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ABSTRACT Advances in multimedia technologies have led to the emergence of smart home applications.
In fact, mobile multimedia technologies provide the infrastructure to adopt smart solutions and track
inhabitants’ activities. In-home activity recognition significantly enhances the performance of healthcare-
monitoring and emergency-control applications for elderly and people with special needs. Developing and
validating data models for such applications requires training sets that reflect a ground truth in the form of
labeled or annotated data. With the accelerated development of Internet-of-Things applications, automated
annotation processes have emerged understanding resident behavior in terms of activities. This paper presents
a methodology for automatic data annotation by profiling sensing nodes. Our proposed methodology models
activities based on spatially recognized actions, with every activity expected to have a direct relationship
with a specific set of locations. Furthermore, the proposed technique validates the assignment of labels
based on the temporal relations among consecutive actions. We performed experiments to evaluate our
proposed methodology on CASAS data sets, which indicated that the proposed methodology achieved better
performance, to a statistically significant extent, than the state-of-the-art methodologies presented in the
literature.

INDEX TERMS IoT, mobile multimedia, mobile healthcare, data mining, in home activities, wireless
sensors.

I. INTRODUCTION
Recent advances in wireless sensor networks and the efficient
connectivity enabled by Internet-of-Things (IoT) infrastruc-
ture facilitate accessing different forms of multimedia content
via mobile devices. Real-time remote access to such content
allows the development of advanced applications and services
for tracking patients in their homes. Applications of In-Home
Activity Recognition (IHAR) are important for developing
smart healthcare systems and services, such as monitoring
elderly health, detecting communicable disease, and trans-
mitting medically urgent alarms [1].

Recently, the Internet-of-Things (IoT) architecture has
been deployed to most in-home technologies, facilitating
the interconnection of ubiquitous devices embedded in
home appliances in the form of sensors to acquire res-
idents’ data [2]. Such architecture simplifies the process

of collecting data but makes it difficult to interpret
incoming information for the purpose of offering advice or
recommendations.

Figure 1 shows a framework for the smart recognition of
in-home activities for the purpose of monitoring elderly
health. IoT sensors are embedded in home appliances to sense
data that, in their basic form, are huge and unexplained, rep-
resenting only user actions. Since an activity is represented
as a set of cohesive actions, such actions must be formulated,
modeled, and annotated to reflect a specific activity. An ulti-
mate use for the output of this formulation and annotation is a
training model for a machine-learning algorithm to recognize
incoming activities. In other words, we need to identify how
the recognition engine will detect an activity, since actions
arrive rapidly.
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FIGURE 1. IoT smart recognition framework for healthcare monitoring
systems.

One major challenge in implementing this smart recogni-
tion framework is to assemble residents’ actions into data
segments, which is a collection of actions that, collectively,
represents a single activity (Figure 2). The smart home
sensors report actions periodically, while the recognition
engine assembles cohesive actions into meaningful segments
(i.e., activities). Activity annotation is the process of detecting
the appropriate label for a set of actions (segment) that home
residents actually perform. Since most at-home activities
involve different actions and since every sensing device is
responsible for only one kind of action, the temporal and spa-
tial aspects of human action matter for detecting activities—
including the order of actions.

FIGURE 2. Data segments.

Previous research has handled this issue by using clas-
sical classification techniques [3]–[5] that rely on inducing
features from a training set of data into a feature vector for
input to different classification algorithms. The disorganized
nature of inhabitants’ home behavior makes it difficult to
overcome the ambiguity problem using these techniques [6].

However, no previous research has considered automatically
segmenting data during the process of data acquisition.

Another important challenge in annotating incoming
actions is the interleaving among activities, meaning that
humans may perform two or more actions concurrently. Since
no specific rules indicate the chronological order of actions
that represent activities, and since human activities are typ-
ically performed in different ways, activity detection often
has high ambiguity and degraded performance in terms of
accuracy [7].

This paper introduces an annotation technique for in-home
activity recognition based on automatic segmentation. The
proposed technique defines the annotation process as an opti-
mization problem in which each incoming action is modeled
to increase the probability of assigning a given set of actions
to a specific activity. Hidden Markov Model (HMM) and
Conditional Random Field (CRF) are applied to model the
joint probability and features of activities in terms of actions.
The proposed feature-generation model handles common
challenges, such as actions’ spatiotemporal features, ambi-
guity in detecting activities, and interleaving among home
activities.

This research contributes by: (1) modeling activity actions
as a set of states and transitions using HMM, (2) modeling a
transition feature function that embeds temporal and spatial
relations among consecutive actions, and (3) defining the seg-
mentation problem as an optimization problem to minimize
the impact of ambiguity on overall accuracy.

Given a set of activities A = {a1, a2, . . . , aM}, where each
activity ai is a sequence of atomic actions each of which is
detected by a specific sensor. ai,j=<t

+

i , sα, vβ , t
−

i > in which
aij denotes the jth action belonging to activity ai, t

+

i and t−i
denote the start and end times of an activity ai and sα denotes
the sensor that reports the atomic action vβ . Our goal, in this
paper, is to define the probability function P as a confidence
score to maximize the probability that a given atomic action
increase the score of a given segment.

Max[P(ai, t, r, l) =
∏M

i=1
P(ai|t, r, l)] (1)

The remaining of this paper is organized as follows.
Section II summarizes the related work, and Section III
presents our proposed model. Section IV introduces the over-
all methodology. Section V presents the experimental results,
and Section VI concludes.

II. LITERATURE REVIEW
Previous research regarding multivariate time-series data has
focused on fully supervised learning approaches in which
the training datasets are correctly annotated with labels that
point to specific sets of activities. However, such approaches
are appropriate for applications, such as intrusion and false
alarm detection [8], [9], medical disease recognition [10], and
monitoring of human health [11], that allow a classification
problem to be defined to detect specific and homogeneous
types of activities.
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Recently, advances in smart and IoT technologies have
led to more general models that can be utilized to automate
the process of detecting in-home human activities. Many
techniques, frameworks, and algorithms have been proposed
to handle different issues in this domain. This paper focuses
only on data segmentation, in which an agent must decide the
size of the block of actions that represents an activity.

The classification problem is, by definition, a supervised
learning task where training datasets are already labeled.
Since smart infrastructure perceives the state of residents
and their physical environment using sensors, feature enrich-
ment is crucial for developing high-performance classifiers in
terms of accuracy [12]. Extracting features automatically is a
challenge, too [13], since sensors collect a very small amount
of information. For this reason, automatic data segmentation
is a challenging problem that requires uncommon techniques
to solve.

Manual annotation was once the only way to label datasets
for the purpose of training activity models [14], [15]. In this
technique, a group of participants is asked to note every
activity they perform. In other cases, the experimenters have
guided participants toward the exact order in which the activ-
ities should be performed, so that the right activity labels are
known before the sensor reports its data [16], [17].

In the literature, the data segmentation problem has been
resolved using the sliding window approach introduced by
Dietterich [18]. The idea behind the sliding window approach
is to pick up a fixed number of sensors every time and then
move the beginning of the window toward the second entry
(and then the third, and so on). Every window represents
a sequence of consecutive actions. The size of the sliding
window must be chosen in advance, which decreases the
accuracy of the approach, even if segments also have fixed
size.

Dynamic size windowing is an interesting approach to
overcoming the problems with the fixed-size sliding win-
dow [19]. This approach relies on making decisions about
window size according to certain features. Such an approach
works well for datasets that are collected perfectly, with no
noisy tuples and where every tuple is annotated with an
activity label. However, sensors use wireless communication
and activity labels cannot cover every possible action (some
actions do not belong to any activity).

Hidden Markov Models (HMM) have been applied to sta-
tistically model human behavior for the purpose of activity
recognition. Examples of such techniques are in [20]–[22],
where the problem is depicted as a set of states and transitions
among them. Every state represents a human behavior, while
each of them is connected to a specific observation object
so that the physical environment is also embedded. However,
HMM cannot model interleaved activities.

For this reason, a Conditional Random Field (CRF) is
used to model concurrency among activities. CRF allows
the statistical model to include feature function [23], [24],
helping to create features that recognize both activities and
concurrency among them.

Inducing features from training datasets is also a challeng-
ing problem, because sensors collect little data. Integrating
temporal and spatial features with activities seems to be a
solution to this problem [25]–[29]. While these are consid-
ered features of binary sensors, other research has focused on
multimedia features [30], [31].

III. PROBABILISTIC MODELING OF ACTIVITIES
Consider a dataset D of N tuples that represent M activities
in a smart home environment in which M = |A| and A =
{a1, a2, . . . , aM} is a set of independent activities. Let vt be
an action that happened at time t. Further, we assume that
the smart home environment comprises a finite number of
sensors, with each sensor associated with exactly one action.
Thus, the number of activities and actions in the environment
is finite. We define a probabilistic finite state automaton that
maps each action to a specific activity (state).

A. HIDDEN MARKOV MODEL (HMM)
The Hidden Markov Model is a generative probabilistic
model since it generates hidden states from data observations.
Specifically, the goal of HMM is to determine the sequence
of actions Vi = {v1, v2, . . . vt} that strongly correspond
to observable outputs from specific sequence of sensors
Si = {s1, s2, . . . st}. Figure 3 shows an example of HMM
states and observation sequence of the activity ‘‘Bathing.’’

FIGURE 3. Sample HMM bathing activity.

The example in figure 3 explains the modeling of the activ-
ity entitled ‘‘Bathing.’’ Through scanning the historical data
(Training set), a state transition structure is built according
to the actions that formulate the activity and the order to
executing such actions. Since the order is not consistent,
actions may be performed in different orders, the transition
probability reflects the possibility of one action to be fol-
lowed by another one. On the other hand, another structure is
formulated; observation sequence. The observation sequence
connects activities with the sensors that detect its constituent
actions. Specifically, the state transitionmodeled actions with
respect to a specific activity while observation sequencemod-
els activities with respect to the sensors that detect its actions.

The first order HMM defines the next state (future one)
according to the current state only; not previous history.
In other words, at time (t) the action vt depends only on vt−1.

P (vt | v1, v2, . . . , vt−1) = P(vt|vt−1) (2)
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Observation parameters (S), on the other hand, are only
dependent on the current hidden state. At time (t), given an
observation parameter st, it depends only on hidden state vt.
Such assumption prevents a single action from being shared
by two activities simultaneously. The following formula
defines the probability of observing st while the hidden state
vt is independent from all other actions:

P
(
st | vt, s1, s2, . . . , st−1, vt, . . . , vt−1

)
= P(st|vt) (3)

To map the transition among states in the finite state
machine, we must connect an observed output with the most
probable hidden state sequence. The transition probability
is depicted as P(vt−1|vt), while observation probability is
P(st|vt) that means the probability of st observed in hidden
state vt. To maximize the joint probability:

P (s, v) =
∏T

t=1
P (vt | vt−1)P(st|vt) (4)

B. CONCURRENT ACTIVITIES
Simple HMMs work well with simple activities and actions
that do not interleave in their execution. However, it is normal
in smart-home environments for an inhabitant to perform
more than one activity at the same time. Therefore, the learn-
ing algorithm must be fed with extra information about the
nature of incoming activities.

One solution is to apply a conditional random field (CRF)
model to define a feature that facilitates detecting such situ-
ations, while HMM defines the joint model. This allows the
definition of non-independent relationships among observed
sequences. In other words, we can embed the historical infor-
mation that is required to deeply understand the relationships
among activities.

P (V |S)=
1

Norm(S)
exp

(∑N

i

∑T

t=1
ϕifi (vt−1, vt,S, t)

)
(5)

Norm(S) : is a normalization factor to make the probability
value between 0 and 1.
ϕi is the transition probability (weight)
fi (vt−1, vt,S, t) represents the transition feature function,

the state feature function, or a combination between them.
In fact, one contribution in this paper is to focus on mod-

eling the function fi in order to maximize the accuracy of
segmenting incoming actions into a cohesive sequence that
represents an activity in a specific smart home environment.

C. FEATURE FUNCTIONS
The transition feature function in equation (5) can model gen-
erative features from the datasets. Features, in this context,
enrich the model with extra information to bias the results
toward a specific label (i.e., state). Temporal and spatial fea-
tures are two common approaches tomodeling the function fi.
Therefore, we represent the function as the product of the
values from these features.

fi (vt−1, vt,S, t) =
∏

ωIϕ
t
loc (6)

The parameter ωI models the temporal feature among con-
secutive actions. It is the ratio of the appearance frequency
of two consecutive actions with respect to a specific relation.
Equation (7) explains the formal definition of parameter ωI,
where r is the temporal relation between action vt−1 and vt.

ωI =
Freq([vt−1, r, vt])

Number of tuples of (r,S)
(7)

To restrict the value of r, we used the Allen’s relation-
ships [30] that depict the temporal relations among two
actions (or actions). Table 1 shows 13 temporal relationships
that could be, possibly, exist between two actions.

TABLE 1. Allen’s relations.

The second parameter ϕtloc models the spatial aspects of
actions, in which the location of the sensor, that detects such
actions, maps between them. The parameter ϕtloc is computed
using a binary transition function at a specific time. The
time variable (t) is important for mobile sensors in which the
location is changing over time.

ϕtloc =

 0

1

∣∣∣∣∣∣
Loc (vt−1) 6= Loc (vt)

Loc (vt−1) = Loc (vt)

 (8)

This parameter plays a significant role inminimizing ambi-
guity. Consider a situation in which the resident is cooking a
meal in the kitchen. During this activity, the resident goes to
the living room and then returns to the kitchen. The resident
went to the living room and get back again to the kitchen. This
interruptionwill add an action from amotion sensor that is not
relevant to the kitchen activity. Comparing the locations of the
motion sensor in the living room and all sensors in the kitchen
will allow the learning algorithm to recognize this fact.

IV. RESEARCH METHODOLOGY
Data pre-processing, a trivial task in data-mining techniques,
involves cleaning up noise from the data, transforming data
into an applicable format, normalizing data into a canonical
form, and extracting features. Our focus, in this research,
is confined to the non-trivial task of segmenting data and
extracting features from segments. Figure 4 depicts our
methodology to implement, test, and evaluate the proposed
framework. The first step after preparing the datasets is to
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FIGURE 4. Research methodology.

abstract the time intervals in order to overcome time differ-
ences and assign more weight to actions that last a long time.
After this, the resulting training set is exposed to a learning
algorithm to build a state transition structure and observation
sequence for each activity. The structures are validated using
a testing set of data, which has been prepared for use in
segmenting and annotating incoming actions.

Since our target mechanism is to segment actions once they
arrive, upon arrival an action is queued and moved to the
segmentation module. The segmentation task is implemented
as an optimization algorithm, which computes the probability
that a given action belongs to every possible activity. Finally,
a segment is assigned a label name matching the highest-
probability related activity.

A. TEMPORAL ABSTRACTION
During the pre-processing task, time stamps are transformed
into intervals that reflect the durations of every action. Time
intervals (I = t− − t+) should be abstracted in a categorical
form that can be used to temporally classify segments. Instead
of identifying the intervals as a set of starting and ending
times or using duration, each interval must be categorized
as low, medium, or high duration. To decide the category of
each interval, we consider the duration of all intervals in each
dataset in order to specify the median duration.

Category (I)=

Low (I)
Med (I)
High(I)

∣∣∣∣∣∣
0 ≤ d (i) ≤ (Average/3)

(Average/3)<d (i)<Average
Max ≤ d (i) ≤ Average


(9)

Since activities vary in duration, grouping of activities to
formulate parameter ωI in equation (7) will depend on the
categories of their intervals rather than their exact start and
end times. Such an abstraction of interval duration will help
understand different instances of the same activity.

B. STATE AND OBSERVATION STRUCTURES
To model the state and observation structure for each activity,
we need first to define three parameters: (1) the transition
probability among actions, (2) the observation probability of
sensors and their actions, and (3) the initial probability vector
of each action (usually 1/|V|).

The transition probability is defined in equation (2) in its
simple form. Since the same action may exist in different
time durations, we consider giving higher priority to actions
that last longer. Our hypothesis states that actions with large
time intervals are expected to identify the context better than
those with small time intervals. For this reason, we improved
the simple form of embedded interval durations using the
following formulae:

P (vt | vt−1) = P (vt | I)P(vt−1|I) (10)

The second parameter to state is the observation probability
of sensors pointing to the set of actions. Equation (4) com-
putes such a probability by spanning the training dataset and
identifying the value of transition. Since our interval duration
hypothesis has been integrated in equation (10), a simple
improvement is added to equation (4) to reflect the category
of action with respect to its time interval.

P (s, v, I) =
∏T

t=1
P (vt | vt−1)P(st|vt,I) (11)

By applying equations (10) and (11) to the training
dataset, the state and observation structure can be simply
created. Indeed, resolving concurrency requires applying
equations (5) and (6). The probability in these equations is
as follows

P (V |S, I) =
1

Norm(S)

× exp
(∑N

i

∑T

t=1
ϕi fi

(
vt−1.I, vt,I,S, t

))
(12)

And

fi
(
vt−1,I, vt,I,S, t

)
=

∏
ωIϕ

t,I
loc (13)

C. SEGMENT ANNOTATION
The forwarding algorithm to span the existing structures
requires an initialization phase, a recursion phase to emit all
states, and a termination phase. This strategy identifies the
relevant activities of incoming actions, computes the accu-
mulated probability of incoming actions until the probability
value no longer increases, and finally decides to which activ-
ity the new segment belongs.

1) INITIALIZATION PHASE
Step #1. Q← push (new v)
Step #2. foreach activity a ∈ A

a. W = Compute P (s, v, I ) =
∏T

t=1 P (vt | vt−1)

P(st |vt,I )

b. if a is a concurrent activity with A′,
then Go To Step 1

c. W = Compute P (V | S, I ) = 1
Norm(S)exp(∑N

i
∑T

t=1 ϕi f i
(
vt−1.I , vt,I , S, t

))
VOLUME 6, 2018 1475



M. G. AL Zamil et al.: Annotation Technique for In-Home Smart Monitoring Environments

2) SPANNING PHASE
Step #1. Pop

(
v′
)

Step #2. compute W ′ for v′ foreach activity
Step #3. if W ′ ≥ W , then Go To Step #1

3) TERMINATION PHASE
Step #1. Segment = A′

Step #2. Label = Max(Pi,a)

V. EXPERIMENT AND RESULTS
In this section, we implemented our proposed technique
with three well-known datasets: Tulum, Cairo, and Milan.
We cleaned the datasets by converting time stamps into single
intervals, removing unlabeled tuples, and transforming inter-
vals into a categorical field according to equation (9).

A. DATASETS
Every dataset comprises instances covering a finite set of
activities. Actions are generated using motion, tempera-
ture, or detection sensors. Table 2 briefly describes the
datasets [32]. Note that every dataset has an attached map that
shows the location of sensors, which can be interpreted as the
location where a specific action fires.

TABLE 2. Datasets description.

Instances in these datasets represent the daily activities of
a single resident and were collected and labeled manually,
so that experiments could be supervised using already anno-
tated instances.

B. RECOGNITION ACCURACY
This section reports the results from applying our proposed
annotation technique. To measure the performance of the
proposed technique, we used accuracy, defined as the ratio
between the true positive and negative and all other confusion
matrix parameters:

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(14)

Where TP is the number of instances that have been cor-
rectly annotated, TN is the total number of instances that
are correctly rejected, FN is the total number of instances
that have incorrectly rejected, and FP is the total number of
instances that have been incorrectly annotated.

Furthermore, we performed experiments using two differ-
ent annotation techniques in order to compare our results
and measure the resulted enhancements. First we imple-
ment an annotation algorithm using TF-IDF similarity model.
This model relies on comparing a given testing record with

existing training records. The most similar label is chosen
accordingly. In addition, we applied KNN (K-nearest Neigh-
bor) algorithm between the training and the testing set in
order to assign labels to the testing sets using Euclidian
distance function. Indeed the datasets have been processed to
cope with these models. Moreover, we presented our method-
ology into two different experiments; profiling and profiling
with temporal relations enrichment. Such partitioning will be
useful to measure the impact of using Allen’s relations on the
annotation process

Table 3 shows the results of comparing the four implemen-
tations and reports the accuracymeasure in addition to its per-
formance components. Note that, the numbers in Table 3 are
the average of performing annotation on all available labels.

TABLE 3. Results in terms of confusion matrix parameters.

Table 3 shows that the traditional TF-IDF similarity tech-
nique was the worst over other techniques. In fact, TF-IDF is
a simple and easy to implement technique that performs well
in comparing documents rather than concepts with semantic
meaning. It has been applied for annotating free text; while
generate a remarkable error (miss annotation) on actions and
activities.

While KNN outperformed TF-IDF results, the average
accuracy does not exceed 67% on Cairo dataset. Since KNN
implement the Euclidian distance function, more informa-
tion or features are required to narrow similar activities.

TABLE 4. Results in terms of enhancement over other methods.

Table 4 shows the enhancement of applying our profil-
ing annotation technique using Allen’s relations enrichment
over other techniques. We also included the profiling version
before adding the temporal features.
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Results in Table 4 shows statically significant enhance-
ments of our profiling technique over TF-IDF and KNN
(p < 0.10) respectively. While, on the other hand, applying
temporal relations does not affect the results significantly.

It is the human behavior, which is usually ad-hoc and
responsive, that affects the impact of temporal relations on the
performance accuracy. At home, many actions are performed
in an unpredicted manner. On the other hand, spatial relations
have much impact on the performance as they are, by nature,
linked to many in-home human activities.

C. IMPACT OF PROFILING ON
CLASSIFICATION ALGORITHMS
In this section, we provide extra experiments that show the
impact of our profiling technique on state-of-the-art clas-
sification algorithms. We chose algorithms from different
categories: Vector Space (Support Vector Machine SVM),
Decision Tree (J48), and Neural Network (Naïve Bayes NB).

Our purpose from this experiment is to show that adding
profiling features will enhance the performance of the classi-
fication task. Table 5 shows the application of these classifiers
on the raw datasets before adding the profiling features.

TABLE 5. Results of applying classification algorithms on raw datasets.

TABLE 6. Results of classification algorithms after applying the profiling
features.

Table 6 shows the enhancements on F-Measure after
applying the profiling features to the raw datasets. The
results showed statistically significant enhancements (p <

0.10) over state-of-the-art algorithms, which support our
hypothesis.

D. SENSITIVITY ANALYSIS
In this section, we present a sensitivity analysis that shows the
relationship between accuracy and the number of instances as
a training set. The importance of such analysis is that it shows
the impact of the training set on a given learning algorithm.

The findings showed a positive, trending relationship
between the size of the training set and the resulting accuracy:
the bigger the training set, the better the resulting accuracy.

Figure 5 shows a trending analysis of the size of the training
datasets against their accuracy. The analysis shows a clear
trend and positive relationship between the size of the training
sets and the accuracy of the annotation process.

FIGURE 5. Impact of training set size on the accuracy measure.

VI. CONCLUSION
This paper introduces an efficient technique for annotat-
ing activities in smart home environments, where perfor-
mance, ambiguity, and concurrency are frequently required.
The contributions of this research were: (1) the model-
ing of activity actions as a set of states and transitions
using HMM, (2) the modeling of a transition feature function
that embeds temporal and spatial relations among consecutive
actions, and (3) defining the segmentation problem as an
optimization problem that minimizes the impact of ambiguity
on overall accuracy.

We presented a novel solution that incorporates versions
of the Hidden Markov Model and Conditional Random Field
model that modified by integrating spatial and temporal rela-
tionships among actions to enhance the accurate detection
of segment labels. Furthermore, we propose an algorithm
to automatically segment incoming actions using state and
observation structures. Experimental results showed that our
proposed technique is efficient compared to existing, state-
of-the-art models.
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