
SPECIAL SECTION ON ANALYSIS AND SYNTHESIS OF TIME-DELAY SYSTEMS

Received September 30, 2017, accepted November 8, 2017, date of publication December 4, 2017, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2779159

Mean-Square Asymptotic Synchronization
Control of Discrete-Time Neural Networks
With Restricted Disturbances and Missing Data
DE-HUI LIN 1,2, JUN WU1, JIAN-PING CAI 3, AND JIAN-NING LI 4
1State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
2College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
3Zhejiang University of Water Resource and Electric Power, Hangzhou 310018, China
4School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding author: Jun Wu (jwu@iipc.zju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant NSFC: 51405430, Grant 61473258,
Grant 61433013, Grant 61733009, Grant 61403113, Grant 61573322, and Grant U1509210, in part by the Public Welfare Technology
Application Research Plan of Zhejiang under Grant 2016C33G2010137, the Fundamental Research Funds for the Central Universities
under Grant 2017QNA5011, and in part by the Science Fund for Creative Research Groups of NSFC under Grant 61621002.

ABSTRACT The problem of controller design is investigated to achieve the mean-square asymptotic
synchronization of discrete-time neural networks with time-varying delay and restricted disturbances. The
unreliable communication links between the neural networks, which are modeled as stochastic dropouts
satisfying the Bernoulli distributions, are taken into account. By applying the Lyapunov function, a synchro-
nization controller design method is proposed in the form of linear matrix inequalities. The design method
is also extended to neural networks including modeling uncertainties. Two numerical examples are given to
illustrate the effectiveness of the proposed methods.

INDEX TERMS Asymptotic synchronization, controller design, discrete-time neural networks, time-varying
delay, disturbance constraints, uncertainty, missing data.

I. INTRODUCTION
The past few decades have witnessed a number of successful
applications of recurrent neural networks, such as parallel
computing, associative memory, pattern recognition, fault
tolerance, and combinatorial optimization. Neural networks
with time delays have attracted attention for several years,
see, e.g. [1]–[13] and the references therein. Time delays are
frequently encountered due to the finite switching speed of
electronic components, which leads to unstable and poor per-
formance [14]. In [3], delay-dependent criteria were applied
to the robust stability of recurrent neural networks with delays
and uncertainties; these criteria were established using the
free-weighting matrices method. In [6], the robust mean-
square stability for stochastic discrete-time recurrent neural
networks with mixed time-varying delays was derived via
the Lyapunov functional method and linear matrix inequal-
ity (LMI) technology.

With the pioneering working by Pecora and Carroll [15],
the synchronization problem has gained substantial atten-
tion due to its promising applications in secure communica-
tion, image processing, artificial intelligence, etc. [16], [17].
In [16], the output synchronization problem is studied for a

heterogeneous network by the robust output regulation the-
ory and the adaptive control theory. Output synchronization
problem in heterogeneous network of nonidentical uncertain
agents subject to an uncertain leader is considered in [17].
A novel control scheme based on hierarchical decomposi-
tion is proposed to guarantee the network synchronization.
Delayed neural networks have been found to have some com-
plicated characteristics, such as stable equilibria and chaotic
attractors. Hence, great effort has beenmade to investigate the
synchronization of delayed neural networks [18]–[23]. The
problems of synchronization were studied in [18] and [19] for
continuous-time and discrete-time neural networkswith time-
varying delays and multiagent systems via an event-based
leader-following strategy. In [20] and [21], the synchroniza-
tion problems of stochastic delayed neural networks and neu-
ral networks with mixed delays were respectively resolved
with the sufficient conditions. In [22] and [23], a sampled-
data controller and stochastic controller were individually
designed to guarantee global synchronization.

Overall, the control schemes for the synchronization of
neural networks can be realized by physical mechanisms. The
transmission of signals relies on communication channels in

10240
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-0494-6779
https://orcid.org/0000-0003-4724-796X
https://orcid.org/0000-0003-3845-4692


D. -H. Lin et al.: Mean-Square Asymptotic Synchronization Control of Discrete-Time Neural Networks

the practical applications of many synchronization control
schemes. It is assumed in [24] and [25] that communica-
tion between the controller and the physical plant is normal.
In practice, this assumption may be invalid. Dropout may
occur between a physical plant and its controller due to
unreliable communication, which is more prevalent in the
networked control systems (NCSs) [12], [26]. In network-
based synchronization systems, signal transmission often
refers to time delays, packet dropouts, environment distur-
bances, and so on. In past years, data packet dropout has been
studied for NCSs, and a large quantity of results have been
reported in the literature [27]–[33]. Very recently, in [34],
the problem of the synchronization of discrete-time neural
networks with mixed time delays, actuator saturation and
failures was investigated, and packet dropout between neural
networks was considered. The packet dropout probability
depended on the synchronization criterion given using the
Lyapunov approach. It is easy to see that disturbances always
exist, which may cause instability and poor performance in
real physical systems [35]–[38]. Therefore, how to reduce
the effect of disturbances in the synchronization process for
chaotic systems has become an important issue. To the best
of our knowledge, the delay-dependent synchronization prob-
lem of discrete-time delayed neural networks with packet
dropouts and disturbances has not been investigated, which
motivates the current study.

The synchronization problem of discrete-time delayed
neural networks with restricted disturbances and dropouts is
considered in this paper. Dropout is modeled as a stochastic
process satisfying a Bernoulli distribution. We construct a
series of Lyapunov functions and design a feedback controller
to ensure that the master-slave system is asymptotically
synchronous with respect to mean-square by means of the
LMI approach. Furthermore, the result is extended to uncer-
tain neural networks with disturbance and dropouts. Finally,
two numerical examples are presented to illustrate the effec-
tiveness of the proposed methods.
Notation: Throughout this paper, R denotes real num-

bers and N denotes non-negative integers. Rn denotes the
n-dimensional real vector space. ‖x‖ denotes the Euclidean
norm of the vector x ∈ Rn. E{α} stands for the expectation
of stochastic variable α. Rn×m is the set of real matrices of
n × m dimension. A real matrix P > 0(≥ 0) means that
P is a positive definite (positive semi-definite) matrix, and
A > B (A ≥ B) means A − B > 0 (A− B ≥ 0). I denotes an
identity matrix with the appropriate dimensions. The super-
script “T ”represents the transpose, and the symmetric terms
in a symmetric matrix are denoted by “∗”. Matrices, if not
explicitly stated, are assumed to have compatible dimensions.

A. PROBLEM FORMULATION
In this paper, we consider the following discrete n-neuron
neural networks with time-varying delays:{

x(k + 1) = Cx(k)+ Af (x(k))+ Bf (x(k − d(k)))
x(s) = ψ1(s) s = −dM ,−dM + 1, . . . , 0

(1)

where x(k) = [x1(k) x2(k) · · · xn(k)]T ∈ Rn represents the
state vector associated with the n neurons at time k ∈ N,
vector ψ1(s) ∈ Rn is the initial conditions, integer d(k) is
the time-varying delay that satisfies 0 < dm ≤ d(k) ≤ dM ,
and dm and dM are positive integers, respectively. C =

diag {c1, c2, . . . , cn} ∈ Rn×n is the state feedback coeffi-
cient matrix, A ∈ Rn×n is the connection weight matrix
and B ∈ Rn×n is the time-delay connection weight
matrix. The nonlinear vector-valued function f (x(k)) =
[f1(x1(k)) f2(x2(k)) · · · fn(xn(k))]T ∈ Rn is the activation
function satisfying the following assumption.
Assumption 1: Each activation function fi(.) is continuous,

and there exist constants γi and σi such that

γi ≤
fi(α1)− fi(α2)
α1 − α2

≤ σi, i = 1, 2, · · · , n (2)

for any α1, α2 ∈ R and α1 6= α2.
In this paper, we consider system (1) as the master system;

a slave system for (1) can be expressed as follows:
y(k + 1) = Cy(k)+ Af (y(k))+ Bf (y(k − d(k)))
+u(k)+ δ(e(k))
y(s) = ψ2(s) s = −dM ,−dM + 1, . . . , 0

(3)

where u(k) ∈ Rn is the control input to the slave system,
ψ2(s) is the initial conditions, and e(k) = y(k) − x(k) is the
synchronization error. δ(e(k)) ∈ Rn is the system disturbance
satisfying the following assumption.
Assumption 2: There exist symmetric matrix Q ∈ Rn×n

and positive number β such that

δT (z) [δ(z)− Qz] ≤ 0 (4)[
δT (z)− δT (ẑ)

] [
βδ(z)− βδ(ẑ)− (z− ẑ)

]
≤ 0 (5)

for any z, ẑ ∈Rn.
Then, the error system can be obtained as follows:
e(k + 1) = Ce(k)+ Agx(e(k), k)
+Bgx(e(k − d(k)), k − d(k))
+u(k)+ δ(e(k))
e(s) = ψ2(s)− ψ1(s) s = −dM ,−dM + 1, . . . , 0

(6)

where gx(z, k) =


gx1(z1, k)
gx2(z2, k)

...

gxn(zn, k)

 = f (x(k)+ z)− f (x(k)) with

z =


z1
z2
...

zn

 ∈ Rn. According to Assumption 1, it follows that

γi ≤
fi(xi(k)+ zi)− fi(xi(k))

zi
≤ σi, i = 1, 2, · · · , n

then, we get

γizi ≤ gxi(zi, k) ≤ σizi, i = 1, 2, · · · , n (7)
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The control input u(k) takes the following form:

u(k) = θ (k)Ke(k) (8)

where K ∈ Rn×n is the control gain matrix to be determined,
and θ (k) models the unreliable nature of the communication
links as θ (k) = 0 when the transmission fails (that is, the data
are lost) and θ (k) = 1 when the transmission is successful.
In this paper, θ (k) is a Bernoulli-type missing data process
whose probability mass function is

Pr {θ (k) = 0} = θ̃ (9)

Pr {θ (k) = 1} = 1− θ̃ (10)

with a given number θ̃ ∈ (0, 1).
Remark 1: The advantage of control scheme with the miss-

ing data process which is modeled as a Bernoulli distribution
from other controllers such as linear feedback controller is
that this control scheme adequately considers the realistic
data transmission of NCSs. In realistic NCSs, dropout is very
common and the Bernoulli-type missing data process is a
special case of Markov chain process [23]. But in design of
linear feedback controller, the control input is u(k) = Ke(k),
which does not take the dropout into account.

Substituting (8) into (6) gives the following closed-loop
system:

e(k + 1) = (C + θ (k)K )e(k)+ Agx(e(k), k)
+Bgx(e(k − d(k)), k − d(k))+ δ(e(k))
e(s) = ψ2(s)− ψ1(s) s = −dM ,−dM + 1, . . . , 0

(11)

Definition 1 [39]: The master system (1) and slave sys-
tem (3) under control input (8) are said to be asymptotically
synchronized with respect to the mean square if the error of
the system satisfies

lim
k→+∞

E{‖e(k)‖2} = 0 (12)

Lemma 1 [40]: Let X , Y and Z be real matrices of appro-
priate dimensions, with Z > 0. Then

XTZY + Y TZX ≤ XTZX + Y TZY (13)

Lemma 2 [41]: Given constant matrices �1, �2, and �3,
where �1 = �

T
1 and �2 > 0,

�1 +�
T
3�
−1
2 �3 < 0

if and only if [
�1 �T

3
�3 −�2

]
< 0

B. MAIN RESULT
For simplicity, in the following, we denote

h = dM − dm + 1

G1 = diag{γ1σ1, γ2σ2, · · · , γnσn}

G2 = diag{
γ1 + σ1

2
,
γ2 + σ2

2
, · · · ,

γn + σn

2
}

Theorem 1: Under Assumptions 1∼ 2, suppose there exist
positive-definite matrices P > 0, S1 > 0, S2 > 0, S3 > 0,
and S4 > 0, matrices R and X and diagonal positive-definite
matrices T > 0 and L > 0 such that the following LMIs hold:

W =
[
S3 R
∗ S4

]
> 0 (14)ϒ 02 03

∗ 01 0
∗ ∗ −P

 < 0 (15)

Then, the error system (11) is asymptotically stable with
respect to mean square with K = P−1X , where

ϒ =


ϒ11 ϒ12 ϒ13 ϒ14
∗ ϒ22 ϒ23 ϒ24
∗ ∗ ϒ33 ϒ34
∗ ∗ ∗ ϒ44


ϒ11 = CTPC+θ̃CTX+θ̃XTC−P+S1+S2+hS3−G1T

ϒ12 = CTPA+ θ̃XTA+ hR+ G2T

ϒ13 = CTPB+ θ̃XTB

ϒ14 = CTP+ θ̃XT + Q/2+ I/2

ϒ22 = ATPA+ hS4 − T

ϒ23 = ATPB

ϒ24 = ATP

ϒ33 = BTPB− S4 − L

ϒ34 = BTP

ϒ44 = P− (β + 1)I

01 =


−S3 − G1L 0 0 I/2
∗ −S1 0 0
∗ ∗ −S2 0
∗ ∗ ∗ −βI



02 =


0 0 0 −I/2
0 0 0 0

−RT + LGT2 0 0 0
−I/2 0 0 βI

, 03=


θ̃XT

0
0
0


Proof: From Lemma 2 and (15), it is easy to see that[

ϒ + 03P−10T3 02
∗ 01

]
< 0 (16)

We consider the following Lyapunov-Krasovskii function
of system (11):

V (k) =
4∑
i=1

Vi(k) (17)

where

V1(k) = eT (k)Pe(k)

V2(k) =
k−1∑

i=k−dM

eT (i)S1e(i)
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V3(k) =
k−1∑

i=k−dm

eT (i)S2e(i)

V4(k) =
−dm+1∑

j=−dM+1

k−1∑
i=k−1+j

[
e(i)

gx(e(i), i)

]T
W
[

e(i)
gx(e(i), i)

]
Defining 1V (k) = V (k + 1) − V (k) and ξ =

[eT (k) gTx (e(k), k) gTx (e(k−d(k)), k−d(k)) δT (e(k))]T ,
it is easy to see that

E {1V1(k)} = E
{
eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

}
= ξT5ξ (18)

E {1V2(k)} = eT (k)S1e(k)− eT (k − dM )S1e(k − dM )

(20)

E {1V3(k)} = eT (k)S2e(k)− eT (k − dm)S2e(k − dm)

(21)

E {1V4(k)} = h
[

e(k)
gx(e(k), k)

]T
W
[

e(k)
gx(e(k), k)

]
−

k−dm∑
i=k−dM

[
e(i)
g(e(i))

]T
W
[

e(i)
g(e(i))

]

≤ h
[

e(k)
gx(e(k), k)

]T
W
[

e(k)
gx(e(k), k)

]
−

[
e(k − d(k))

gx(e(k − d(k)), k − d(k))

]T
W

×

[
e(k − d(k))

gx(e(k − d(k)), k − d(k))

]
(22)

when (14) is true. On the other hand, it is clear from
Assumption 1 that

θ1(k) =
[

e(k)
gx(e(k), k)

]T [G1T −G2T
∗ T

]
[

e(k)
gx(e(k), k)

]
≤ 0

θ2(k) =
[

e(k − d(k))
gx(e(k − d(k)), k − d(k))

]T
×

[
G1L −G2L
∗ L

]
×

[
e(k − d(k))

gx(e(k − d(k)), k − d(k))

]
≤ 0 (23)

According to Assumption 2, the following inequalities are
true:

θ3(k) =
[

e(k)
δ(e(k))

]T [ 0 −Q/2
∗ I

] [
e(k)
δ(e(k))

]
≤ 0

θ4(k) =


e(k))

e(k − d(k))
δ(e(k))

δ(e(k − d(k)))


T 

0 0 −I/2 I/2
∗ 0 I/2 −I/2
∗ ∗ βI −βI
∗ ∗ ∗ βI



×


e(k))

e(k − d(k))
δ(e(k))

δ(e(k − d(k)))

 ≤ 0 (24)

Then, we obtain from (18)∼(24) and K = P−1X that

E{1V (k)} = E
{

4∑
i=1

1Vi(k)

}
≤ E

{
4∑
i=1

1Vi(k)

}

−

4∑
i=1

θi(k) = ψT (k)
[
ϒ + 03P−10T3 02

∗ 01

]
ψ(k) < 0

(25)

where

ψ(k) = [eT (k) gTx (e(k), k) g
T
x (e(k − d(k)), k − d(k))

δT (e(k)) eT (k − d(k)) eT (k − dM ) eT (k − dm)

δT (e(k − d(k))) ]T

The proof is completed. �
Theorem 1 gives a design method for a synchronization

controller. UsingMATLAB, it is convenient to check whether
the LMIs in Theorem 1 have a feasible solution. If the LMIs
have a feasible solution, we get a synchronization controller
by K = P−1X .

In engineering, it is inevitable that synchronization suffers
frommodeling uncertainties. Therefore, for master-slave sys-
tems with modeling uncertainties, we will discuss the design
method of the synchronization controller. When modeling
uncertainties occur, the master-slave system can be rewritten
as
x(k + 1) = (C +1C(k))x(k)+ (A+1A(k))f (x(k))
+(B+1B(k))f (x(k − d(k)))
x(s) = ψ1(s) s = −dM ,−dM + 1, . . . , 0

(26)


y(k + 1) = (C +1C(k))y(k)+ (A+1A(k))f (y(k))
+(B+1B(k))f (y(k − d(k)))+ u(k)+ δ(e(k))
y(s) = ψ2(s) s = −dM ,−dM + 1, . . . , 0

(27)

It is then easy to get the error system:
e(k + 1) = (C +1C(k)+ θ (k)K )e(k)
+(A+1A(k))gx(e(k), k)
+(B+1B(k))gx(e(k − d(k)), k − d(k))+ δ(e(k))
e(s) = ψ2(s)− ψ1(s) s = −dM ,−dM + 1, . . . , 0

(28)

5 =


CTPC + θ̃CTPK + θ̃KTPC + θ̃2KTPK − P CTPA+ θ̃KTPA CTPB+ θ̃KTPB CTP+ θ̃KTP

∗ ATPA ATPB ATP
∗ ∗ BTPB BTP
∗ ∗ ∗ P

 (19)
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We assume that the matrices 1A(k), 1B(k), and 1C(k)
satisfy:

[1C(k) 1A(k) 1B(k)] = MF(k)[N1 N2 N3] (29)

where M , N1, N2, and N3 are known constant matrices with
proper dimensions and

MTM ≤ I (30)

FT (k)F(k) ≤ I , k ∈ N. (31)

To simplify the equations, we write 1A(k), 1B(k), and
1C(k) as 1A, 1B, and 1C .
Theorem 2: Under Assumptions 1∼2, suppose there exist

positive-definite matrices P > 0, S1 > 0, S2 > 0, S3 > 0,
and S4 > 0, matrices R and X , and diagonal positive-definite
matrices T > 0 and L > 0, such that the following LMIs
hold:

W =
[
S3 R
∗ S4

]
> 0 (32)

4 02 03 04
∗ 01 0 0

∗ ∗ −P 0

∗ ∗ ∗ −I

 < 0 (33)

MTPM < I (34)

Then, the error system (28) is asymptotically stable with
respect to mean square, with K = P−1X , where

4 =


411 ϒ12 ϒ13 ϒ14
∗ 422 ϒ23 ϒ24
∗ ∗ 433 ϒ34
∗ ∗ ∗ 444


411 = ϒ11 + 3CTPC + (7+ θ̃ )NT

1 N1

422 = ϒ22 + 3ATPA+ (7+ θ̃ )NT
2 N2

433 = ϒ33 + 3BTPB+ (7+ θ̃ )NT
3 N3

444 = ϒ44 + 3P

04 =


√
3θ̃XT

0
0
0


Proof: From Lemma 2 and (33), it is easy to see that[

4+ 03P−10T3 + 040
T
4 02

∗ 01

]
< 0 (35)

Using the same Lyapunov-Krasovskii function V (k) and
the same deduction as in the proof of Theorem 1, we
have

E{1V (k)} ≤ ψT (k)
[
ϒ ′ + 03P−10T3 02

∗ 01

]
ψ(k) (36)

It is noted that we use ϒ ′ to represent the corresponding
term in (15) with uncertainties. Replacing A, B, and C

with (A + 1A), (B + 1B), and (C + 1C) in (15) yields
that

ϒ ′11 = (C +1C)TP(C +1C)+ θ̃ (C +1C)TX

+̃θXT (C +1C)+ θ̃2XTP−1X − P+ S1
+ S2 + hS3 − G1T

= ϒ11 + Y1 + θ̃Y2 (37)

where

Y1 = CTP1C + (1C)TPC + (1C)TP1C
Y2 = (1C)TX + XT1C

It follows from Lemma 1 and (34) that

Y1 ≤ CTPC + 2(1C)TP1C
= CTPC + 2NT

1 F
T (k)MTPMF(k)N1

< CTPC + 2NT
1 N1 (38)

Similarly, we obtain

θ̃Y2 < θ̃XTX + θ̃NT
1 N1 (39)

Similar to (38), we get

ϒ ′22 = (A+1A)TP(A+1A)+ hS4 − T
< ϒ22 + ATPA+ 2NT

2 N2 (40)
ϒ ′33 = (B+1B)TP(B+1B)− S4 − L

< ϒ33 + BTPB+ 2NT
3 N3 (41)

On the other hand, it is easy to verify that

ϒ ′12 = (C +1C)TP(A+1A)+ hR+ G2T

+̃θXT (A+1A)

= ϒ12 + Y3 + θ̃Y4

where

Y3 = CTP1A+ (1C)TPA+ (1C)TP1A

Y4 = XT1A

Considering the symmetry of ϒ ′12 and ϒ
′

21, we have

eT (k)CTP1Agx(e(k), k)+ gTx (e(k), k)(1A)
TPCe(k)

≤ eT (k)CTPCe(k)+ gTx (e(k), k)(1A)
TP1Agx(e(k), k)

< eT (k)CTPCe(k)+ gTx (e(k), k)N
T
2 N2gx(e(k), k) (42)

eT (k)(1C)TPAgx(e(k), k)+ gTx (e(k), k)A
TP1Ce(k)

< eT (k)NT
1 N1e(k)+ gTx (e(k), k)A

TPAgx(e(k), k) (43)

eT (k)(1C)TP1Agx(e(k), k)+ gTx (e(k), k)(1A)
TP1Ce(k)

< eT (k)NT
1 N1e(k)+ gTx (e(k), k)N

T
2 N2gx(e(k), k) (44)

With regard to θ̃Y4, it follows that

eT (k)θ̃XT1Agx(e(k), k)+ gTx (e(k), k)θ̃ (1A)
TXe(k)

< eT (k)θ̃XTXe(k)+gTx (e(k), k)θ̃N
T
2 N2gx(e(k), k) (45)

Considering the symmetry of ϒ ′13 and ϒ ′31, it is easy to
compute that

eT (k)CTP1Bgx(e(k − d(k)), k − d(k))
+ gTx (e(k − d(k)), k − d(k))(1B)

TPCe(k)
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< eT (k)CTPCe(k)

+ gTx (e(k − d(k)), k − d(k))

×NT
3 N3gx(e(k − d(k)), k − d(k)) (46)

eT (k)(1C)TPBgx(e(k − d(k)), k − d(k))

+ gTx (e(k − d(k)), k − d(k))B
TP1Ce(k)

< eT (k)NT
1 N1e(k)

+ gTx (e(k − d(k)), k − d(k))B
T

×PBgx(e(k − d(k)), k − d(k)) (47)

eT (k)(1C)TP1Bgx(e(k − d(k)), k − d(k))

+ gTx (e(k − d(k)), k − d(k))(1B)
TP1Ce(k)

< eT (k)NT
1 N1e(k)

+ gTx (e(k − d(k)), k − d(k))N
T
3

×N3gx(e(k − d(k)), k − d(k)) (48)

eT (k)θ̃XT1Bgx(e(k − d(k)), k − d(k))

+ gTx (e(k − d(k)), k − d(k))θ̃ (1B)
TXe(k)

< eT (k)θ̃XTXe(k)

+ gTx (e(k − d(k)), k − d(k))θ̃N
T
3

×N3gx(e(k − d(k)), k − d(k)) (49)

Considering the uncertainty in ϒ ′14 and ϒ
′

41, we obtain

eT (k)(1C)TPδ(e(k))+ δT (e(k))P1Ce(k)

< eT (k)NT
1 N1e(k)+ δT (e(k))Pδ(e(k)) (50)

Considering the symmetry of ϒ ′23 and ϒ ′32, it is easy to
compute that

gTx (e(k), k)A
TP1Bgx(e(k − d(k)), k − d(k))

+ gTx (e(k − d(k)), k − d(k))(1B)
TPAgx(e(k), k)

< gTx (e(k), k)A
TPAgx(e(k), k)

+gTx (e(k − d(k)), k − d(k))

×NT
3 N3gx(e(k − d(k)), k − d(k)) (51)

gTx (e(k), k)(1A)
TPBgx(e(k − d(k)), k − d(k))

+gTx (e(k − d(k)), k − d(k))B
TP1Agx(e(k), k)

< gTx (e(k), k)N
T
2 N2gx(e(k), k)

+ gTx (e(k − d(k)), k − d(k))B
T

×PBgx(e(k − d(k)), k − d(k)) (52)

gTx (e(k), k)(1A)
TP1Bgx(e(k − d(k)), k − d(k))

+ gTx (e(k − d(k)), k − d(k))(1B)
TP1Agx(e(k), k)

< gTx (e(k), k)N
T
2 N2gx(e(k), k)

+ gTx (e(k − d(k)), k − d(k))N
T
3

×N3gx(e(k − d(k)), k − d(k)) (53)

Considering the uncertainty in ϒ ′24 and ϒ
′

42, we get

gTx (e(k), k)(1A)
TPδ(e(k))+ δT (e(k))P1Agx(e(k), k)

< gTx (e(k), k)N
T
2 N2gx(e(k), k)+ δT (e(k))Pδ(e(k)) (54)

Considering the uncertainty in ϒ ′34 and ϒ
′

43, we have

gTx (e(k − d(k)), k − d(k))(1B)
TPδ(e(k))

+δT (e(k))P1Bgx(e(k − d(k)), k − d(k))

< gTx (e(k − d(k)), k − d(k))N
T
3

×N3gx(e(k − d(k)), k − d(k))

+ δT (e(k))Pδ(e(k)) (55)

From (35)∼(55), it is known that

E{1V (k)} ≤ ψT (k)
[
ϒ ′ + 03P−10T3 02

∗ 01

]
ψ(k)

≤ ψT (k)
[
4+ 03P−10T3 + 0

T
4 04 02

∗ 01

]
ψ(k)

< 0

Hence, Theorem 2 is obtained. �

C. NUMERICAL EXAMPLES
In this section, two numerical examples are provided to illus-
trate the effectiveness of the proposed method.
Example 1:
We consider the discrete recurrent neural networks

system (1) and (3) with the following parameters:

C =
[
0.1 0
0 0.1

]
, A =

[
0.01 0.1
0 0.1

]
B =

[
−0.1 0.1
−0.2 −0.1

]
, Q =

[
0.01 0
0 0.01

]
The activation functions are f1(x1(k)) = tanh(x1(k)),
f2(x2(k)) = tanh(x2(k)), which satisfy Assumption 1 with
γ1 = 0, γ2 = 0, σ1 = 1, andσ2 = 1. Let β = 100,
θ̃ = 0.3, dm = 6, dM = 10, and disturbance
δ(e(k)) = 0.01 tanh(e(k)). The initial conditions are x(k) =
[−0.5 1]T , y(k) = [0 0.5]T , and k = −10,−9, . . . , 0.
By applying Theorem 1, it can be checked by MATLAB
that (14) and (15) are feasible, and we can also obtain the
controller

K = P−1X =
[
−0.3908 −0.1918
−0.0282 −0.5699

]
The unreliable communication link is plotted in Fig. 1.
In Fig. 1, θ (k)=0 means that the data is lost whereas
θ (k)=1 denotes the packet is receieved successfully. The
time-varying delay is depicted in Fig. 2, and the dynamics
of the master and slave system are shown in Fig. 3 and
Fig. 4, respectively. The state trajectories of the closed-loop
error dynamic system with the above control input is given
in Fig. 5. From simulation results, we can conclude that the
synchronization errors converge asymptotically to zero.
Example 2:We consider the discrete recurrent neural net-

works system (26) and (27) with the following uncertainty
parameters:

M =
[
0.1
0.1

]
, N1 =

[
0.02 0.01

]
N2 =

[
0.01 0.01

]
, N3 =

[
0.01 0.02

]
The other parameters are the same as those in Example 1.
By applying Theorem 2, it can be checked by MATLAB
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FIGURE 1. θ(k) in Example 1.

FIGURE 2. Time-varying delay in Example 1.

FIGURE 3. Dynamics of master system.

that (32), (33) and (34) are feasible, and we can also obtain
the controller:

K = P−1X =
[
−0.4121 −0.1142
−0.1459 −0.7786

]

FIGURE 4. Dynamics of slave system.

FIGURE 5. State response of error system (11).

FIGURE 6. θ(k) in Example 2.

The missing data process θ (k) is plotted in Fig. 6, the time-
varying delay is displayed in Fig. 7, and the dynamics of
the master and slave system with uncertainties are shown
in Fig. 8 and Fig. 9, respectively. Comparing Fig. 8 and Fig. 9,
we can see that the slave system resembles the master system
under the proposed control input (8). The synchronization

10246 VOLUME 6, 2018



D. -H. Lin et al.: Mean-Square Asymptotic Synchronization Control of Discrete-Time Neural Networks

FIGURE 7. Delays in Example 2.

FIGURE 8. Dynamics of master system with uncertainties.

FIGURE 9. Dynamics of slave system with uncertainties.

errors curve is given in Fig. 10. Clearly, the master-slave
system with uncertainties (28) reaches synchronization.
Remark 2: Due to full consideration of dropout in unre-

liable communication in NCSs, the master-slave system
with or without uncertainties is synchronized under the
proposed control input, respectively. Compared with the

FIGURE 10. State response of error system (28).

common linear feedback control method, the presented
method has the advantage of simplicity and feasibility.

II. CONCLUSIONS
This paper has studied the mean-square asymptotic syn-
chronization control problem for time-varying delay neu-
ral networks with disturbances and missing stochastic data.
A stochastic process that satisfies the Bernoulli distribution is
given tomodel the randommissing data. A sufficient criterion
is derived to ensure the error system is asymptotically mean-
square stable, and a controller design method is presented.
The error system with uncertainties is also discussed. Finally,
two numerical examples are provided to demonstrate the
effectiveness of the obtained results.
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