our case.
A second one is required to register the measurements and the
execution of most of the methods we are testing lasts less than
a second in the latest processors. Some approaches use a hard-
ware solution, but this has two main problems: (1) it is very
difficult to ‘‘estimate’’ which part of the code is responsible
for the energy consumption; and, (2) the reproducibility of
the experiments is seriously compromised. Thus, our energy
profiling tool is based on the PowerTutor1 project, described
in [11]. Basically, PowerTutor is an Android application for
profiling energy consumption based on the CPU, network
interface, display, and GPS elements. The application uses
a theoretical energy model built exclusively for three phone
models: HTC G1, HTC G2 and Nexus One. These phone
models have a maximum of 2 cores and run at lower clock
rates than modern devices. However, this is not a limitation
for our study because it is based on the comparison of the
relative power consumption of different cryptographic prim-
itives and providers running on exactly the same device. The

1http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html

1430 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

FIGURE 1. Profling platform designed to collect consumption information.

absolute values are not relevant for our study. What is more
important, we have tested the latest versions of the cryp-
tographic primitives implemented by the providers that are
used in the most recent Android versions, so we have tested
the latest cryptographic software currently used in modern
devices.

The original PowerTutor application was designed to
visualize the consumption information, but it requires user
intervention to store the information in a log file. Thus,
the application is very useful to measure the power infor-
mation of our cryptographic primitives, but it was not an
easy task to automate the profiling procedure. In order to
automate the procedure, several changes were included in
the application, without any change to the energy model
procedures.

The profiling platform designed to collect energy con-
sumption information in our experimental study is shown
in Figure 1. Firstly, we modified the PowerTutor application
to include an Android mechanism for automatically collect-
ing the energy consumption information. Moreover, a Crypto
application has been deployed with all the cryptographic
primitives detailed in Section IV-C. The goal of this applica-
tion is twofold, first to execute the cryptographic primitives
and second to measure the execution time of these primitives,
as shown in Figure 1. The execution time is also measured

for the Crypto application. The primitive to be evaluated is
coded between two commands that activate and deactivate the
profiling service of the PowerTutor application. The activa-
tion process sends a string that represents the cryptographic
primitive to be evaluated and contains the name of the log file
that will be stored automatically when the profiling service is
deactivated. In this way, the PowerTutor application is used
without user interaction and the evaluation can be automa-
tized. The generated logs are then processed on a destktop
computer to provide the information in a format that can sub-
sequently be analyzed by software developers. We have used
the R language for the statistical analysis. A Java program and
R scripts have been deployed to process the log files. The Java
program processes several log files to create a CSV file, for
each primitive and provider, which contains energy and time
values. After that, CSV files have been analyzed using the R
language. The output of R scripts has been used to perform the
comparative analysis in the paper. The modified PowerTutor
and the Crypto applications can be downloaded at the follow-
ing url: http://www.lcc.uma.es/~monte/CryptoConsumption/

IV. EXPERIMENTAL SETUP
In this section we describe the variables that are taken into
consideration in our experimental study. Firstly, we describe

VOLUME 6, 2018 1431



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

the selected cryptographic providers. Then, the available
Android cryptographic primitives are described, and the rea-
sons for selecting the ones used in our study are provided.
Finally, the default modes used by each provider are detailed.
Later we use these default modes to advise developers to
replace the default mode with more secure ones where the
energy cost is not too high.

A. CRYPTOGRAPHIC PROVIDERS
The Java Cryptography Extension (JCE) [32] is an API
that provides a uniform framework for the implementa-
tion of security features. There are different Cryptographic
Service Providers that supply specific implementations of
a subset of cryptographic services. Three cryptographic
providers for JCE have been taken into consideration
in this paper, BouncyCastle (BC),2 SpongyCastle (SC),3

and Institute for Applied Information Processing and
Communication (IAIK).4

BouncyCastle is an independent cryptographic provider
that can be executed on any Java platform. Android has
included a reduced and adapted version of the Bouncy-
Castle library in the system, therefore Android users have
access to cryptographic primitives without installing an addi-
tional library. SpongyCastle is also an adaptation of the
original BouncyCastle library for the Android platform.
SpongyCastle is not Android distribution dependent and
includes the implementation of most well-known crypto-
graphic primitives. At first glance, SpongyCastle and Boun-
cyCastle include the implementation of the same algorithms.
Thus, SpongyCastle has been included in our study to verify
whether the modifications of BouncyCastle performed by
Android have a positive or negative influence on the power
consumption. IAIK is a library deployed by the Graz Uni-
versity of Technology. IAIK is a well-known cryptographic
provider, and can be used with an educational license. IAIK
has been optimized for speed and memory consumption and
thus has been included in our study to verify if it is greener
than other providers.

The latest available versions at the moment of the
experiments have been choosen for the three providers.
These versions run in the latest versions of the Android
platform.

B. ANDROID CRYPTOGRAPHY PRIMITIVES
Android documentation classifies the cryptographic primi-
tives into three categories: MAC (Message Authentication
Code), Cipher and Sign.

A MAC algorithm is a symmetric key cryptographic tech-
nique to provide integrity and message authentication, i.e. to
identify the originator of a message. Both the sender and the
receiver share a symmetric key. Table 1 details theMAC algo-

2https://www.bouncycastle.org/
3https://rtyley.github.io/spongycastle/
4http://jcewww.iaik.tu-graz.ac.at/

TABLE 1. MAC algorithms available in Android.

TABLE 2. Sign algorithms available in Android.

rithms available in Android.5 The algorithms in grey were
discarded from our experimental study for various reasons,
which are indicated as table footnotes and also discussed in
the next subsection.

A sign algorithm is used to create digital signatures so
that a person or entity can be bound to the digital data. The
receiver can then verify the authenticity of the signature.
The digital signature scheme is based on public key cryp-
tography, using a public-private key pair. Table 2 details sign
algorithms available in Android.6 The algorithms discarded
from our study are marked in grey (see Table 2 footnotes for
explanation). Key sizes are only specified for the included
algorithms.

A cipher algorithm is used to encrypt and decrypt informa-
tion. A distinction ismade between symmetric key encryption
algorithms, where the same keys are used for encrypting and
decrypting the information; and asymmetric key encryption
algorithms, where different keys are used. In addition, cipher

5https://developer.android.com/reference/javax/crypto/Mac.html
6https://developer.android.com/reference/java/security/Signature.html

1432 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 3. Cipher algorithms available in Android.

algorithms support different modes and padding. Ciphers
process data blocks of fixed size. However, the message size
is usually larger than the block size. Hence, the message has
to be divided into a series of sequential message blocks. The
cipher mode determines the way in which the cipher operates
on these blocks and has a significant influence on the security
level provided by the algorithm. The padding is a technique
that adds bits to the message to change its length, either to
obtain a fixed length required by the algorithms, or to prevent
length extension attacks. Table 3 details cipher algorithms
available in Android,7 including the modes and padding sup-
ported by them. The key sizes are specified only for the
algorithms included in our study.

C. CRYPTOGRAPHY PRIMITIVES SELECTED
The PowerTutor application requires the use of specific
smartphone models; in our case, the phone chosen is a
Nexus One (Android OS, v2.3.6, QualcommQSD8250 Snap-
dragon S1, 1.0 GHz Scorpion, 512 MB RAM, Remov-
able Li-Ion 1400 mAh). The Android API level 10 is
the maximum API level in these smartphones. There-
fore, only the primitives available in API level 10 can
be used.

Due to the high variability of cryptographic primitives we
have narrowed the selected primitives to those that allow
software developers to maximize the security levels of their
applications, according to the information provided by secu-
rity experts and security standards [33]–[36]. Default con-
figurations used by the cryptographic providers are also
considered.

The National Institute of Standards and Technology
(NIST)8 approved two block cipher algorithms from the
cipher primitives in Table 3, therefore only the AES
(Advanced Encryption Standard) and the DESede (Triple-

7https://developer.android.com/reference/javax/crypto/Cipher.html
8http://csrc.nist.gov/groups/ST/toolkit/block_ciphers.html

Data Encryption Standard) algorithms are included. In the
case of digital signatures NIST9 approved three algo-
rithms RSA (Rivest-Shamir-Adleman), DSA (Digital Signa-
ture Algorithm) and ECDSA (Elliptic Curve DSA). As shown
in Table 2, ECDSA is not available in API 10, therefore only
the RSA and the DSA algorithms are selected for the sign
primitive. For generating and verifying message/data authen-
tication codes there is just one algorithm HMAC10 (Hash-
based MAC). This algorithm is based on the cryptographic
hash function [33], and in this case, NIST approved the fol-
lowing Secure Hash Algorithms (SHA) to be included in the
Android platform: SHA-1, SHA-224, SHA-256, SHA-384,
and SHA-512.11 Although MD5 (Message-Digest 5) is no
longer recommended by NIST, we take it into consideration
as it is still widely used.

In summary, ten primitives have been selected to evaluate
three providers in a Nexus One smartphone. For the selected
primitives, the key lengths are specified in Tables 1, 2 and 3.
Several operations have been considered for each primitive.
In MAC primitives we consider the operations MAC and
Key Generation. In the case of sign primitives, the operations
available for evaluation are Sign, Verify, and Key Generation.
Finally, in each cipher primitive the operations are Encryp-
tion, Decryption and Key Generation. The first execution of
the application described in Section III generates the bundle
of keys necessary for cryptographic primitives to perform the
encryption/decryption and sign/verify operations. The goal
of the key generation and store is twofold; all the opera-
tions will be carried out, evaluated and compared with the
same keys, and we save a substantial amount of time in
key generation in each execution. The encrypted and signed
messages are also stored so that the decryption and verify
operations can be executed with the same values for all the
providers.

9http://csrc.nist.gov/groups/ST/toolkit/digital_signatures.html
10http://csrc.nist.gov/groups/ST/toolkit/message_auth.html
11http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

VOLUME 6, 2018 1433



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

D. DEFAULT MODES
When the JCE API is used, java programmers must choose
a correct transformation for each primitive. For example,
for the cipher primitive, first the programmer selects a
cipher algorithm, e.g., the AES algorithm. Then, accord-
ing to the information shown in Table 3, the program-
mer selects one mode operation and one padding option.
The triplet algorithm/mode/padding will define the trans-
formation selected. For instance, if a programmer wants
to cipher with the AES cipher in CBC (Cipher Block
Chaining) mode and PKCS5Padding (Password-Based Cryp-
tography Specification), this is done with the following
Java code:

Cipher c

= Cipher .getInstance(‘‘AES/CBC/PKCS5Padding’’);

Android developers who are not expert in security can
easily get to know about the cryptographic primitives avail-
able, i.e., the AES algorithm to cipher, but they will prob-
ably have little knowledge about the mode and padding
variables [16]. Moreover, due to the large number of possibil-
ities to choose from (see Table 3) and the difficulty to know
which ones are the most secure, in many cases they just omit
these variables and instantiate the algorithms with the default
values, which are selected by the providers. This is possible
because the JCE API allows programmers to get a default
transformation for the selected algorithm with the following
Java code:

Cipherc = Cipher .getInstance(‘‘AES’’);

The default configurations for the cryptographic primi-
tives selected in our study are shown in Tables 4 and 5.
However, these default configurations are not necessarily
the most secure ones, and this is because we are inter-
ested in considering these default configurations in our
experimental study. In [16] the authors analyzed 11748 appli-
cations available from Google Play. In 5656 of these appli-
cations, developers only specified the cipher algorithm to
perform encrypt or decrypt operations, omitting the mode
and the padding. In consequence, Java determines the default
transformation, i.e., the ECB (Electronic CodeBook) trans-
formation, which is not considered secure. Therefore, 50%
of analyzed applications have a low security level because
developers are not aware of the security level of default
transformation configurations or they do not know how to
configure security transformations. Thus, it is useful to mea-
sure the energy consumed by the default configurations used
by most non-expert Android developers to see if they are
making good decisions from the point of view of energy
consumption. We also want to analyze whether or not it is
possible to use other transformations that provide a higher
level of security without incurring a large increase in energy
consumption. Note that it was not straightforward for us
to know which were the default modes for each provider.
We had to extract this information from the data obtained in

TABLE 4. IAIK default modes.

TABLE 5. BC & SC default modes.

our experimental results. This shows that software developers
who decide to use the default modes do not really know
the values that they are using for the mode and padding
variables.

V. EXPERIMENTAL RESULTS
In this section we present the experimental planning and the
energy profile results. Firstly, the average values for time and
energy consumption were obtained by performing 100 tests
for each cryptographic primitive. The main goal was to be
able to compare the energy consumption and execution times
of each cryptographic primitive for different providers, vari-
ous key lengths and several security modes. The tables with
these values are available in Appendix. Secondly, to discover
if the differences in the mean values are significant, a non-
parametric Wilcoxon rank sum test [37] has been applied.
This test is used to analyze two population means through
the use of statistical examination. There are different tests
depending on the data characteristics. For comparing two
groups of related values that do not follow a normal distri-
bution the non-parametric Wilcoxon rank sum test is used.
We have used the statistical package R [38]. A difference is
considered as significant if the significance level of the test
is lower than α = 0.05. The tables with the interpretation
of the result of the Wilcoxon rank sum test are shown and
discussed in this section. These tables are complemented
with graphs that show the energy consumption versus time
execution tradeoff. Only a subset of the generated graphs are
discussed in the paper because, in general, the mean values
shown in Appendix and the interpretation of the Wilcoxon
rank sum test shown in this section provide information that
can be interpretedmore accurately than the visual observation
of each individual test. Finally, tables including the p-values
for the mean Wilcoxon test are not included in the paper to
preserve readability. Both the p-values and the tradeoff graphs
can be consulted at the following url: http://www.lcc.uma.es/
~monte /CryptoConsumption /dataSet /p-ValuesandPlots.pdf.
The measurement units used in our experiments throughout

1434 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 6. Symmetric key generation - RQ1: providers.

the paper are milliwatts (mw) for energy and milliseconds
(ms) for time.

A. OBJECTIVES AND RESEARCH QUESTIONS
The methodology of this study is defined according to the
goal-question-metrics approach [39] as follows: ‘‘Analyze
cryptographic primitives offered by three different security
providers for Android, from the point of view of software
developers’’. To achieve this goal we set the following
Research Questions (RQs):

RQ1. Which crypto provider is the most energy effi-
cient for different operations of crypto primitives? This
question aims to discover whether the power consump-
tion of cryptographic primitives implemented by alter-
native providers is significantly different and whether
one provider could be selected or not as the greenest
one.

RQ2. What is the cost of increasing the security level
in terms of power consumption? This question explores
the influence of key length in the power consumption of
alternative implementations of the cryptographic algorithms
to identify the cases in which longer key lengths could be used
without penalizing the power consumption.

RQ3. Which transformation, comparing the default
and the recommended transformations, is themost energy
efficient for different crypto providers in Android? As
explained in Section IV, programmers who are non-experts
in security will normally select the default transformation.
However, it is not straightforward to know the default modes
for each provider. RQ3 explores the relationships between
security and power consumption by calculating the energy
impact of replacing the default transformation with a more
secure one. We answer all these questions for the crypto-
graphic algorithms that are considered by security standards
to be themost secure, as detailed in the following subsections.
In the rest of the section, each subsection answers one of our
research questions.

B. RQ1. WHICH CRYPTO PROVIDER IS THE MOST
ENERGY EFFICIENT FOR DIFFERENT OPERATIONS
OF CRYPTO PRIMITIVES?
Tables 6 – 18 show the interpretation of the results of applying
the Wilcoxon rank sum test over the tables in Appendix.
Concretely, they show the results of comparing the means

TABLE 7. Asymmetric key generation - RQ1: providers.

TABLE 8. AES encrypt - RQ1: providers.

TABLE 9. AES decrypt - RQ1: providers.

TABLE 10. DESede encrypt - RQ1: providers.

TABLE 11. DESede decrypt - RQ1: providers.

of energy consumption and execution time for different
providers. The columns in the tables indicate the comparison
between the BC and the IAIK providers (BC-IAIK column),
between the BC and the SC providers (BC-SC column)

VOLUME 6, 2018 1435



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 12. RSA encrypt - RQ1: providers.

TABLE 13. RSA decrypt - RQ1: providers.

TABLE 14. RSA sign - RQ1: providers.

TABLE 15. RSA verify - RQ1: providers.

and between the IAIK and the SC providers (IAIK-SC col-
umn), respectively. Thus, ⊕ indicates that the mean value
when the second provider in the comparison is used is sig-
nificantly greater than the mean value achieved when the

TABLE 16. DSA sign - RQ1: providers.

TABLE 17. DSA verify - RQ1: providers.

TABLE 18. MAC key generation - RQ1: providers.

first provider in the comparison is used, 	 signifies that the
mean value is significantly less when the second provider is
used and � signifies that there is no significant difference.
The NA value is used to indicate that the comparison is
‘Not Applicable’. The reference result that we wish to
improve is the Android default cryptography library (BC).

In the rest of this section, the most interesting results for
each cryptography primitive are discussed.

1) CONFIDENTIALITY
The algorithms analyzed for confidentiality are AES,DESede
and RSA. The operations are key generation, encrypt and
decrypt. AES and DESede are symmetric algorithms, while
RSA is asymmetric. The main results are discussed for each
algorithm.

RQ1. AES algorithm: The values in Table 6 indicate that
a tradeoff can be made between energy and time consumption
for the key generation operation in AES, because IAIK is the
provider that consumes most energy, but is also the provider

1436 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

FIGURE 2. AES Key generation: Consumption vs. time tradeoff.

with the lowest execution time. The difference with other
providers is significant in both cases. There are no important
differences between the BC and the SC providers. This can
also be observed in the graphs shown in Figure 2. For the

encrypt operation (Table 8) the data indicates that there are
no significant differences between the three providers, either
in energy consumption or in time. However, for decryption
(Table 9), IAIK is greener for some modes and key lengths,
although the difference in the execution time is not signifi-
cant. Concretely, in the ECB_PKCS5Padding mode (default
mode) IAIK is greener for key lengths 192 and 256. In the
CBC_PKCS5Padding (recommendedmode), IAIK is greener
for key length 192.

RQ1. DESede algorithm: Regarding energy consump-
tion, Tables 6, 10, and 11 indicate that, in most cases, we can-
not draw generic conclusions about which of the providers
is the greenest one for the DESede algorithm. The reason is
that the differences in energy consumption between the three
providers are overall not significant for any operation. Only
for encryption and decryption with a key size of 168 and
in the default mode, does IAIK have better energy results.
Comparing the execution times, the two external providers
are better than BC in all the scenarios analyzed.

RQ1. RSA algorithm: As shown in Tables 7, 12, and 13,
BC and SC are the best providers in most of the cases. IAIK
consumes more energy and time for the key generation oper-
ation and the differences are not significant for the encrypt
and decrypt operations. Only for the decrypt operation, with
the default mode and a key size of 512 bits, SC is greener than
BC. However, its execution time is greater.

In addition to the analysis of the tables with the interpreta-
tion of the results of the Wilcoxon rank test, for some cases
it is also interesting to analyze some of the median values
provided in the tables in Appendix. The most relevant results
are discussed below.

RQ1. There are important differences in the energy
profiles of the different algorithms for the key genera-
tion operation: The values for the key generation operation
(Table 43 in Appendix) show that the energy profile of the
RSA algorithm is completely different from the energy pro-
files of the AES and DESede algorithms. This is because
the key generation for large primes performed by the RSA
algorithm is time consuming and resource intensive, which
has a high impact on the energy initially consumed by the
application. For this reason, this is the most energy consum-
ing algorithm for this operation.

RQ1. The IAIK provider is by far the provider which
consumes the most for the key generation operation in
RSA: Looking at the mean values in Table 43 we can observe
that it is not only that the BC provider is the most energy
efficient, with a consumption similar to the SC one. It is
more important to note that in this case the IAIK provider
almost quadruples the consumption of other suppliers in the
recommended key length (2048).

RQ1. The IAIK provider is greenest for the decryption
operation in AES: For the AES algorithm and the decryption
operation, the greenest choice is the IAIK provider consum-
ing 4 times less energy than others in the default mode (e.g.,
0,15 mW instead of 0,60 mW, see Appendix). On the other
hand, when using the DESede algorithm it is better to use an

VOLUME 6, 2018 1437



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

external provider, and not BC, because at least the execution
time will be lower and sometimes the consumption of energy
could also be lower.

We have seen how important it is to analyze the energy
consumption and execution time separately for each crypto
operation, and considering the frequency that the developer
expects that one operation will be used. All these are useful
hints for Android developers who now can take an energy-
aware decision when choosing a provider, depending on the
confidentiality operation that they expect will be most fre-
quently used. For instance, if developers use the AES algo-
rithm and use the decryption operation heavily, e.g., to access
to a repository that stores encrypted data, then our study
shows that the greenest choice is the IAIK provider, achieving
energy savings four times lower than BC.

2) AUTHENTICATION
The algorithms analyzed for authentication are RSA and
DSA. The operations are key generation, sign and verify.
RSA and DSA are asymmetric algorithms. The results of the
analysis for these algorithms are discussed below.

RQ1. RSA algorithm: The data in Tables 7, 13 and 13
indicates that the BC provider is better than IAIK for key
generation, but the differences are not so significant for the
sign and verify operations. Only in somemodes is IAIK better
for some specific key lengths for both energy consumption
and time. For instance, for a key length of 512 bits IAIK
consumes less energy and time in both the NONE and the
SHA-1 modes. This can be easily observed in the graphs
shown in Figure 3 for the sign operation and the SHA-1mode.
The previous point about the key generation using the IAIK
provider and the RSA algorithm for confidentiality is also
valid for the authentication primitive.

RQ1. DSA algorithm: When the DSA algorithm is
applied, the IAIK provider is better in most of the cases. It is
the greenest option for the key generation operation, both in
energy consumption and time. It is also the best option for
the sign operation when a key length of 1024 bits is used,
independently of the mode. The results are not significant in
the case of the verify operation. In this case, the graphs shown
in Figure 4 cleary show that IAIK is the best option in all
cases. In the first and second graphs all the measurements
taken for the IAIK provider are localized in the lower left
corner. This indicates that the energy and time consumption
are much lower than for the BC and SC providers. The
distribution of values for the IAIK provider are shown in the
third graph using a different scale for both the time and the
energy consumption.

Looking at the median values available in Table 43 in
Appendix, there is an interesting result to discuss for the DSA
algorithm and the IAIK provider.

RQ1. Key generation in the DSA algorithm: The analy-
sis of the median values for the DSA algorithm indicates that
for the key generation operation both the energy consumption
and the time execution of the IAIK provider are extremely
low in comparison to the other providers. For instance, for

FIGURE 3. RSA Sign SHA1 mode: Consumption vs. time.

a key length of 1024 bits the energy consumption of the BC
provider is 3296.22 mW, while with the IAIK provider it is
3.04 mW. This is a considerable difference that needs to be
explained. Unfortunately, due to the IAIK license agreement
we do not have access to the implementation. We figure that
the IAIK provider pre-calculates and reuses some of the DSA
parameters through different executions of the operation.

1438 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

FIGURE 4. DSA key generation: Consumption vs. time tradeoff.

This approach would reduce the execution time dramatically,
and in consequence the energy expenditure would also be
reduced.

3) INTEGRITY
Different algorithms with different digest lengths are ana-
lyzed for integrity. The operations are key generation and
mac.

FIGURE 5. MAC operation: Consumption vs. time tradeoff.

RQ1. MAC algorithm: As shown in Table 18, in this case
IAIK is the greenest provider in all the scenarios analyzed
for the key generation operation. However, the BC and the
SC providers are the greenest in the case of the mac opera-
tion. The graphs in Figure 5 show the behavior of the three
providers in the case of the mac operation. It is possible
to observe that energy and time measurements are almost
always higher for the IAIK provider.

VOLUME 6, 2018 1439



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 19. Symmetric key generation - RQ2: key length.

After this detailed analysis, the experimental data indicates
that it is not possible to choose ‘‘the greenest provider’’.
There are no big differences between BC and SC, which
makes sense since BC is a variant of SC, slightly customized
for Android. However, the data indicates that in many cases
the IAIK external provider consumes less energy than the
Android security library (BC), confirming our hypothesis
that it is useful to explore different security providers. The
recommendations that can be given for software developers
regarding the security provider to be used in their applications
are as follows:

Recommendations for RQ1: The recommendations are
different for each cryptography primitive:

– Confidentiality: Our general recommendation is that
IAIK is a good option from both the point of view of energy
consumption and execution time. This provider only exhibits
bad results for energy consumption for key generation, but
this operation is less frequently used than encryption and
decryption. The energy saving possibilities are the best for
AES and sometimes for DESede, and for RSA; SC and
IAIK are both good options. Note that the BC provider,
included in Android releases is not the best option in either
case.

– Authentication: Likewise for confidentiality, the IAIK
provider is a good option in most cases, with the exception
of the key generation operation for RSA, where the BC
provider would be the best option. Developers can achieve the
greatest energy savings with the DSA algorithm of the IAIK
provider.

– Integrity: Contrary to previous cases, the IAIK is
the greenest considering key generation, and not so good
for the mac operation, but the differences are not very
significant.

C. RQ2. WHAT IS THE COST OF INCREASING THE
SECURITY LEVEL IN TERMS OF POWER CONSUMPTION?
In our experiments we increase the security level by increas-
ing the key length. Tables 19–31 show the interpretation of
the results of applying the Wilcoxon rank sum test over the
Tables in Appendix, where the energy consumption and time
execution for the same algorithm and different key lengths
are compared. Concretely, each row indicates the results of
comparing the two key lengths indicated in the first column

TABLE 20. Asymmetric key generation - RQ2: key length.

TABLE 21. AES encrypt - RQ2: key length.

TABLE 22. AES decrypt - RQ2: key length.

TABLE 23. DESede encrypt - RQ2: key length.

of the tables. In this case, ⊕ indicates that the mean value
for a key length is significantly greater than the mean value
achieved when a lower key length is used,	 signifies that the
mean value is significantly less and� signifies that there are
no significant differences. The NA value is used to indicate
that the comparison is ‘Not Applicable’.

Themost interesting results for each crytographic primitive
are discussed.

1440 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 24. DESede decrypt - RQ2: key length.

TABLE 25. RSA encrypt - RQ2: key length.

TABLE 26. RSA decrypt - RQ2: key length.

1) CONFIDENTIALITY
As for RQ1, the algorithms analyzed for confidentiality are
AES, DESede and RSA and the operations are key genera-
tion, encrypt and decrypt. In this case, the results highlight
the important differences that exist between symmetric and
asymmetric algorithms.

RQ2. Symmetric key generation (AES and DESede):
The values in Table 19 indicates that energy consumption
does not significantly increase when a longer key is used.
The tendency is however different for execution time, where
longer key lengths normally imply longer execution times.

TABLE 27. RSA sign - RQ2: key length.

TABLE 28. RSA verify - RQ2: key length.

TABLE 29. DSA sign - RQ2: key length.

TABLE 30. DSA verify - RQ2: key length.

The only exception is from 192 to 256 key lengths, where the
difference is not so significant. This can be observed in the
graphs shown in Figure 2, especially for energy consumption,
where the distribution of the measured values for the three
providers are almost the same in the three graphs, i.e., inde-
pendently of the key length.

RQ2. Symmetric encrypt/decrypt (AES and DESede):
The values in Tables 21, 22, 23 and 24 indicate that, in gen-
eral, execution time does not significantly increase when

VOLUME 6, 2018 1441



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 31. MAC - RQ2: key length.

a longer key is used for either the encrypt or the decrypt
operations. This tendency is sometimes different for energy
consumption, where encrypting and decrypting with longer
key lengths normally implies more power consumption.

There are however a few exceptions to this conclusion that
are worth mentioning: (1) Using the AES algorithm and the
BC provider to encrypt, the energy consumption increases
when changing from 128 to a longer length; the difference
however is not significant when 256 is used instead of 192;
(2) Using the DESede algorithm and the BC provider the
longest key (168) can be used without energy penalization;
however this is not the case when one of the other two
providers is used; (3) Using theAES algorithm and the default
mode to decrypt, the longest key length can be used at no cost
from an energy point of view. However, if the recommended
mode is used both the BC and the IAIK provider consumes
more energy when the key length is increased, and (4) Using
the DESede algorithm in the default mode to decrypt, the SC
provider consumesmore energywhen the key length is longer
and IAIK consumes more time.

RQ2. Asymmetric algorithms (RSA): For asymmetric
algorithms the results are similar for the key generation,
encrypt and decrypt operations. In all cases, both the energy
consumption and the execution time increase when the key
length increases (Table 20 and graphs in Figure 6).

It seems logical that the execution time, and therefore the
energy consumption, increase when the key length is incre-
mented. Morever, the Wilcoxon rank sum test indicates that
these increments are significant. Thus, in this case it would
be useful to analyze how large the increment is by looking at
the mean values shown in the Tables in Appendix. From these
values, some interesting results are obtained.

RQ2. Symmetric algorithms: The cost of increasing the
key length and therefore the security is initially affordable

FIGURE 6. RSA Key generation: Consumption vs. time tradeoff.

both in terms of energy consumption and time execution. For
instance, in Table 42 the differences between the mean values
are less than 0.4 mW and 0.3 ms for the three providers.

1442 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

RQ2. Asymmetric algorithms: In the case of the RSA
algorithm there are huge differences between the means for
short key lengths and the longest one. Thus, increasing the
security in this case can be critical from the point of view of
the energy consumption and the execution time. For instance,
in Table 43 we can observe that for the IAIK provider there is
a difference of more than 7000 mW and a difference of more
than 15000 ms when the key length is increased from 512 to
2048. While also large, the difference is much smaller when
the increment is from 512 to 1024. This means that the cost
of increasing the key length from 512 to 1024 is affordable,
but it is too costly to use a key length of 2028. This can be
also observed in the graphs shown in Figure 6, especially
when using a 2048 key length and the IAIK provider. In this
case there is a clear correlation between the time required
to generate the key and the energy consumption. Note that
the scales used to represent the time and the consumption are
different for each graph. So, here developers should make a
trade off between the cost and the security level they want to
achieve.

2) AUTHENTICATION
As for RQ1, the algorithms analyzed for authentication are
RSA and DSA, but now different key lengths are compared.
The results of the analysis for these algorithms are discussed
below.

RQ2. RSA and DSA algorithms: As stated for confiden-
tiality, for asymmetric algorithms the results are similar for
the key generation, sign and verify operations. In all cases,
both the energy consumption and the execution time increase
when the key length increases (Tables 20, 27, 28, 29 and 30).
Figure 6 illustrates this tendency for the key generation oper-
ation and Figure 7 for the decrypt operation.

Looking at the Tables in Appendix we can analyze how
significant the increments are.

RQ2. Energy and time increments for key generation:
The numbers in Table 43 indicate that for both algorithms it is
very costly to move to a longer key. For RSA, the increment
for BC or SC providers is very similar (around 2000 mW).
However, the increment for the IAIK provider is much higher
(8500 mW). The increments in execution times are of more
than 3000 ms in all cases. For DSA, in BC the 2048 key
length is not supported. For the SC provider it is very costly
to move from a 1024 to a 2018 key length, both in energy and
time. However, it is much more affordable when the IAIK
provider is used (around 10 mW and 50 ms). The reason for
this difference between IAIK and the other providers was
explained in the answers to RQ1.

RQ2. Energy and time increments for sign/verify: The
numbers in Tables 50, 51, 52 and 53 indicate that the incre-
ments in energy consumption and execution time for the sign
and verify operations are much lower than for the key genera-
tion operation. However, this difference can be significant in
the context of applications that apply the operations several
times and when this is multiplied by a large number of users
running the application.

FIGURE 7. RSA Decrypt: Consumption vs. time tradeoff.

3) INTEGRITY
Different algorithms are analyzed for integrity, with different
digest lengths (224, 256, 384 and 512 bits). The operations
are key generation and mac. Currently, MD5 and SHA-1 are
not recommended by security experts. In Table 31 we analyze
the energy and time cost of moving from MD5 or SHA-1 to
SHA2 algorithms with different digest length.

VOLUME 6, 2018 1443



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

RQ2. Key generation operation: As shown in Table 31,
for the key generation operation the use of algorithms that
are more secure than MD5 or SHA-1 does not suppose a
significant increment in energy consumption. There are only
two exceptions when moving from MD5 to SHA-256 using
BC and from SHA-1 to SHA-384 using IAIK. However, there
is almost always an increment in the execution time. For
instance, if the execution time is important the IAIK provider
should not be selected, since the execution time increases
in all the scenarios. Using the SC provider however, it is
possible to move from SHA-1 to SHA-224, SHA-256 or
SHA-384 without time penalization.

RQ2. Mac operation: The tendency is different for the
mac operation. In this case, in an important number of cases
there is a penalty in both energy consumption and execution
time. There are however some cases for each provider where
the energy and/or the time can be reduced.

Although both the energy consumption and the time
increase when an algorithmwith a larger digest length is used,
in this case checking the mean values will help decide if the
increment is justified.

RQ2. Increments in energy consumption and execution
time when a larger digest length is used: In spite of the
increments in the levels of both energy and time consumption,
the values shown in Table 54 are not too large and, therefore,
it is worth increasing the security by using a larger digest
length. Although this may be different for each application,
in general it seems that the small penalty on levels of energy
and time consumption can be assumed.

Following this analysis we provide some key recommen-
dations regarding the increase in security, using longer key
lengths.

Recommendations for RQ2: The recommendations are
different for confidentiality, authentication and integrity:

– Confidentiality: The recommendation is different
depending on whether the algorithm is symmetric or asym-
metric. For symmetric algorithms, programmers can increase
the security of their applications using longer keys without
huge variations in levels of energy or time consumption.
However, for asymmetric algorithms developers must be
aware of the security required by their applications since an
increase in the key length involves a huge variation in the
levels of energy and time consumption.

– Authentication: Developers can choose between
BC or SC for RSA key generation, knowing that the cost
of increasing security will not be so crucial. Otherwise,
if the developer needs to create a DSA key, the IAIK
provider shows the lowest consumption values. Keys gen-
erated with one provider can be used with the rest of the
providers.

– Integrity: The developer can choose between recom-
mended algorithms based on SHA-2, since the cost of incre-
menting security in energy is affordable and in time is almost
null for some providers, e.g., SC. So, the choice can be made
principally based on functional or cryptographic require-
ments rather than on energy expenditure.

TABLE 32. AES encrypt - RQ3: default mode.

TABLE 33. AES decrypt - RQ3: default mode.

TABLE 34. DESede encrypt - RQ3: default mode.

TABLE 35. DESede decrypt - RQ3: default mode.

D. RQ3. WHICH TRANSFORMATION, COMPARING THE
DEFAULT AND THE RECOMMENDED TRANSFORMATIONS,
IS THE MOST ENERGY EFFICIENT FOR DIFFERENT CRYPTO
PROVIDERS IN ANDROID?
Tables 32 – 41 show the results of applying the Wilcoxon
rank sum test over the tables in Appendix, where the energy
consumption and time execution for the same algorithm
and different transformations are compared. Specifically,
we compare the default transformation with those recom-
mended by security experts. In this case, each row indicates
the results of comparing the two transformations indicated
in the second row at the top of the tables. For instance,
the value ‘ECB_PKCS5Padding - CBC_PKCS5Padding’ in
the second row of the Table 32 indicates that we are com-
paring the ECB_PKCS5Padding transformation, which is the
default one, with the CBC_PKCS5Padding transformation,
which is the recommended one. In this case, ⊕ indicates
that the mean value for a recommended transformation is
significantly greater than the mean value achieved when the
default transformation is used, 	 signifies that the mean
value is significantly less and � signifies that there are no

1444 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 36. RSA encrypt - RQ3: default mode.

TABLE 37. RSA decrypt - RQ3: default mode.

TABLE 38. RSA sign - RQ3: default mode

TABLE 39. RSA verify - RQ3: default mode.

TABLE 40. DSA sign - RQ3: default mode.

significant differences. The NA value is used to indicate that
the comparison is ‘Not Applicable’.

1) CONFIDENTIALITY
The AES, DESede and RSA algorithms are discussed. The
only operations considered are encrypt and decrypt. For AES
and DESede there is only one recommended transformation.

TABLE 41. DSA verify - RQ3: default mode.

FIGURE 8. AES: Default vs. recommended transformation.

For the RSA two different recommended transformations are
compared with the default one.

RQ3:AES algorithm: There are no significant differences
in energy or time between the default mode and the rec-
ommended one when the encrypt or the decrypt operations
are executed. With the SC provider a security increment can
be done at no cost. For the other providers there are a few
exceptions where a longer key implies an energy cost, but
this cost is not very significant if we look at the mean values.
So, the main conclusion here is that it is possible to follow
the recommended transformations at a lower or even no cost.
This is illustrated by the graphs in Figure 8, where the default
and the recommended configurations are compared for a key
length of 256. The graphs for other key lengths are similar.

VOLUME 6, 2018 1445



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

FIGURE 9. RSA: Default vs. recommended transformation.

RQ3: DESede algorithm: For the encrypt operation,
a more secure mode can always be used without incurring
a significant increase in energy or time; only using the
IAIK provider and a key length of 168 the energy increases.
For the decrypt operation, the differences in execution time
are not significant for any of the scenarios analyzed. How-
ever, for energy consumption Table 35 should be checked
because there are different tendencies depending on the cho-
sen provider and key length.

RQ3: RSA algorithm: For the RSA algorithm, the results
are completely different compared with those of the symmet-
ric algorithms AES and DESede. The energy consumption
and execution time increase significantly in all the cases for
the encrypt operation, as illustrated in the graphs in Figure 9
when the default transformation is changed to one of the
recommended transformations for a 2048 key length. For the
decrypt operation, in the case of the IAIK provider, an incre-
ment in key size implies an increment in execution time, but
not in energy. For the other providers, a fine-grained analysis
needs to be done (see Table 37), however, taking a look at the
mean values, the differences are not very important.

2) AUTHENTICATION
The RSA and DSA algorithms are analyzed for authentica-
tion. The operations are sign and verify. The default mode
NONE and the recommended mode SHA-1 are compared for
both algorithms.

RQ3: Some transformations are not supported in the
Android default provider (BC): Using the RSA algorithm
it is not possible to analyze the cost of moving from NONE to
SHA-1 because the NONE mode is not supported in BC. For
the DSA algorithm BC does not support a key length of 2048.

RQ3: RSA algorithm (with IAIK or SC providers):
The behavior is different for the sign and verify operations.
For the sign operation, the recommended mode can be used
without a significant increase in the energy consumption.
If the execution time is also relevant, the decision will depend
on the provider and the key length, so a detailed analysis of
the information in Table 38 must be done. However, for the
verify operation the SC provider always increases the energy
consumption when a more secure mode is used. When using
the IAIK provider it will depend on the key length, and for
512 and 2018 there is no significant increase.

RQ3: DSA algorithm: A trade off between energy and
time needs to be made for the DSA algorithm when a
1024 key length is used since the energy consumption does
not significantly increase but the time does. For a key length
of 2028 the SC provider could be used for both the sign and
the verify operations to improve the security without incur-
ring a significant increase in the energy or time consumption.

3) INTEGRITY
RQ3 is not applicable to this profile, since these algorithms
do not require transformation to perform the cryptographic
operation.

After this detailed analysis the main key recommendations
regarding RQ3 are provided below.

RQ3: Key Recommendations:
– Confidentiality: In many of the cases analyzed, moving

from the default transformation to the recommended one has
similar energy consumption and execution time. Thus, there
is no a justifiable reason to choose the default transformation
instead of the one recommended by security experts, just the
lack of knowledge about how to use other transformations.
There are some exceptions for the encryption operation when
trying to increase security in the RSA algorithm. In this case
the developer should be aware that a better security level
will negatively impact both on time and energy. So, it is
recommended that the developer makes a trade off between
security and cost, considering each particular provider.

– Authentication: The recommendation is different
depending on the algorithm. For the DSA algorithm the
results show that there is no penalty in energy when incre-
menting security, but for a key length of 1024 there is a
penalty in time, for both sign and verify operations. So, if the
response time is not crucial for the application, developers
should use the transformations recommended by security

1446 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

experts. If the RSA algorithm is used, then amore fine grained
analysis should be carried out to make the correct decision,
for a specific key length and provider.

VI. THREATS TO VALIDITY
In this section, we discuss internal validity, reliability and
external validity of the study presented in this paper. The
internal validity intends to explore whether or not the energy
results are influenced by other factors. The reliability is
related to how the experiment was conducted and if others
can replicate it with the same results. And finally, the external
validity analyzes if the data obtained in the experiments can
be generalized or not.

Regarding the internal validity, we should first analyze how
precise the results obtained are. As discussed in Section III,
we have opted for PowerTutor a software solution, instead of
taking the measurements with tools implemented in the hard-
ware. We chose PowerTutor because the results provided by
this tool have been validated in a number of studies. Although
hardware solutions provide more precise measurements, it is
more difficult to be sure of which part of the software in
execution is responsible for the consumption. To mitigate this
we investigated the code in those cases when the results gave
us an unexpected value, like for the key generation in the DSA
algorithm for IAIK, which we have discussed in the previous
section. Moreover, we were not interested in reporting abso-
lute energy values, but rather to provide recommendations to
developers based on comparative results.

Another threat to the internal validity of our experiment is
related to analyzing whether the differences in energy con-
sumption of the cryptographic algorithms are caused by the
concrete implementations of the different security providers
and not by other factors. To mitigate this threat we have used
the same procedure and configuration parameters to measure
energy data for all the alternative implementations.

Another internal threat is that the set of parameters we have
considered in our experiment to answer the questions is not
exhaustive, so there could be other parameters that influence
the energy consumption of cryptographic algorithms imple-
mentations. Indeed, we have simplified this study for sign
and cypher operations by using a fixed data length. We could
have tested how the energy consumption changes when the
data length varies. However, including a new parameter in
our experiments would have severely complicated the com-
parative analysis and the answers to the proposed questions.
We think that this simplification is not a threat to the validity
of the results, but developers must be aware that the conclu-
sions drawn in this paper can be considered valid only for
a data length of 100 bytes. Exploring the influence of this
parameter in the key results is part of our future work.

To mitigate reliability threats, different researchers have
performed the data collection and set the analysis procedure.
In addition, all the scripts and source code are available,
and therefore anyone can reproduce our experiments and
test the validity of our findings. Thanks to the use of a
software energy measurement tool the reproducibility of our

experiment is higher than others that use hardware solutions.
We have carried out the tests over several months, and the
results have always shown the same trends. Finally, other sim-
ilar studies reproduce the experiments fewer than 30 times,
but we opted to for 100 times, to provide more accurate
results.

Concerning the external validity we have identified two
threats. First, we have not tested our findings in third party
applications. So, we do not consider the cost of invoking
the cryptographic algorithms. We think that by not consid-
ering this, we can provide results which are independent
of the application that is using these algorithms. However,
we cannot report the energy savings of real applications that
use our recommendations. This will be the next step in our
research. The second threat is the generalization of the results
to all mobile phones and Android versions. The problem
here is that we need a reliable software energy measurement
tool, able to measure nanoseconds, i.e., the execution time in
smartphones with high performing CPUs (e.g., Snapdragon).
As far as we know, this currently does not exist. To mitigate
this we have used the most recent implementations of the
external providers, which can be used with recent mobile
phones and Android versions.

VII. CONCLUSIONS AND FUTURE WORK
The experiments carried out in this paper provided interest-
ing information for software developers about how different
cryptographics providers, algorithms and operations behave
from an energy consumption point of view. According to the
experimental data we can say that there is no crypto provider
that can be considered the greenest one for all the algorithms,
operations and transformations. Thus, the relevance of this
study is in the fine-grained information that it provides and
that can be used to make a reasoned decision about which
is the best provider for the necessites of each application.
It is also very useful to find that, for some providers, soft-
ware developers can increase the level of security of their
application without incurring too high an increment in the
energy consumption. However, software developers need to
be careful because this is not the case for all the providers.
The analysis in this paper helps in making that decision.
Finally, for some providers the default and the recommended
transformations are the same, so non-expert software devel-
opers can use default transformations and be sure that their
applications have an appropriate level of security. However,
this is not true for all the providers so software developers
interested in reducing energy consumpion need to be careful
to avoid choosing those providers where an increment in
security also implies a considerable increment in the energy
consumption. Finally, another interesting conclusion is that
the external providers consume less energy than the Android
security library in many cases, confirming our hypothesis that
it is useful to explore different security providers.

As part of our future work we plan to use these results to
analyze if the security of current applications can be improved
without incurring a huge penalty in either energy consump-

VOLUME 6, 2018 1447



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

tion or execution time. This will be done for real Android
applications developed by us [41], [42] or by third parties
where we will analyze the energy and time costs of chang-
ing between different providers, different key lengths and
different transformation modes. The results shown by [16]
already indicate that security can be considerably improved
in current applications. Our goal is to complement that study
to analyze whether the cost of increasing the level of secu-
rity is affordable considering both energy consumption and
execution time. The increments and reductions in both time
execution and energy consumption shown in our study may
seem insignificant when only one operation is measured, but
even small values may have a huge impact on real applica-
tions, with large numbers of security operations and which
are used by thousands of users.

APPENDIX
ENERGY CONSUMPTION AND EXECUTION TIME TABLES
In this appendix the average values for time and consumption
are provided.

TABLE 42. Symmetric key generation- median.

TABLE 43. Asymmetric key generation - median.

TABLE 44. AES encrypt - median.

TABLE 45. AES decrypt - median.

TABLE 46. DESede encrypt - median.

TABLE 47. DESede decrypt - median.

TABLE 48. RSA encrypt - median.

1448 VOLUME 6, 2018



J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

TABLE 49. RSA decrypt - median.

TABLE 50. RSA sign - median.

TABLE 51. RSA verify - median.

TABLE 52. DSA sign - median.

TABLE 53. DSA verify - median.

TABLE 54. MAC - median.

REFERENCES
[1] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, ‘‘What do programmers

know about software energy consumption?’’ IEEE Softw., vol. 33, no. 3,
pp. 83–89, May/Jun. 2015, doi: 10.1109/MS.2015.83.

[2] G. Pinto, F. Castor, and Y. D. Liu, ‘‘Mining questions about software
energy consumption,’’ in Proc. 11th Work. Conf. Mining Softw. Reposi-
tories (MSR), 2014, pp. 22–31.

[3] Q. Li andM. Zhou, ‘‘The survey and future evolution of green computing,’’
in Proc. IEEE/ACM Int. Conf. Green Comput. Commun. (GreenCom),
Aug. 2011, pp. 230–233.

[4] J.-M. Horcas, M. Pinto, and L. Fuentes, ‘‘Green configurations of
functional quality attributes,’’ in Proc. 21st Int. Syst. Softw. Product
Line Conf. (SPLC), vol. A. Sevilla, Spain, Sep. 2017, pp. 79–83,
doi: 10.1145/3106195.3106205.

[5] R.W.Ahmad, A.Gani, S. H. A.Hamid, F. Xia, andM. Shiraz, ‘‘A review on
mobile application energy profiling: Taxonomy, state-of-the-art, and open
research issues,’’ J. Netw. Comput. Appl., vol. 58, pp. 42–59, Dec. 2015,
doi: http://dx.doi.org/10.1016/j.jnca.2015.09.002

[6] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
‘‘Energy profiles of Java collections classes,’’ inProc. 38th Int. Conf. Softw.
Eng. (ICSE), 2016, pp. 225–236, doi: 10.1145/2884781.2884869.

[7] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
‘‘Detecting energy bugs and hotspots in mobile apps,’’ in Proc. 22nd
ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE), 2014, pp. 588–598,
doi: 10.1145/2635868.2635871.

[8] A. Castiglione, F. Palmieri, U. Fiore, A. Castiglione, and A. De Santis,
‘‘Modeling energy-efficient secure communications in multi-mode wire-
less mobile devices,’’ J. Comput. Syst. Sci., vol. 81, no. 8, pp. 1464–1478,
2015.

[9] A. Merlo, M. Migliardi, and L. Caviglione, ‘‘A survey on energy-aware
security mechanisms,’’ Pervasive Mobile Comput., vol. 24, pp. 77–90,
Dec. 2015, doi: 10.1016/j.pmcj.2015.05.005.

[10] D. S. A. Minaam, H. M. Abdual-Kader, and M. M. Hadhoud, ‘‘Evaluating
the effects of symmetric cryptography algorithms on power consumption
for different data types,’’ Int. J. Netw. Secur., vol. 11, no. 2, pp. 78–87,
2010, doi: 10.1007/s11367-011-0284-8.

[11] L. Zhang et al., ‘‘Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,’’ in
Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth.
(CODES/ISSS), Oct. 2010, pp. 105–114, doi: 10.1145/1878961.1878982.

[12] A. Bakker, ‘‘Energy profiling android applications,’’ in Proc. 21st Twente
Student Conf. IT, Enschede, The Netherlands, Jun. 2014. [Online]. Avail-
able: http://fmt.cs.utwente.nl/files/sprojects/217.pdf

[13] H. Furusho, K. Hisazumi, T. Kamiyama, H. Inamura, T. Nakanishi, and
A. Fukuda, ‘‘Power consumption profiling method based on android
application usage,’’ in Information Science and Applications. Heidelberg,
Germany: Springer, 2015, pp. 891–898, doi: 10.1007/978-3-662-46578-
3_106.

VOLUME 6, 2018 1449

http://dx.doi.org/10.1109/MS.2015.83
http://dx.doi.org/10.1145/3106195.3106205
http://dx.doi.org/10.1145/2884781.2884869
http://dx.doi.org/10.1145/2635868.2635871
http://dx.doi.org/10.1016/j.pmcj.2015.05.005
http://dx.doi.org/10.1007/s11367-011-0284-8
http://dx.doi.org/10.1145/1878961.1878982
http://dx.doi.org/10.1007/978-3-662-46578-3_106
http://dx.doi.org/10.1007/978-3-662-46578-3_106


J. A. Montenegro et al.: What Do Software Developers Need to Know to Build Secure Energy-Efficient Android Applications?

[14] K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, and N. Chang,
‘‘FEPMA: Fine-grained event-driven powermeter for android smartphones
based on device driver layer event monitoring,’’ in Proc. Conf. Design,
Autom. Test Eur. (DATE), 2014, pp. 367:1–367:6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616606.2617122

[15] A. Maiti, ‘‘Flexible and effective energy management in smartphones,’’
in Proc. MobiSys PhD Forum (PhDForum), 2015, pp. 7–8, doi:
10.1145/2752746.2752792.

[16] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, ‘‘An empiri-
cal study of cryptographic misuse in android applications,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013, pp. 73–84,
doi: 10.1145/2508859.2516693.

[17] R. W. Ahmad et al., ‘‘A survey on energy estimation and power modeling
schemes for smartphone applications,’’ Int. J. Commun. Syst., vol. 30,
no. 11, p. e3234, 2017, doi: 10.1002/dac.3234.

[18] Y. Zhu and V. J. Reddi, ‘‘GreenWeb: Language extensions for energy-
efficient mobile Web computing,’’ in Proc. 37th ACM SIGPLAN
Conf. Program. Lang. Design Implement. (PLDI), 2016, pp. 145–160,
doi: 10.1145/2908080.2908082.

[19] X. Chen, A. Jindal, and Y. C. Hu, ‘‘How much energy can we save
from prefetching ads?: Energy drain analysis of top 100 apps,’’ in Proc.
Workshop Power-Aware Comput. Syst., HotPower, 2013, pp. 3:1–3:5,
doi: 10.1145/2525526.2525848.

[20] M. Bokhari and M. Wagner, ‘‘Optimising energy consumption
heuristically on android mobile phones,’’ in Proc. Genetic Improvement
Workshop, Denver, CO, USA, 2016, pp. 1139–1140. [Online]. Avail-
able: http://cs.adelaide.edu.au/~markus/pub/2016-gecco-gi-energy.pdf,
doi: 10.1145/2908961.2931691.

[21] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, ‘‘Ana-
lyzing the energy consumption of security protocols,’’ in Proc. Int.
Symp. Low Power Electron. Design (ISLPED), Aug. 2003, pp. 30–35,
doi: 10.1145/871506.871518.

[22] X. Liu and F. Qian, ‘‘Measuring and optimizing android smartwatch energy
consumption: Poster,’’ in Proc. 22nd Annu. Int. Conf. Mobile Comput.
Netw. (MobiCom), 2016, pp. 421–423, doi: 10.1145/2973750.2985259.

[23] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, ‘‘An empirical study
of the energy consumption of android applications,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., 2014, pp. 121–130,
doi: 10.1109/ICSME.2014.34.

[24] C. Bunse and A. Rohdé, ‘‘Software development guidelines for per-
formance and energy: Initial case studies,’’ in Advances and New
Trends in Environmental Informatics. Cham, Switzerland: Springer, 2017,
pp. 25–35, 10.1007/978-3-319-44711-7_3.

[25] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, ‘‘Energy-aware test-
suite minimization for Android apps,’’ in Proc. 25th Int. Symp. Softw. Test.
Anal. (ISSTA), 2016, pp. 425–436. [Online]. Available: http://delivery.
acm.org/10.1145/2940000/2931067/p425-jabbarvand.pdf?ip=150.214.
108.144&id=2931067&acc= CHORUS&key=DD1EC5BCF38B3699.9D
D43FB5F2FDB30A.4D4702B0C3E38B35.6D218144511F3437&CFID=
989679241&CFTOKEN= 43729866&__acm__=1506584542_2605a30df
dc37762469ba3553a284c46, doi: 10.1145/2931037.2931067.

[26] C. A. Lara-Niño,M.Morales-Sandoval, andA. Díaz-Pérez, ‘‘An evaluation
of AES and present ciphers for lightweight cryptography on smartphones,’’
in Proc. IEEE Int. Conf. Electron., Commun. Comput. (CONIELECOMP),
Feb. 2016, pp. 87–93, doi: 10.1109/CONIELECOMP.2016.7438557.

[27] L. Caviglione, M. Gaggero, E. Cambiaso, and M. Aiello, ‘‘Measuring the
energy consumption of cyber security,’’ IEEE Commun. Mag., vol. 55,
no. 7, pp. 58–63, Jul. 2017, doi: 10.1109/MCOM.2017.1600955.

[28] D. González, O. Esparza, J. L. Muñoz, J. Alins, and J. Mata, ‘‘Evaluation
of cryptographic capabilities for the Android platform,’’ in Future Network
Systems and Security. Cham, Switzerland: Springer, 2015, pp. 16–30,
doi: 10.1007/978-3-319-19210-9_2.

[29] A. Ometov et al., ‘‘Feasibility characterization of cryptographic primitives
for constrained (wearable) IoT devices,’’ inProc. IEEE Int. Conf. Pervasive
Comput. Commun. Workshops (PerCom Workshops), Mar. 2016, pp. 1–6,
doi: 10.1109/PERCOMW.2016.7457161.

[30] G. C. C. F. Pereira et al., ‘‘Performance evaluation of cryptographic algo-
rithms over IoT platforms and operating systems,’’ Secur. Commun. Netw.,
vol. 2017, Aug. 2017, Art. no. 2046735, doi: 10.1155/2017/2046735.

[31] When Mobile Apps Use Too Much Power. A Developer Guide for
Android App Performance, Qualcomm Technol. Inc., San Diego, CA,
USA, Dec. 2013. [Online]. Available: https://developer.qualcomm.com/
download/trepn-whitepaper-power.pdf

[32] J. R. Weiss, Java Cryptography Extensions: Practical Guide for Program-
mers. San Mateo, CA, USA: Morgan Kaufmann, 2004.

[33] The Keyed-Hash Message Authentication Code (HMAC), document
FIPSPUB198-1, 2008.

[34] Advanced Encryption Standard (AES), document FIPS-197, 2001.
[35] Digital Signature Standard (DSS), document FIPS-186-4, 2013.
[36] E. Barker and N. Mouha, ‘‘Recommendation for the triple data encryption

algorithm (TDEA) block cipher,’’ National Institute of Standards and Tech-
nology, Gaithersburg, MD, USA, NIST Special Pub. 800-67, Revision 2,
Nov. 2017, doi: 10.6028/NIST.SP.800-67r2.

[37] C. J. Wild and G. A. F. Seber, Chance Encounters: A First Course in Data
Analysis and Inference. Hoboken, NJ, USA: Wiley, 1999.

[38] G. Grolemund and H. Wickham, R for Data Science. Newton, MA, USA:
O’Reilly Media, 2016.

[39] V. R. Basili, G. Caldiera, and H. D. Rombach, ‘‘The goal question metric
approach,’’ in Encyclopedia of Software Engineering. Hoboken, NJ, USA:
Wiley, 1994.

[40] P. Rogaway, ‘‘Evaluation of some blockcipher modes of operation,’’
Dept. Comput. Sci., Univ. California, Davis, Davis, CA, USA,
Tech. Rep., Feb. 2011. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.591.7222&rep=rep1&type=pdf

[41] I. Ayala, L. Mandow, M. Amor, and L. Fuentes, ‘‘A mobile and interactive
multiobjective urban tourist route planning system,’’ J. Ambient Intell.
Smart Environ., vol. 9, no. 1, pp. 129–144, 2017, 10.3233/AIS-160413.

[42] I. Ayala, M. Amor, M. Pinto, L. Fuentes, and N. Gámez, ‘‘iMuseumA:
An agent-based context-aware intelligent museum system,’’ Sensors,
vol. 14, no. 11, pp. 21213–21246, 2014, doi: 10.3390/s141121213.

JOSÉ A. MONTENEGRO received the M.S. and
Ph.D. degrees from the Department of Lenguajes
y Ciencias de la Computación, Universidad de
Málaga, Spain, in 2001 and 2006, respectively, and
the M.B.A. degree from the Universidad Nacional
de Educación a Distancia, Spain, in 2006. He was
a Guest Researcher (Fulbright Scholar) with the
National Institute of Standards and Technology,
USA, from 2007 to 2009. He has been an Asso-
ciate Professor with the Department of Lenguajes

y Ciencias de la Computación, Universidad de Málaga, since 2010. His main
research interests are in artificial intelligence and applied cryptography.

MÓNICA PINTO received the M.Sc. degree in
computer science and the Ph.D. degree from the
Universidad de Málaga, Spain, in 1998 and 2004,
respectively. She is currently an Associate Profes-
sor with the Department of Lenguajes y Ciencias
de la Computación, Universidad de Málaga. Her
main research areas are energy-aware software
development, component-based software engi-
neering, aspect-oriented software development,
architecture description languages, model-driven

development, and context-aware mobile middlewares.

LIDIA FUENTES received the M.Sc. and Ph.D.
degrees in computer science from the Universidad
de Málaga, Spain, in 1992 and 1998, respectively.
She has been with the Department of Lenguajes
y Ciencias de la Computación, Universidad de
Málaga, as a Lecturer and an Associate Professor
since 1993 and a Full Professor since 2011, where
she is currently the Head of the CAOSD Research
Group. Her main research areas are energy-aware
software development, aspect-oriented software

development, model-driven development, software product lines, agent-
oriented software engineering, self-adaptive middleware platforms, architec-
ture description languages, and domain specific languages.

1450 VOLUME 6, 2018

http://dx.doi.org/10.1145/2752746.2752792
http://dx.doi.org/10.1145/2752746.2752792
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1002/dac.3234
http://dx.doi.org/10.1145/2908080.2908082
http://dx.doi.org/10.1145/2752746.2752792
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1002/dac.3234
http://dx.doi.org/10.1145/2908080.2908082
http://dx.doi.org/10.1145/2525526.2525848
http://dx.doi.org/10.1145/2908961.2931691
http://dx.doi.org/10.1145/871506.871518
http://dx.doi.org/10.1145/2973750.2985259
http://dx.doi.org/10.1109/ICSME.2014.34
http://dx.doi.org/10.1007/978-3-319-44711-7_3
http://dx.doi.org/10.1145/2931037.2931067
http://dx.doi.org/10.1109/CONIELECOMP.2016.7438557
http://dx.doi.org/10.1109/MCOM.2017.1600955
http://dx.doi.org/10.1007/978-3-319-19210-9_2
http://dx.doi.org/10.1109/PERCOMW.2016.7457161
http://dx.doi.org/10.1155/2017/2046735
http://dx.doi.org/10.6028/NIST.SP.800-67r2
http://dx.doi.org/10.3233/AIS-160413
http://dx.doi.org/10.3390/s141121213

	INTRODUCTION
	RELATED WORK
	ENERGY PROFILING TOOL
	EXPERIMENTAL SETUP
	CRYPTOGRAPHIC PROVIDERS
	ANDROID CRYPTOGRAPHY PRIMITIVES
	CRYPTOGRAPHY PRIMITIVES SELECTED
	DEFAULT MODES

	EXPERIMENTAL RESULTS
	OBJECTIVES AND RESEARCH QUESTIONS
	RQ1. WHICH CRYPTO PROVIDER IS THE MOST ENERGY EFFICIENT FOR DIFFERENT OPERATIONS OF CRYPTO PRIMITIVES?
	CONFIDENTIALITY
	AUTHENTICATION
	INTEGRITY

	RQ2. WHAT IS THE COST OF INCREASING THE SECURITY LEVEL IN TERMS OF POWER CONSUMPTION?
	CONFIDENTIALITY
	AUTHENTICATION
	INTEGRITY

	RQ3. WHICH TRANSFORMATION, COMPARING THE DEFAULT AND THE RECOMMENDED TRANSFORMATIONS, IS THE MOST ENERGY EFFICIENT FOR DIFFERENT CRYPTO PROVIDERS IN ANDROID?
	CONFIDENTIALITY
	AUTHENTICATION
	INTEGRITY


	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	JOSÉ A. MONTENEGRO
	MÓNICA PINTO
	LIDIA FUENTES


