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ABSTRACT In this paper, a new linear array configuration based on the concept of two-level nested array
is proposed. Specifically, the proposed array configuration consists of two uniform linear arrays (ULAs)
plus a separate sensor with appropriate spacing apart. Compared with the original two-level nested array,
the degrees of freedom of our proposed array configuration can be increased by 2L − 6 for an array with
L physical sensors. Moreover, the virtual array aperture can be enlarged by nearly (L2/2− L − 2)d1, where
d1 is the inter-element spacing of the first ULA. Owing to these advantages, our proposed array configuration
has enhanced resolution and achieves better performance in parameter estimation, such as direction-of-
arrival (DOA) estimation. Numerical simulations of DOA estimation exhibit the effectiveness and superiority
of this array configuration.

INDEX TERMS Nested array, array configuration, degrees of freedom, virtual array aperture, parameter
estimation, direction-of-arrival.

I. INTRODUCTION
Array signal processing is known to be a time-honored
and valuable research topic, which has attracted much
interest. Usually, it is assumed that the array sensors are
arranged in linear or circular. Furthermore, uniform linear
array (ULA) and uniform circular array (UCA) are often
considered in both theoretical research and engineering appli-
cations due to their symmetrical and simple array geometries.
Classical techniques such as spatial smoothing [1] and
the estimation of signal parameters via rotational invariant
techniques (ESPRIT) [2] rigidly require symmetrical array
geometries and therefore they can be successfully applied to
ULAs. A great amount of their follow-up methods concen-
trated straightly on ULAs and have deepened the research on
their particular aspects [3]–[11].

During the recent years, two kinds of unprecedented non-
uniform linear array configurations have been proposed
by Vaidyanathan and Pal in [12]–[15]. These two kinds
of array configurations are named as coprime and nested
arrays, respectively. They benefit from significantly increased
degrees of freedom (DOF), and stem from the difference set.

The difference set is related to the Khatri-Rao (KR) sub-
space [16] of the physical array manifold and is generated by
a so-called co-array. The co-array combines two independent
uniform linear arrays in different manners, i.e., coprime rela-
tionship for coprime array and nesting relationship for nested
array. It can lead to a virtual linear array with locations of
virtual sensors marked by the difference set. Note that nested
arrays include two-level and more-level nested arrays, where
two-level nested array is relatively much simple and hence
has drawn more attention since they were introduced.

There exist several modified array configurations based on
the coprime array or two-level nested array [17]–[23]. For
instance, the unfolded coprime array [18] is a reformative
configuration of the coprime array. It can achieve 2MN − 1
DOFwithM+N physical sensors, while the original coprime
array [13] can only achieve MN + M + N − 2 DOF with
the same number of physical sensors. A few extensions of
the two-level nested array have been proposed, including [20]
(named as Iizuka-Nested array), [21] (named as Yang-Nested
array), [22] (named as Yang-NMRA), and [23] (named as
Liu-Nested array). These array configurations are able to
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increase the DOF as well as virtual array apertures (VAAs)
compared with the original two-level nested array [14]. For
instance, the DOF of Iizuka-Nested array, Yang-Nested array
and Liu-Nested array are increased by 2, about L − 2 and
about L − 2 respectively, compared with that of the original
two-level nested array, where L is the total number of physical
sensors. The VAAs of these three modified nested arrays are
increased, respectively, by nearly Ld1, nearly (L − 2)d1 and
nearly (L−2)d1, compared with that of the original two-level
nested array, where d1 denotes the inter-element spacing of
sensors in the first ULA. It should be mentioned that the DOF
of these modified array configurations are still far lower than
the theoretical maximum L(L − 1)+ 1 [14].
For the motivation of further increasing the DOF and

VAAs, we propose a new nest-based array configuration in
this paper. In brief, the proposed nested array configuration
is composed of two independent ULAs plus an additional
sensor, and all sensors are arranged in linear. Assuming the
total number of physical sensors is L and the inter-element
spacing of the first ULA is d1, it will be shown that the
DOF and VAAs of the proposed array configuration are,
respectively, 2L − 6 and nearly (L

2

2 − L − 2)d1 larger than
those of the original two-level nested array. Such increase
in both DOF and VAAs would lead to enhanced resolution,
which enables us to estimate the signal parameters such as
direction-of-arrival (DOA) more accurately. Representative
numerical examples are provided to verify the effectiveness
of the proposed array configuration.

The remainder of this paper is organized as follows.
Some necessary preliminaries are introduced in Section II.
Section III describes the proposed array configuration in
detail and gives the comparisons of both DOF and VAAs
between our proposed array configuration and other exist-
ing commonly-used or related linear array configurations.
Simulations and conclusions are presented in Section IV
and Section V, respectively.
Notations: in this paper, we use boldfaced uppercase

and lowercase letters to represent matrices and vectors,
respectively. (·)T , (·)H and (·)∗ stand for transpose, conjugate
transpose and complex conjugate, respectively. E{·}, vec(·)
and diag{·} represent statistical expectation, vectoriza-
tion and diagonalization operators, respectively. � denotes
Khatri-Rao product and b·c is the integral part of the rational
number in the square brackets.

II. PRELIMINARIES
To facilitate the presentation of the proposed array config-
uration for DOA estimation, we shall briefly provide some
preliminaries of the difference set, two-level nested array, and
KR subspace based DOA estimation in this section.

A. DIFFERENCE SET AND DEGREES OF FREEDOM
Let us consider two integer number sets: {n1, n2, · · · , nN }
and {m1,m2, · · · ,mM }, the self-difference set is defined as

SD={ni − nj | 1≤ i, j ≤ N }∪{mi − mj | 1≤ i, j ≤ M} (1)

and the cross-difference set is defined as

CD = {±(ni − mj) | 1 ≤ i ≤ N , 1 ≤ j ≤ M}. (2)

The difference set (denoted as D) is the union of the self-
difference and the cross-difference set, i.e.,

D = SD ∪ CD. (3)

If it is allowed repetition of the elements in the difference
set D [14], the DOF is equal to the total number of the
distinct elements. For example, the difference set of {0, 1} and
{2, 5, 8} is {0,−1, 1, 0, 0,−3,−6, 3, 0,−3, 6, 3, 0,−2,−5,
−8,−1,−4,−7, 2, 1, 5, 4, 8, 7}, where there are 17 distinct
elements, i.e., −8,−7, · · · ,−1, 0, 1, · · · , 7, 8. As a result,
the corresponding DOF is 17.

B. TWO-LEVEL NESTED ARRAY
The two-level nested array is a co-array composed of two
ULAs, whose sensor positions are, respectively, given by the
following two sets [14]:

SM = {md1 | m = 0, 1, · · · ,M − 1} (4)

SN = {Md1 + nd2 | n = 0, 1, · · · ,N − 1} (5)

where d1 andM are the inter-element spacing and the number
of sensors of the first ULA, respectively, while d2 and N are
those of the second ULA. Moreover, d1 and d2 satisfy

d2 = (M + 1)d1. (6)

This co-array is able to produce a virtual array with sensor
locations corresponding to the difference set of SM and SN .

It should be pointed out that the difference set of SM and SN
is a set of continuous integer numbers, and its DOF
is 2N (M + 1)− 1. In what follow, the VAA (normalized
by d1) is quantified as VAA = max{D} − min{D}, where
D is the difference set of SM and SN .

C. DOA ESTIMATION BASED ON KR SUBSPACE
Suppose that a linear array with L sensors observes K uncor-
related sources with DOAs θk , k = 1, 2, · · · ,K and that the
sources emit quasi-stationary signals. The observation vector
of the sensor array can thus be modeled as

x(t) = As(t)+ n(t) (7)

where A = [a(θ1), a(θ2), · · · , a(θK )], s(t) and n(t) rep-
resent steering matrix, signal vector and noise vector,
respectively. a(θk ) is the steering vector associated with the
k-th signal. Particulary, we have a(θk ) = [βv1 (θk ), βv2 (θk ),
· · · , βvL (θk )]T , where β(θk ) = e−j

2π
λ

sin(θk ) and vl , l =
1, 2, · · · ,L, denotes the distance between the l-th sensor and
the reference point.

The covariance matrix of the f -th frame of quasi-stationary
signals is defined as [16]

Rf = E{x(t)xH (t)}, ∀t ∈ [(f − 1)T , fT − 1] (8)

for f = 1, 2, . . . ,F , where F and T are the number of frames
and the length of each frame, respectively. Assuming that
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the noise is uncorrelated with the signals, then (8) can be
expressed as

Rf = ARsfA
H
+ Rn (9)

where Rsf = E{sf (t)sHf (t)} = diag{σ 2
f 1, σ

2
f 2, · · · , σ

2
fK } and

Rn = E{n(t)nH (t)} are the signal and noise covariance
matrices, respectively, σ 2

f 1, σ
2
f 2, · · · , σ

2
fK are the signal pow-

ers in the f -th frame.
The vectorization of Rf is given by

y(f ) = vec(Rf ) = (A∗ � A)p(f )+ vec(Rn) (10)

where p(f ) = [σ 2
f 1, σ

2
f 2, · · · , σ

2
fK ]

T and the columns of
A∗ � A span the so-called KR subspace. By stacking y(1),
y(2), · · · , y(F) as Y , [y(1), y(2), · · · , y(F)], we have

Y = (A∗ � A)P+ vec(Rn)1TF (11)

where P = [p(1),p(2), · · · ,p(F)]. It can be seen from (10)
that y(f ) behaves as the observation of a virtual array whose
sensor locations are determined by the physical array. In other
words, the steering vector of the virtual array corresponds
to the difference set of the steering vector a(θ ) and its con-
jugate a∗(θ ). After eliminating the noise component in (11)
through projection [16], the space that is orthogonal to
A∗ � A can be achieved through singular value decomposi-
tion. Thus, DOA estimation can be performed by using the
MUSIC algorithm [24].

III. PROPOSED ARRAY CONFIGURATION
It is found from A∗ � A in (10) that the number of distinct
virtual sensors is directly related to the arrangement of the
physical sensors. For instance, the number of distinct virtual
sensors is 2L − 1 when L physical sensors are arranged in
uniformly linear, and thus there exist L2 − 2L + 1 redundan-
cies. For the motivation of producing as many distinct virtual
sensors as possible (in other words, reducing the redundancy
of the virtual array), a novel array configuration is presented
in this section. Similar to those existing methods, our pro-
posed array configuration is based on the two-level nested
array. However, the main difference is that it is composed of
two ULAs plus a single separate sensor. This composition is
shown to be able to increase the DOF and enlarge the VAAs.

Assume that the number of physical sensors isL = M + N .
In particular, we choose M and N − 1 sensors to form the
first and the second ULAs with inter-element spacings of
d1 and d2, respectively. The remaining sensor is set as a
separate sensor apart from the last sensor of the second ULA
with a distance of d1 + d2. The gap between the first and the
second ULAs is

⌊
M+N−1

2

⌋
d1 wide, and d1 and d2 are related

with each other as

d2 =
(
M +

⌊
M + N − 1

2

⌋)
d1. (12)

It should be emphasized that
⌊
M+N−1

2

⌋
denotes the integral

part of M+N−12 . That is to say, the sensor locations of the first

and the second ULAs are given by SM and SN−1, respectively,
which are represented as follows

SM = {md1 | m = 0, 1, · · · ,M − 1} (13a)

SN−1 = {(d2 − 1)d1 + nd2 | n = 0, 1, · · · ,N − 2}. (13b)

The separate sensor is located at

S1 = {d1d2 + (N − 1)d2}. (14)

From another point of view, the proposed array configuration
is composed of a ULA with sensor positions given by SM and
a nonuniform linear array with sensor positions denoting by

SN = SN−1 ∪ S1. (15)

Hence, the positions of the physical sensors are given
by SM ∪ SN . In order to have an intuitive perspective of
the proposed array configuration, the sensor locations are
shown in Fig. 1. As a result, the entries of the difference set
of SM and SN correspond to the sensor positions of the virtual
array.

FIGURE 1. Illustration of the proposed array configuration.

It can be readily verified that the proposed array configu-
ration is capable of producing increased DOF and enlarged
VAAs over the existing geometries. More precisely, we can
obtained the following conclusions that, if L ≥ 5 and:
• If L is even, choosingM = L

2 − 1 and N = L
2 + 1, then

we have

DOF =
L2 − 2

2
+ 3L − 6 (16a)

VAA = L2 − 4. (16b)

• If L is odd, choosing M = L−1
2 and N = L+1

2 , then we
have

DOF =
L2 − 1

2
+ 3L − 6 (17a)

VAA = L2 − 1. (17b)

Obviously, it can be found that the proposed configuration has
increased DOF compared with existing configurations such
as two-level nested array [14], whose DOF is L2−2

2 +L if L is
even, and is L2−1

2 + L if L is odd. Furthermore, it should be
pointed out that the above formulas are not applicable to the
cases of L ≤ 4. As a matter of fact, it can be simply calculated
that if L = 4we haveDOF = 11 andVAA = 12, and if L = 3
we have DOF = 7 and VAA = 8.

Now, let us take a simple example for illustration. Assume
that M = 2 and N = 3 (hence, L = 5), and without loss of
generality, we set d1 = 1. According to (12)–(15), we have
d2 = 4, SM = {0, 1} and SN = {3, 7, 12}. It can be readily
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TABLE 1. Summary of DOFs of different array configurations.

TABLE 2. Summary of VAAs of different array configurations.

verified that the difference set of SM and SN (excluding the
redundant entries) is given by

D = {−12,−11,−9,−7,−6,−5,−4,−3,−2,−1,

0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12}. (18)

It is seen that this set includes 21 distinct elements and
the difference between the maximal and minimal numbers
is 24. The results are coincident with the result in (17) that
DOF = 21 and VAA = 24.

FIGURE 2. Demonstration of sensor locations of various array
configurations (the number of physical sensors is L = 5).

In order to make a clearer view on the physical and virtual
sensor locations of different array configurations, we again
take L = 5 sensors (M = 2 and N = 3) for example, and
draw the sensor locations of eight different array configu-
rations in Fig. 2. For comparison, the other seven existing
array configurations are also given: 1) uniform linear array,

2) coprime array [13], 3) unfolded coprime array [18],
4) two-level nested array [14], 5) Iizuka-nested array [20],
6) Yang-nested array [21], and 7) Liu-nested array [23]
(Liu-nested array includes two kinds, i.e., ANAI-1 and
ANAI-2. ANAI-1 has larger DOF if not considering the
mutual coupling, and therefore it is taken for comparison
in this paper). Obviously, it is seen that the proposed array
configuration has the largest DOF and VAA. It should be
noted that Yang-NMRA [22] is not depicted in Fig. 2, since
it is not worked out for the case of L = 5.

Now, we summarize and compare the formulas of the
DOFs and VAAs of these array configurations, which are
abbreviated as KR ULA [16], Coprime [13], Unfolded
Coprime [18], Nested [14], Iizuka-Nested [20], Yang-
Nested [21], Yang-NMRA [22], Liu-Nested (ANAI-1) [23],
and Proposed, respectively. The comparisons of DOFs are
represented in TABLE 1 and Fig. 3(a), while the comparisons
of VAAs are displayed in TABLE 2 and Fig. 3(b). Since there
are certain cases with special values of L that are not worked
out for Yang-NMRA, they are displayed as ‘NA’ in the cor-
responding table. Note that, there is a theoretical maximum
of DOF for a given number of physical sensors [14]. Hence,
for the purpose of analysis and comparison, the theoretical
maximum of DOF is also calculated and drawn in Fig. 3(a).

It can be seen from Table 1 and Fig. 3(a) that, Yang-nested
array and Liu-nested (ANAI-1) share the same closed-form
expressions for DOF and VAA. When L ≥ 5, the proposed
nest-based array configuration has the most DOF among all
the array configurations listed. On the other hand, it can be
concluded from Table 2 and Fig. 3(b) that, when L ≥ 5,
the proposed nest-based array configuration owns larger VAA
than that of any others.

It is worth mentioning that, in our proposed array
configuration, the difference set produced by SM and SN leads
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FIGURE 3. Comparisons of the DOFs and VAAs of different array configurations. (a) Comparisons of DOFs. (b) Comparisons
of VAAs.

to a virtual linear array which consists of a filled ULA in the
middle of the whole virtual array and some holes at both ends
of the whole virtual array. It is known the holes may cause
ambiguity in parameter estimation, such as DOA estimation.
Nevertheless, the larger virtual array aperture is capable of
providing better performance of DOA estimation when the
number of sources is no larger than the number of sensors of
the middle filled ULA. If the number of sources is larger than
the number of consecutive virtual sensors, positive-definite
Toeplitz completion techniques could be utilized. Since this is
out of the scope of this work, the interested reader is referred
to [25] and related references for more details.

IV. SIMULATIONS
In this section, we utilize the proposed nested array configu-
ration to perform DOA estimation in the scenario of quasi-
stationary signal, where the KR subspace-based MUSIC
algorithm (which was introduced in Section II-C) can be
employed. The KR subspace-based ULA [16], coprime
array [13], unfolded coprime array [18], two-level nested
array [14], Iizuka-nested array [20], Yang-nested array [21],
Yang-NMRA [22], and Liu-nested (ANAI-1) [23] are mean-
while experimented for comparison.

A. SPATIAL SPECTRUM COMPARISON
Example 1: Assume that K = 15 uncorrelated sources

with DOAs uniformly distributed in [−60◦, 60◦] emit quasi-
stationary signals onto a linear array with L = 12 (M = 5,
N = 7) physical sensors. The number of frames is set to be
F = 50, while the length of each frame is T = 500. The
signal-to-noise ratio (SNR) is set as 0 dB. The simulation
results are drawn in Fig. 4(a).
Example 2: We raise the number of sources from 15

in the first example to 35 (with DOAs uniformly dis-
tributed in [−60◦, 60◦]), and keep other simulation settings
unchanged. In this example, we only test the six nest-based
array configurations, namely, two-level nested array,

FIGURE 4. The spatial spectra with SNR = 0 dB. (a) 15 sources.
(b) 35 sources.

Iizuka-nested array, Yang-nested array, Yang-NMRA,
Liu-nested (ANAI-1), and the proposed nested array. The
results are shown in Fig. 4(b).
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It can be observed from Fig. 4 that, the proposed nest-
based array configuration provides high-quality spatial spec-
trum for DOA estimation. In particular, it has the sharpest
peaks among all these array configurations. This is because
both the DOF and the VAA of the proposed array config-
uration are larger than those of any other array geometries
(see Table 1 and Table 2). Hence, the proposed nested array
possesses of the capacity of shaping the sharpest peaks.

B. RMSE OF DOA ESTIMATION VERSUS SNR
We evaluate the performance in terms of root mean squared
error (RMSE) of DOA estimation, which is defined as

RMSE =

√√√√√ 1
KQ

K∑
k=1

Q∑
q=1

(θ̂k,q − θk )2 (19)

where θ̂k,q represents the DOA estimate of kth source in the
qth Monte Carlo trial and Q is the total number of Monte
Carlo trials.
Example 3: In this example, K = 15 sources are examined

for all the array configurations listed afore. The number of
physical sensors is L = 12 (M = 5 and N = 7), the number
of frames is F = 50, the length of each frame is T = 500,
and the number of Monte Carlo trials is Q = 500. The SNRs
are varied uniformly from −18 dB to 10 dB with a stepsize
of 2 dB.
Example 4: To further test and compare the performances

of six nest-based array configurations, in this example we
assume K = 20 sources and other settings remain the same
as those in the third example.

FIGURE 5. RMSE of DOA estimation versus SNR of nine array
configurations with 12 physical sensors and 15 sources.

The simulation results of these two examples are illus-
trated in Fig. 5 and Fig. 6, respectively, from which it is
seen that, the proposed nest-based array geometry achieves
lower RMSE of DOA estimation than those of other array
configurations (including ULA, coprime-based arrays, and
nest-based arrays).

FIGURE 6. RMSE of DOA estimation versus SNR of six nest-based
configurations with 12 physical sensors and 20 sources.

FIGURE 7. RMSE of DOA estimation versus number of frames of nine
array configurations with SNR = 0 dB.

C. DOA RMSE VERSUS THE NUMBER OF FRAMES
Example 5: The RMSE of DOA estimation versus the

number of frames is examined in this example. It is assumed
that L = 12 (M = 5 and N = 7), K = 10, T = 500,
the SNR is set to be 0 dB, andQ = 500Monte Carlo trials are
run. The results are demonstrated in Fig. 7. As expected, it is
observed from Fig. 7 that the proposed array configuration
has the lowest RMSE among all the array structures when the
number of frames is greater than or equal to 20. Even in the
case when the number of frames is small, the proposed nested
array configuration owns little RMSE of DOA estimation.

V. CONCLUSIONS
We proposed a novel nest-based array configuration in this
paper by extending the concept of two-level nested array.
The proposed array configuration is able to achieve more
degrees of freedom and larger virtual array aperture than
those of existing configurations. As a result, signal parameter
estimation such as DOA estimation can be improved based
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on the proposed configuration. Simulation results indicated
the effectiveness and good performance of our proposed array
configuration.
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