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ABSTRACT The Internet of Things (IoT) now permeates our daily lives, providing important measure-
ment and collection tools to inform our every decision. Millions of sensors and devices are continuously
producing data and exchanging important messages via complex networks supporting machine-to-machine
communications and monitoring and controlling critical smart-world infrastructures. As a strategy to mitigate
the escalation in resource congestion, edge computing has emerged as a new paradigm to solve IoT and
localized computing needs. Compared with the well-known cloud computing, edge computing will migrate

k]

data computation or storage to the network “edge,’

near the end users. Thus, a number of computation

nodes distributed across the network can offload the computational stress away from the centralized
data center, and can significantly reduce the latency in message exchange. In addition, the distributed
structure can balance network traffic and avoid the traffic peaks in IoT networks, reducing the transmission
latency between edge/cloudlet servers and end users, as well as reducing response times for real-time IoT
applications in comparison with traditional cloud services. Furthermore, by transferring computation and
communication overhead from nodes with limited battery supply to nodes with significant power resources,
the system can extend the lifetime of the individual nodes. In this paper, we conduct a comprehensive survey,
analyzing how edge computing improves the performance of IoT networks. We categorize edge computing
into different groups based on architecture, and study their performance by comparing network latency,
bandwidth occupation, energy consumption, and overhead. In addition, we consider security issues in edge
computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group,
and propose a framework for security evaluation of IoT networks with edge computing. Finally, we compare
the performance of various IoT applications (smart city, smart grid, smart transportation, and so on) in edge

computing and traditional cloud computing architectures.

INDEX TERMS Edge computing, Internet of Things, survey.

I. INTRODUCTION

With the progressing development of information technology,
the Internet of Things (IoT) has come to play an impor-
tant role in our daily lives. Interconnected sensors/devices
can collect and exchange different data amongst themselves
through modern communication network infrastructure con-
nected by millions of IoT nodes [1]-[4]. Then, a variety
of IoT applications can provide more accurate and more
fine-grained network services for users. In this case, more
and more sensors and devices are being interconnected via
IoT techniques, and these sensors and devices will generate

massive data and demand further processing, providing intel-
ligence to both service providers and users. In conventional
cloud computing, all data must be uploaded to centralized
servers, and after computation, the results need to be sent back
to the sensors and devices. This process creates great pressure
on the network, specifically in the data transmission costs of
bandwidth and resources. In addition, the performance of the
network will worsen with increasing data size.

A more critical situation arises for IoT applications
that are time-sensitive, meaning that very short response
times are non-negotiable (the smart transportation [5], smart
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electricity grid [6], [7], smart city [8]-[10], etc.) and con-
ventional cloud computing-based service definitively cannot
satisfy the demand. This is because the computation pro-
cesses need to be uploaded to the cloud, and the limited
bandwidth and network resources are occupied by massive
data transmissions, on top of the cloud already being far
from the end users. Obviously, the result will be large latency
in the networks, which is unacceptable for time-sensitive
IoT applications. This is an important problem for 10T, as
these applications will have an impact on safety and emer-
gency response.

Furthermore, most IoT devices have limited power (smart
sensors, etc.), and to extend the lifetime of devices, it
is necessary to balance power consumption by scheduling
computation to devices that have higher power and com-
putational capabilities. In addition, processing data in com-
putation nodes with the shortest distance to the user will
reduce transmission time. In cloud computing-based service,
the data transmission speed will be affected by the net-
work traffic, and heavy traffic leads to long transmission
times, increasing power consumption costs. Thus, scheduling
and processing allocation is a critical issue that should be
considered.

To address the aforementioned problems and issues, in
this paper we summarize existing efforts and previous
work [11]-[17], and present our view on edge computing
for the IoT. Edge computing encompasses data computing
and storage that is being performed at the network “‘edge”
[18]-[25], nearby the user. Due to the locations of edge
computing nodes being close to end users, the peak in traffic
flows will be alleviated. In addition, it significantly miti-
gates the bandwidth requirements of the centralized network
and reduces the transmission latency during data comput-
ing or storage in IoT. Thus, distributing computation nodes
deployed at the edge can allow the offloading of traffic and
computational pressure from the centralized cloud, and the
response times of IoT applications can be faster than the
corresponding cloud computing services. In addition, edge
computing can migrate computational and communication
overhead from nodes with limited battery or power supply
to edge nodes with significant power resources. In doing
so, the lifetime of the nodes with limited battery will be
extended, such that the lifetime of the entire IoT network will
be increased.

In this paper, our contributions are listed as follows:

« We review the advantages and disadvantages of edge
computing, and categorize edge computing architectures
into different groups. Also, we compare the performance
of these categories in terms of response time, computa-
tion capacity, and storage space.

« We systematically investigate the essence of IoT, and
review some typical IoT examples. Based on this inves-
tigation, we compare the performance of IoT devices
in cloud computing and edge computing. Then, we list
the benefits and challenges that edge computing pose on
IoT networks.
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o Based on thorough studies of both IoT and edge
computing, we discuss the potential ability for
integrating IoT and edge computing as edge computing-
based IoT. Then, we introduce the problem space for
edge computing-based IoT. From the designed prob-
lem space, we review architectures, performance, task
scheduling, and security and privacy in edge computing.

o Furthermore, we illustrate the advantages and disad-
vantages of edge computing assisted [oT in transmis-
sion, storage, and computation. We discuss the new
challenges from the perspectives of system integra-
tion, resource management, security and privacy, and
advanced communication. We also present some IoT
smart applications as examples to explain how the edge
computing works with the [oT.

The remainder of this paper is organized as follows:
In Section II, we briefly discuss the background and basic
concepts of IoT, edge computing and cloud computing.
In Section III, we list the characteristics of IoT and edge
computing, and analyze the benefits of using edge comput-
ing to assist IoT, demonstrating the potential of integrating
them together. Meanwhile, we introduce the architecture of
the IoT and the structure of edge computing. In Section IV,
we discuss the benefits that combine IoT and edge com-
puting together. We identify the problem space and form
transmission, storage, and computation perspectives to illus-
trate the details. In Section V, we discuss the challenges for
edge computing-based IoT. Finally, we conclude the paper
in Section VI.

Il. REVIEW OF loT AND EDGE COMPUTING

In this section, we will review the basic concepts of IoT and
edge computing, and discuss the potential for integrating the
two technologies.

A. INTERNET OF THINGS

The future direction of computing will exceed traditional
computing based on stationary desktop [26]. Particularly, the
IoT is merging into daily life rapidly, as a novel technology
of the past few years. As a paradigm, IoT envisions that
most physical devices, such as smart mobile phones, vehi-
cles, sensors, actuators, and any other embedded devices will
be connected and communicate with data centers, exchange
information, and introduce the next massive jump in scale of
data production.

Following various popularized technologies, such as smart
transportation, smart city, smart grid and smart healthcare,
people will not function without IoT suffusing their home and
work existence. Thus, IoT will remarkably impact daily life
of prospective users, and is the key to the future. IoT also
takes an important role in the field of business. Indeed, IoT
was reported as one of the most important technologies that
will impact US interests in 2025 [27]. Likewise, the number
of the interconnected psychical devices has transcended the
human population of the world. In 2012, the number of
interconnected physical devices increased to 9 billions [26],
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and the estimated number of interconnected physical devices
will be 75 billion around 2020 [28]. IoT devices will thus be
one of the most important and eclipsing data sources for big
data in future.

In the following, we will describe three different commu-
nication models for IoT.

1) MACHINE-TO-MACHINE COMMUNICATION

This communication model represents multiple devices,
which can connect and exchange information between each
other directly, without any intermediary hardware assis-
tance [29]. These devices are able to connect with each
other over different types of networks, including but not
limited to Internet or IP networks. For example, Fig. 1 shows
that a smart switch communicates with the smart light over
Bluetooth 4.0.

Smart Smart
Light Wireless Network Switch

Bluetooth 4.0

FIGURE 1. An example of Machine-to-Machine communications.

These device-to-device networks allow devices to
exchange information in hybrid communication protocols,
which combine device-to-device and particular communica-
tion protocol to achieve the QoS requirements. This model
is commonly used in numerous applications, such as smart
home systems or automatic control in electrical systems,
which communicate with each other via sending small data
packets and have relatively low data rate requirements. The
typical IoT devices of this type are smart door locks, smart
switches, and smart lights, among others, which also typically
only exchange small data packets.

From the users perspective, the problem of Machine-to-
Machine communications is lack of compatibility, in which
different devices from different manufacturers use different
protocols. Using smart home devices as an example, Z-Wave
protocol devices cannot communicate with the ZigBee pro-
tocol devices [30]. These compatibility issues limit the users
choice and experience.

2) MACHINE-TO-CLOUD COMMUNICATION

In a device-to-cloud communication model, IoT devices
demand service from a cloud application service provider,
or store data into cloud storage disk [29], because of the
limitations of the devices computational ability or storage
space. This approach normally requires assistance from pre-
existing communications strategies like conventional wired
or Wi-Fi connections, shown in Fig. 2.

Though the Machine-to-Cloud communication solves the
problems of the Machine-to-Machine model, this model is
dependent to the traditional network, and the bandwidth
and the network resources limit the performance of this
communication model. To improve the performance of the
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TLS, TCP, UDP
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FIGURE 2. An example of Machine-to-Cloud communications.

Cloud Application
Services

IPv4/IPv6

Local Gateway

HTTP, CoAP, DTLS,
- TLS, TCP, UDP coms.

FIGURE 3. An example of Machine-to-Gateway communications.

Machine-to-Cloud communication model, it is necessary to
optimize the network structure.

3) MACHINE-TO-GATEWAY COMMUNICATION

In the machine-to-gateway model, the device-to-application-
layer gateway (ALG) model is considered as a proxy or
middleware box [29]. In Fig. 3, we can see the structure
of Machine-to-Gateway communications. In the application
layer, some software-based security check schemes or other
functionality like data or protocol translation algorithms run
on a gateway or other network device, which acts an inter-
mediary bridge between IoT devices and cloud application
services. This improves the security and flexibility of the IoT
network, migrates a part of the computation task to the appli-
cation layer, and significantly reduces the power consumption
of the IoT devices. For instance, the smart mobile phone acts
as the gateway, running some applications to communicate
with the IoT devices and the cloud. This appears in the
personal health domain, such as when sensors generate data
and connect with a personal smart phone, then the smart
device will encrypt the data and upload to the cloud service
providers.

B. CONVENTIONAL IoT COMPONENTS

Typically, there exist three types of components in an
IoT network: sensors/devices, IoT gateways/local net-
work, and backhaul network/cloud, representing the data
source, data communication networks, and data processing,
respectively.
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1) SENSORS/DEVICES

In the IoT, millions of sensors are deployed in a wide area.
These sensors are the key component of [oT, and they produce
the majority of measurement data in the networks. These
sensors can provide diverse types of data to help the IoT be
aware of everything. In addition, the end devices of users
generate most of the resource requirements. For end users, the
devices can serve as human-computer interfaces to produce
the requirements of users and forward them to the IoT. All
these sensors and end devices will be interconnected so that
they can exchange data with each other and provide additional
services. Via the network that connects devices, each node
can acquire its resource requirements for the IoT applications.

2) loT GATEWAYS

The IoT gateways connect the network of the sensors and core
networks to the cloud servers. When the end nodes generate
resource requirements for IoT applications, they will send
the data processing or storage tasks to the cloud servers.
Although the sensors/devices can establish a network to trans-
mit their generated data, it is necessary to carry out data pre-
processing before forwarding them to the cloud servers. Thus,
the IoT gateways will collect and aggregate the measurement
data from the sensors/devices and forward them to the cloud
servers. Generally speaking, the IoT gateways often carry out
data pre-processing to reduce redundancy and unnecessary
overhead. In addition, the IoT gateways will forward the
results of the data processing from the cloud servers back to
the end users.

3) CLOUD/CORE NETWORK

Via backhaul networks, cloud servers will receive the data
and requirements from end users [31], [32]. To support
IoT applications, the cloud servers have significant capacity
for computation and storage. Thus, the cloud servers can
satisfy the resource requirements of different applications.
When the data processing is complete, the cloud servers will
send the results back to the end users. Notice that for most
IoT applications, the end users will ask for the cloud servers
to accomplish the data processing tasks.

C. EDGE COMPUTING
Due to the rapid increase in the number of mobile devices,
conventional centralized cloud computing is struggling to sat-
isfy the QoS for many applications. With 5G network technol-
ogy on the horizon [33]-[35], edge computing will become
the key solution to solving this issue. One of major challenges
associated with 5G technology is the Radio-Access Net-
work (RAN) [35]. In RAN, mobile edge computing provides
real-time RAN information. By using the real-time RAN
information, the network providers can improve Quality-of-
Experience (QoE) for end users, because real-time RAN will
offer context-aware services [36].

As we mentioned before, the edge computing plat-
form allows edge nodes to respond to service demands,
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FIGURE 4. The basic edge computing architecture.
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FIGURE 5. A typical architecture of edge computing networks.

reducing bandwidth consumption and network latency. Thus,
the network operators can implement RAN into the edge to
be handled by third-party co-operators, rapidly increasing
the deployment of new applications. On the other hand, the
computation nodes are operating under different third-party
co-operators, making it difficult to deploy similar security
schemes to ensure the same level of security.

D. EDGE COMPUTING ARCHITECTURE

Fig. 4 illustrates the basic architecture of edge computing.
Notice that the edge computing servers are closer to the end
user than cloud servers. Thus, even though the edge com-
puting servers have less computation power than the cloud
servers, they still provide better QoS (Quality of Service)
and lower latency to the end users. To study the advantages
and disadvantages of edge computing, we will focus on the
architectures of both, and compare the two. Obviously, unlike
cloud computing, edge computing incorporates edge compu-
tation nodes into the network. In this paper, the edge com-
putation nodes are called edge/cloudlet servers. Generally
speaking, the structure of edge computing can be divided into
three aspects, the front-end, near-end, and far-end, as shown
in Fig. 5. The differences among these areas are described
below in detail.
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1) FRONT-END

The end devices (e.g., sensors, actuators) are deployed at
the front-end of the edge computing structure. The front-
end environment can provide more interaction and better
responsiveness for the end users. With the computing capac-
ity provided by the plethora of nearby end devices, edge
computing can provide real-time services for some applica-
tions. Nonetheless, due to the limited capacity of the end
devices, most requirements cannot be satisfied at the front-
end environment. Thus, in these cases, the end devices must
forward the resource requirements to the servers.

2) NEAR-END

The gateways deployed in the near-end environment will
support most of the traffic flows in the networks. The
edge/cloudlet servers can have also numerous resource
requirements, such as real-time data processing, data caching,
and computation offloading. In edge computing, most of the
data computation and storage will be migrated to this near-
end environment. In doing so, the end users can achieve a
much better performance on data computing and storage, with
a small increase in the latency.

3) FAR-END

As the cloud servers are deployed farther away from the
end devices, the transmission latency is significant in the
networks. Nonetheless, the cloud servers in the far-end envi-
ronment can provide more computing power and more data
storage. For example, the cloud servers can provide massive
parallel data processing, big data mining, big data manage-
ment, machine learning, etc. [31], [32].

E. EDGE COMPUTING IMPLEMENTATION

To implement the aforementioned architecture of edge com-
puting, some research efforts have already focused on
the design of edge computing models. Typically, the fol-
lowing two models dominate: (i) Hierarchical model, and
(ii) Software-defined model.

1) HIERARCHICAL MODEL

Considering that edge/cloudlet servers can be deployed at
different distances from the end users, the edge architec-
ture is divided into a hierarchy, defining functions based
on distance and resources. Thus, a hierarchical model
is suitable for describing the network structure of edge
computing.

There have been a number of research efforts on hierarchi-
cal model. For example, Jararweh et al. in [37] proposed a
hierarchical model, which integrates the Mobile Edge Com-
puting (MEC) servers and cloudlet infrastructures. In this
model, the mobile users can obtain their requested services as
MEC provides the ability to meet their computing and storage
needs. Tong et al. in [38] proposed a hierarchical edge cloud
model, which can be used to serve peak loads demanded from
mobile users. In this model, the cloudlet servers are deployed
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at the network edge and the regional edge cloud is established
as a tree hierarchy, which consists of deployed edge servers.
By leveraging this designed hierarchical structure, the com-
puting abilities of edge servers can be further aggregated to
meet the need of peak loads.

2) SOFTWARE-DEFINED MODEL

In addition, considering the hundreds of the applications
and millions of end users and devices, the management of
edge computing for IoT will be exceptionally complicated.
Software Defined Networking (SDN) [39]-[42] can be a
viable solution to deal with the complexity of edge computing
management.

There have been a number of research efforts on SDN
model. For example, Jaraweh et al. in [41] proposed a
software defined model to integrate the Software Defined
Systems capabilities and the MEC system. In this way, the
management and the administration cost can be reduced.
Du and Nakao in [42] proposed an application-specific MEC
model. In their model, the paradigm of software-defined
data plane is considered in a Mobile Virtual Network Oper-
ators (MVNOs) network. Authors designed mechanisms to
carry out hop-count-based tethering detection and mobile-
friendly optimization. Via the designed mechanisms, fairness
among users can be realized by regulating the TCP concur-
rent connections. Manzalini and Crespi in [43] proposed an
edge operating system, which leverages available open source
software to achieve powerful network and service platforms.
Salman et al. in [44] proposed an integration of three new
concepts, including MEC, Software Defined Network (SDN),
and Network Function Virtualization (NFV). In doing so,
this solution is capable of achieving better MEC employment
in mobile networks and can be further extended to enable
IoT-wide deployment. Lin et al. in [45] proposed a Smart
Applications on Virtual Infrastructure Software-Defined
Infrastructure (SDI) Smart Edge architecture, which can be
used to support the construction of various distributed net-
work services and applications.

Ill. INTEGRATION OF loT AND EDGE COMPUTING

In this section, we will discuss the potential to integrate IoT
and edge computing. Based on our study of the characteristics
of both IoT and Edge Computing, we compare the character-
istics of IoT, edge computing, and cloud computing. Further-
more, we narrow our focus to the transmission, storage, and
computation characteristics to illustrate how edge computing
improves the performance of IoT.

A. OVERVIEW

Extending our previous discussion, IoT and edge computing
are independently rapidly evolving. Despite their indepen-
dence, the edge computing platform can help IoT to solve
some critical issues and improve performance. Thus, in recent
years, it has become clear that these should be integrated.
From Fig. 3 and Fig. 4, we can see that [oT and edge com-
puting have smiler characteristics, as further demonstrated
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TABLE 1. Characteristics of loT, edge and cloud computing.

IoT Edge Cloud
Deployment Distributed Distributed Centralized
Components Physical devices | Edge nodes | Virtual resources
Computational Limited Limited Unlimited
Storage Small Limited Unlimited
Response Time NA Fast Slow
Big data Source Process Process

* Reporting

* Long-term data analytics
* Long-term data storage
* Data infrastructure

* Enterprise integration

* Data processing

* Real-time data analytics

* Real-time action response
* Temporary data storage

« Communications/messagin,

Cloud Servers

Intelligent Gateway
Edge Computing
+ Data source

* Messaging loT Devices

FIGURE 6. Layer architecture of edge computing-based loT.

in Table 1. Notice that we also include cloud computing as
a reference.

Fig. 6 illustrates the three-layer architecture of edge
computing-based IoT. It has the same layers as the edge com-
puting structure, and all IoT devices are end users for edge
computing. In general, IoT can benefit from both Edge com-
puting and Cloud computing, because of the characteristics of
the two structures (i.e., high computational capacity and large
storage). Nonetheless, edge computing has further advan-
tages over cloud computing for IoT, even though it has more
limited computational capacity and storage. Specifically,
IoT requires fast response rather than high computational
capacity and large storage. Edge computing offers a tolera-
ble computational capacity, enough storage space, and fast
response time to satisfy IoT application requirements.

On the other hand, edge computing can also benefit from
IoT by extending the edge computing structure to deal with
the edge computing nodes being distributed and dynamic.
Either IoT devices or the devices that have residual computa-
tion power can be used as edge nodes to provide services.
Significantly, a number of research efforts have sought to
exploit cloud computing to assist IoT, but in many cases, edge
computing can provide much more competitive performance.
Due to the increasing number of IoT devices, IoT and edge
computing are likely to become inseparable. As we discussed
before, most [oT requirements fall into the three categories of
transmission, storage, and computation. In the following, we
will discuss each category in detail, presenting the advantages
that they provide to Edge Computing-assisted IoT.

B. IoT PERFORMANCE DEMANDS

1) TRANSMISSION

The total response time can be computed as the sum of trans-
mission time and processing time. In general, IoT devices
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create a voluminous amount of data, continuously, but have
only limited computational requests [46]. Indeed, large net-
work latency will be unacceptable, and cannot satisfy the
QoS requirements. Specific examples include vehicle-to-
vehicle communications and vehicle-to-infrastructure com-
munications. Related to public safety concerns and the
needs of first responders, response time must be very
short too.

Unlike the traditional cloud, edge computing can provide
numerous distributed computational nodes, which are close to
the end users to supporting real-time information collection
and analysis services [14]. Meanwhile, the edge computa-
tion nodes also provide acceptable computational capacity
to handle the demands of IoT. Thus, the IoT application
requirements do not need to undergo the delay in traditional
cloud services, such as Amazon Cloud or Google Cloud, but
instead can take advantage of the short transmission time of
Edge computing.

2) STORAGE

As mentioned above, 10T is the source of prodigious data,
and will become the most important part of big data gen-
eration, if it is not already. Thus, IoT needs to upload the
massive data to edge or cloud based storage. The benefits of
uploading to edge based storage is, of course, the short upload
time. Nonetheless, the drawback to this is the concern of
security in edge-based storage [47]. Because the edge nodes
are running in different organizations, it is difficult to ensure
the integrity, information protection, anonymity assessment,
non-repudiation, and freshness of the original data [48], [49].
In addition, the storage space of edge nodes is limited, and
there is no large-scale and long-lived storage to compare
with the cloud computing data centers. Finally, when it is
necessary to upload the data, different edge nodes will be
employed and coordinated for storing the data, increasing the
complexity of data management.

3) COMPUTATION
Most IoT devices have limited computation and energy
resources, in which it is impossible to undertake on-site com-
plex computational tasks. Generally speaking, IoT devices
simply gather the data and transmit it to more powerful
computing nodes, in which all the original data will be fur-
ther processed and analyzed. Nonetheless, the computational
capacity of individual edge nodes is limited, and thus the
scalability of computational capacity for edge computing
is a challenging problem. Still, IoT devices usually do not
require much computational capacity, and the demands of IoT
can be properly satisfied, especially for real-time services,
by edge nodes. In addition, edge nodes mitigate the power
consumption of the IoT devices through the offloading of
computation tasks.

Based on the three categories above, we have constructed
the problem space for Edge Computing-based IoT in Fig. 7.

In the following, we will discuss how Edge Computing-
based IoT satisfies the requirements of transmission, storage,
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FIGURE 7. The problem space of Edge Computing-based loT.

and computation, in detail. We will also provide some exam-
ples with which to analyze each characteristic.

IV. ADVANTAGES OF EDGE COMPUTING-BASED loT
In this section, we assess the advantages of integrating IoT
with edge computing.

A. TRANSMISSION
Network performance, which can be assessed by latency,
bandwidth, and packet loss, among others, affects the trans-
mission time. As discussed before, fast transmission time
is the one of important benefits of edge computing, which
can satisfy the QoS of time-sensitive applications, like the
“Live Video Analytics” project from Microsoft [50]. The
purpose of this project is build a real-time, low-cost system
to analyze live videos, which are gathered from all the avail-
able cameras in a local open area. This system will work
across a geo-distributed hierarchy of intelligent edges and
large clouds [51]. One of the functions of this project is to
predict vehicle traffic flow, which is obviously time-sensitive.
The hierarchical architecture of edge computing guarantees a
shorter transmission time than any other network [52].
Meanwhile, edge computing has also been developed to
solve the bottleneck problem of network resources in IoT.
By offloading the data computation and storage to end
users, the response time and traffic flow will be significantly
reduced. The hierarchical distributed edge nodes are able to
satisfy the demands of time-sensitive applications such as
“Live Video Analytics” [50], “Human Action Classifica-
tion”’ [53], “Motion Estimation” [54], etc.

1) LATENCY/DELAY

Generally speaking, the latency of an application is the prod-
uct of two components: computing latency and transmission
latency. Computing latency indicates the time spent on data
processing, which depends on the computing capacity of
the system. It is clear that the sensors are often embedded
devices with limited computing capacity, while the network
servers will have a significant capacity to provide fast data
processing. Nonetheless, the data transmission between the
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end devices and the cloud servers will cause a significant
increase in the transmission latency.

Therefore, the challenge for edge computing is to deter-
mine ideal trade-off between computing latency and trans-
mission latency, necessitating an optimal task offloading
scheme to be developed to determine: whether a data pro-
cessing task should be performed locally, be offloaded to the
edge/cloudlet servers, or further offloaded to the remote cloud
servers.

Quite recently, some mathematical methods have been
designed to achieve this optimal resource allocation. For
example, Liu et al. in [55] designed a delay-optimal compu-
tation task scheduling scheme. Via this scheme, a task can be
decided to execute at the end device locally or be offloaded to
the MEC server for cloud computing. The scheduling scheme
considers a number of factors (the queuing state of the task
buffer, the execution state of the local processing unit, etc.).
Via the use of this scheduling scheme, the average delay for
individual task and the average power consumption of the
end devices can be reduced. Ketyké ef al. in [56] proposed
a model for multi-user computation offloading in 5G mobile
edge computing. In this study, a multiple knapsack problem
was formalized. With the solution to address the problem, the
overall latency can be minimized. Liu et al. in [57] proposed a
distributed computation offloading scheme for the multi-user
computation offloading game problem in the mobile cloud
computing environment. By solving this game problem, the
total cost (i.e., energy consumption and time consumption)
on mobile devices can be largely reduced.

In addition, the concept of opportunistic theory can be
applied to solve the resource allocation challenge. There are
various existing opportunistic schemes applied to different
aspects of edge computing, and some of them show promising
performance. For example, Tianze et al. in [58] proposed a
consumption considering optimal scheme for task offloading
in the mobile edge computing environment. With this scheme,
the mobile devices can find a proper virtual machine to
complete the task quickly, while saving energy. Rehman et
al. in [59] proposed an opportunistic computation offloading
scheme in a mobile edge cloud computing environment. Via
analyzing the amount of unprocessed data, privacy config-
urations, contextual information, and other information, the
proposed scheme was demonstrated to provide a suitable
execution model for mobile devices. Via this scheme, the
execution time and power consumption can be significantly
reduced. Also, Gao in [60] proposed an analytical framework,
which can exploit the potential of peer mobile devices at the
tactical edge (opportunistically moving into communication
range of each other). By considering the energy consumption
and data transmission delay of computational task execution
simultaneously, this framework is capable of improving the
task completion ratio and completion time, as well as reduc-
ing the power consumption associated with task executions.

Obviously, computation offloading from the central cloud
to the network edge can help reduce transmission delay via
a proper offloading strategy. There are some efforts focused
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on how to make optimal computing offloading decisions.
For example, Wang et al. in [61] studied the partial compu-
tation offloading issue with DVS technology in the mobile
edge computing environment. In their study, two optimization
problems (energy consumption minimization (ECM) of smart
mobile devices, and latency minimization (LM) of applica-
tion execution) are formalized. With the use of the designed
scheme, devices can achieve better performance with respect
to energy consumption, latency, and admission probability.

In addition, Deng et al. in [62] proposed an adaptive
sequential offloading game scheme for a multi-cell MEC sce-
nario, and then designed a multi-user computation offloading
algorithm. In their designed scheme, the mobile users make
offloading decisions by considering the current interference
as well as available computation resources. In this way,
reduced latency and energy consumption can be realized by
mobile users. Nam ez al. in [63] proposed a clustered network
service chaining scheme in the mobile edge computing envi-
ronment. With the use of this scheme, the optimal number
of clusters can be obtained so that the service time can be
minimized. Fernando et al. in [64] proposed a work-sharing
model for mobile edge-clouds to adapt the well-known work
stealing mechanism known as Honeybee.

Despite the aforementioned schemes, there are other
schemes based upon different goals, such as maximizing
profit. For example, Sun and Ansari in [65] proposed a
PRofIt Maximization Avatar pLacement (PRIMAL) scheme
for mobile edge computing. With this scheme, the trade-off
between the migration gain and the migration cost can be
optimized. Lee and Flinn in [66] proposed a scheme, which
selectively deploys redundancy to reduce the tail response
time of vehicular applications. With passive measurement
and historical data, both network latency and computing
times for offloaded sensor processing can be estimated first,
and then the cloud, roadside, or mobile phone platform
with the fastest predicted response time will be selected.
Rodrigues et al. in [67] proposed an analytic model for
minimizing service delay in an edge cloud computing envi-
ronment. Based on this model, the processing delay can be
controlled by virtual machine migration and the transmission
delay can be improved by adjusting transmission power. In
this way, the lowest service delay can be achieved.

2) BANDWIDTH

As the IoT deploys a considerable number of sensors, the
generated data is also extremely large. It is unacceptable
for these data to be transmitted directly to cloud servers
without any compression or processing. The massive data will
consume immense network bandwidth and lead to a number
of issues, such as transmission delay and packet loss. Thus, it
is necessary for IoT gateways to perform data pre-processing
and even aggreation before forwarding them to remote cloud
servers. The challenge, then, is to control the traffic flow by
optimally migrating data processing and aggregation tasks to
reduce the bandwidth requirements of the end users while
maintaining the quality of data.
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There have been a number of research efforts devoted
on this issue. For example, Abdelwahab et al. in [68] pro-
posed an LTE-aware edge cloud architecture and an LTE-
optimized memory replication protocol, called REPLISOM.
The designed protocol can effectively schedule the memory
replication operations. In this way, contentions among radio
resources from devices accessing the resources simultane-
ously can be addressed. Sajjad ef al. in [69] proposed a
scheme to unify stream processing across the central and
the near-the-edge data centers, which is called SpanEdge.
With this scheme, the stream processing applications can
be optimally deployed in a geo-distributed infrastructure so
that bandwidth consumption and response latency can be
significantly reduced.

In addition, Zhang et al. in [70] designed a mobile edge
computing offloading framework in cloud-enabled vehicu-
lar networks. In this study, a contract-based computation
resource allocation scheme is designed. With this scheme,
the utility of MEC service providers can be maximized and
the offloading requirements of the tasks can be satisfied,
leading to the reduction of the latency and the transmission
cost of the computation offloading. Nunna et al. in [71] pro-
posed a real-time context-aware ad hoc collaboration system,
which combines the novel communication architectures for
5G with the principles of mobile edge computing. Thus, it
can be used in geographically bound low latency use cases.
Papageorgiou et al. in [72] proposed a stream process-
ing framework extension, which considers topology-external
interactions (interactions with databases, users, critical actu-
ators, and more). With this solution, the latency requirements
violations can be eliminated and the cloud-to-edge bandwidth
consumption can be reduced.

3) ENERGY

The end devices in the IoT may vary not only in network
resources, but also in power resources and battery capacity.
Thus, when an end device needs to perform data processing
or data forwarding should be carefully considered with these
factors in mind. It is important to maximize the lifetime of
end devices, especially those with limited battery. To achieve
this goal, edge computing can incorporate a flexible task
offloading scheme which considers the power resources of
each device.

A number of research efforts have been devoted on energy
issue. For example, Gu et al. in [73] proposed the concept of
fog computing-supported medical cyber-physical systems to
host virtual medical device applications. With joint consid-
eration for communication base station association, subcar-
rier allocation, computation base station association, virtual
machine deployment, and task distribution, a low-complexity
two-phase linear programming-based heuristic algorithm is
proposed to solve the mixed-integer linear programming
problem. With this scheme, total cost and better QoS can
be realized for applications. Barcelo et al. in [74] proposed
a comprehensive IoT-cloud service optimization framework.
In this framework, the service distribution problem in the
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investigated network is formalized as a min-cost mixed-cast
flow problem. It is demonstrated that the smart IoT services
can reduce power consumption by over 80 % after the pro-
posed problem is resolved.

In addition, Zhang et al. in [75] proposed an energy-
efficient computation offloading scheme, aiming to address
the optimization problem. In this way, the energy consump-
tion of the offloading system for MEC in 5G heteroge-
neous networks can be minimized. In this work, the energy
cost of both task computing and file transmission is consid-
ered. Mao et al. in [76] proposed a Lyapunov optimization-
based dynamic computation offloading (LODCO) scheme
in a green MEC system, which consists of energy harvest-
ing devices. With this low-complexity online algorithm, the
execution cost and the reduction of computation failures is
realized at the expense of only marginal execution delay
degradation. Sardellitti et al. in [77] proposed a joint opti-
mization scheme of the radio and computational resources
for a multicell mobile-edge computing environment. With
this scheme, the overall energy consumption users can be
minimized under the latency constraints.

4) OVERHEAD

In network transmission, there exist header overhead and
payload in each data packet. Due to the characteristics of data
patterns in IoT, while most data packets are small, a massive
number of IoT devices could introduce significant network
overhead. Reducing the network overhead is another open
challenge for edge computing. With the aid of edge/cloudlet
servers, trivial packets can be aggregated and pre-processed
in order to reduce the unnecessary overhead. Related to this
issue, Plachy er al. in [78] proposed a cross-layer scheme,
aiming to minimize overhead and improve transmission effi-
ciency for 5G mobile networks.

B. STORAGE

Typically, cloud computing-based storage is centralized and
implemented as complex, multi-layer systems, composed of
groups of commodity servers and disk drives. It is built on top
of the network, and is the convergence point of the network
topology. Likewise, some edge nodes are responsible for
servicing storage demands, but in contrast to the traditional
cloud, edge computing-based storage is distributed at the
edge of the network structure. It similarly combines clusters
of disk drives, but also balances the storage demands to
different edge nodes.

To satisfy QoS requirements, edge computing-based stor-
age can leverage load balancing and failure recovery tech-
niques to realize the requisite performance and availability.
These load balancing techniques are capable of offloading
the storage demands to different edge nodes, which mitigates
the traffic in the network connection links. Furthermore, to
distinguish the data failures (e.g., software, hardware, packet
loss, noise, and power issues) in the massive data flow from
multi-data sources, the failure recovery techniques are of key
importance to edge computing storage.
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1) STORAGE BALANCING

In IoT networks, devices usually have very limited storage
space. All data that is collected or generated by the devices
must be transmitted and stored in a storage server. Also, there
are scores of IoT devices generating massive data simulta-
neously. If all the devices simultaneously store the data in
cloud computing-based storage, the result will be significant
obstruction in the network. For instance, the Microsoft ““Live
Video Analytics” project [50] generates massive data, which
needs to be sent to storage within a very short time and
needs to be incorporated into the analysis process in a timely
manner. Based on these requirements, the sensors or cameras
sending data to cloud computing-based storage will obviously
not be satisfactory. Instead, based on the characteristics of
edge computing storage, if the data is sent to the different
edge storage nodes, long distance traffic in the network will
be reduced.

To this end, storage balancing technologies are involved
to realize edge computing-based storage for handling dis-
tributed IoT devices with different types of data streams,
probabilities, and placements. There are a number of schemes
related to storage balancing in [2] and [80]-[82]. For exam-
ple, in [2], a resource allocation scheme and satisfaction
function were proposed to handle the IoT storage issue. Here,
the satisfaction function can be used to evaluate whether the
allocated resources are sufficient to provide the requested ser-
vice. Another scheme called the MMPacking balance scheme
proposed in [80] can monitor different storage demand rates
and use data stream replication to balance the traffic load
and storage usage. The key feature of this scheme is the
dropping of redundant data packets to save on storage space.
Using storage balancing in edge computing-based storage can
reduce the storage time by selecting the nearest edge stor-
age nodes, or some storage processing rating and weighting
schemes. Thus, with edge computing assistance, the “Live
Video Analytics™ [50] can upload data to the nearest edge
storage nodes, satisfying the service requirements. Mean-
while, if a video packet is the same (e.g., the frame(s) are
the same), the system will measure and drop some redundant
packets to save storage space.

2) RECOVERY POLICY

As discussed above, the recovery policy is a key requirement
in edge computing storage systems and reliability is clearly
important in storing and retrieving accurate data representa-
tions. To increase the reliability, the system will check the
availability of the storage nodes, duplicate the data, or use
other nodes for redundancy.

a: AVAILABILITY

A storage service can become unavailable for a number of
reasons. Typically, periodic pinging or heartbeat is conducted
by monitoring systems to verify storage system health, and
to identify the availability of edge nodes. Inevitably, storage
services will at some point be unavailable. For example, a
network device may be unavailable, the operating system on
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edge storage node may crash or restart, the storage hardware
may encounter an error, system automated repair process
may remove or change the authority of the disks, or the
entire system may shut down for maintenance. Based on
empirical and statistical results, less than 10 % of failures last
longer than 15 minutes [82]. In cloud computing-based sys-
tems, redundant storage servers are deployed to handle this
problem. Nonetheless, in edge computing storage systems,
the other available edge nodes will act as redundant storage.
In IoT environments, massive numbers of devices constantly
demand data storage. Thus, selection of the available storage
service provider is important.

There are several available measurement sch-
emes [82]-[84] proposed to handle this issue. All of them
are able to select the available storage service providers.
Furthermore, Ford et al. in [82] provide an algorithm to
compute the mean time to failure (MTTF) and obtain the
probability of the length of time that each edge node is
available.

b: DATA REPLICATION

In IoT environments, the massive number of devices intro-
duces constant demand for data storage. Obviously, the cor-
rectness of sensitive data is imperative, such as personal
health data, energy consumption records, speed or traffic
situations for smart vehicles, etc. Thus, the distributed stor-
age systems must necessarily involve IoT environments for
assistance to handle this massive demand and insure data
accuracy.

Distributed storage systems can increase reliability and
extend the MTTF by using replication [85]. In distributed
storage systems, data is divided into many pieces, and
each piece of data has fixed size and code blocks [86].
Also, the data pieces have fixed overlaps for each other.
As a result, the data stored on each piece can be recon-
structed from the other related pieces [82]. Edge computing-
based storage is essentially a distributed storage system,
and it is not only logically distributed, but physically dis-
tributed as well. Thus, with Edge computing-based stor-
age assistance, sensitive IoT data can be replicated and
the different pieces of data stored in different geologi-
cal locations. This remarkably mitigates the risk of data
loss.

C. COMPUTATION

In edge computing, each edge node has less computation
power than what is available to cloud servers. Thus, the
computation tasks need to be assigned to several edge nodes
to meet the same demands. Recall that edge computing
will satisfy the requirements of end users by offloading the
computing and storage to the edge of the networks, and
the task scheduling scheme becomes a key component for
edge computing. In general, task scheduling schemes can be
designed based on different objectives. In this section, we
consider various methods to implement the task schedule in
edge computing.

VOLUME 6, 2018

1) COMPUTATION OFFLOADING
To obtain greater efficiency in computation, edge computing
must adjust the locations of different computation tasks.

a: LOCAL

In modern IoT systems, embedded chips have become
cheaper and more widely adopted. Thus, the computing
capacity of end devices has been significantly improved.
Therefore, it is possible that the end users may perform some
computing tasks in the Machine-to-Machine (M2M) network,
which is formed by an array of IoT end devices. With a large
number of the neighboring devices, the end users can obtain
the shortest response time.

b: EDGE/CLOUDLET

Despite the M2M network of end devices providing some
computing resources, M2M is not enough to satisfy all
the resource requirements from all the end users. Thus,
edge/cloudlet servers are required to provide the majority of
network resources in the IoT. To adequately achieve this, the
most critical issue is the task scheduling of the edge/cloudlet
servers.

The objective of the task scheduling for edge/cloudlet
servers is to find the optimal subset of servers under the given
constraints to allocate. The optimal solution of this problem
will obtain the minimum computing latency and transmission
latency, minimum energy consumption on computing and
communication, and the minimum bandwidth required by the
IoT applications.

c: CLOUD

It is clear that some data processing or storage tasks require
more resources than either M2M or Edge/Cloudlet can
reasonably provide without taking up all of the available
resources. In this case, the computation and storage must
be accomplished in the traditional cloud servers. The cloud
servers, having the largest computation capacity in the net-
work, means that the tasks performed on the cloud servers
will have the shortest computational latency. As a trade-off,
the cloud servers also have the largest transmission latency,
because of the long distance between the cloud servers and
the end devices. Thus, there exists an important challenge of
how to balance between the computational latency and the
transmission latency.

2) PRICING POLICY

In the edge computing environment, the edge/cloudlet
servers, or even other end users, can provide end users with
the computation or communication resources requested for
their computation tasks. Thus, resource allocation schemes
can be derived through a proper pricing policy for the
resources in the networks.

a: SINGLE SERVICE PROVIDER

Traditionally, the computation and communication resources
in the edge/cloudlet servers are managed by a single
service provider. That is to say, the service provider will
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set the various prices for computation and communica-
tion resources of the edge/cloudlet servers deployed at dif-
ferent distances to the end devices. Then, the end users
can minimize their financial cost by selecting the best
available edge/cloudet servers and transferring the desired
workload.

For example, Zhao et al. in [87] proposed a scheme to
optimally allocate the edge computational resources based
on the pricing policy in delay-aware mobile edge computing
environment. With this scheme, the profit of the edge cloud
can be maximized. Furthermore, this work demonstrates that
the gain of the edge cloud can be impacted by the price of the
remote cloud in some conditions. Kiani and Ansari in [88]
proposed a hierarchical model in the form of field, shallow,
and deep cloudlets. To realize the time-scale optimization
for resource allocation, and address the convex optimization
problem for bandwidth allocation, heuristic algorithms, as
well as a centralized scheme, are studied.

b: MULTIPLE SERVICE PROVIDERS

Due to IoT connecting a diverse assortment of devices
belonging to different parties, the computing or storage
resources may not belong to a single service provider. This
means that the users who require data processing tasks have
to pay for the corresponding resources to different edge
computing service providers. The proper pricing policy will
encourage third parties to provide their computing or storage
resources to IoT to ultimately gain the reward of service
and payment from the end users. Furthermore, there will
exist competition and cooperation among edge computing
service providers. Thus, it is necessary for the emerging edge
computing networks to make some efforts on the pricing
policies between multiple service providers. In this direction,
economics driven approaches such as auction [5], [89], [90]
could be leveraged to manage resources.

3) PRIORITY

Priority is another important aspect of the computation task
schedule in edge computing. With the concept of priority,
the overall benefits of different IoT applications can be max-
imized. For example, real-time IoT applications, such as
monitoring applications, will be assigned a higher priority,
while other applications that consume more resources, such
as multimedia peer-to-peer downloading, can be assigned a
lower priority so that the total network performance can be
improved. For example, Kamiyama et al. in [91] proposed
a platform that can be used to measure the geographically
deployed web objects from edge servers and reduce the
latency to access web objects. You et al. in [92] proposed
an offloading priority scheme, which considers both local
computing energy and channel gains.

V. CHALLENGES OF EDGE COMPUTING-BASED loT
As we discussed, there are numerous benefits for integrating
edge computing to assist the IoT. In this section, we will
discuss the challenges of Edge Computing-based IoT.
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A. SYSTEM INTEGRATION

Supporting various kinds of IoT devices and different service
demands in the edge computing environment is a significant
challenge. Edge computing incorporates the combination of
various platforms, network topologies, and servers. Essen-
tially, it is a heterogeneous system. Thus, it will be difficult
to program, and manage resources and data for diverse appli-
cations running on varying and heterogeneous platforms, in
different locations.

From a programming perspective, in cloud computing, all
applications and user programs are deployed and running
on cloud servers. The cloud providers, such as Google and
Amazon, have the responsibility to allocate those applications
and programs in the suitable locations and hardware, and
to make sure those applications and programs are running
appropriately. Most users have no knowledge of how those
applications run or allocate their resources and data. This is
one of the benefits of cloud computing, because the cloud
service is centralized and easy to manage. Also, developers
need to use only one programming language to develop appli-
cations destined for a specific target platform, since the cloud
application is only deployed on one particular cloud service
provider.

In contrast, edge computing is quite different than cloud
computing. Despite the benefits of the distributed topology,
edge nodes are usually heterogeneous platforms. In this case,
developers will face the serious difficulties in developing
an application, which may be deployed and run in an edge
computing platform. Some schemes have been devised to
address the programmability challenges of edge computing,
such as [36], [94], and [95], but none consider specific IoT
purposes. In IoT, the first step is the discovery of edge
nodes [93], meaning that, before the discovery process takes
place, IoT devices do not know what kinds of platforms
are deployed nearby. In addition, there is a huge number of
server-side programs that need to be deployed on the edge
nodes. Thus, how edge node providers deploy and manage
those server-side programs is another challenging issue.

Regarding data management, various storage servers are
running with various operating systems. This is a big chal-
lenge for file naming, resource allocation, file reliability man-
agement, etc. Because of the massive number of IoT devices
generating and uploading data simultaneously, the naming
of data resources becomes another big challenge. There are
many traditional naming schemes, like DNS (Domain Name
Service) and URI (Uniform Resource Identifier), and these
satisfy cloud computing and most current networks. Nonethe-
less, these schemes are not fit for dynamic edge computing
networks, and are not fit for IoT either. Furthermore, for
multi-source and multi-task edge nodes, an IP-based naming
scheme is not applicable, as [P-based naming schemes may
be too costly for the edge nodes in multi-source and multi-
task environments.

Several new naming schemes have been proposed, includ-
ing Named Data Networking (NDN) [94] and Mobil-
ityFirst [95], which are designed for edge computing.
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For example, the NDN naming scheme [94] provides a hier-
archically structured name for the distributed network, and
is friendly for edge node owners to manage. Nonetheless,
it requires the addition of a proxy server to the network in
order to integrate different kinds of communication protocols.
Moreover, the NDN naming scheme needs source hardware
information, raising the potential for information leakage.
In the MobilityFirst naming scheme [95], the name is sep-
arated from the IP and MAC addresses to provide better
mobility support. The problem of the MobilityFirst scheme is
that it requires globally unique identification (GUID), which
is not human friendly.

B. RESOURCE MANAGEMENT

The integration of IoT and edge computing necessitates
complete and thorough understanding and optimization of
resource management. IoT devices, often computation and
resource deficient, will be drastically affected by network
congestion and latency, utilizing more power to retransmit
data in congested settings. Edge computing, as the nearest
computing and storage resource, can provide an outlet to
reduce latency of devices, and the decentralized resources
will play an important role in motivating and sharing these
assets.

The management of these resources can be conducted
through a variety of means, so long as it is itself computa-
tionally cheap. Nonetheless, the significant heterogeneity of
service providers, devices, and applications adds substantial
complexity, and these interactions should not be overlooked.
Specifically, the motivating factors in Edge/IoT resource
management are concurrent with those of smart systems.
In a system of multiple resource providers, and massively
diverse applications and user needs, how to allocate, share,
and price the direct service of these systems can be satisfied
by maximizing/optimizing global welfare or some other met-
ric, through competitive bidding, or other strategies [96].

1) AUCTION-BASED

Various economic-driven schemes can be used to manage
network resources. For instance, auction schemes have been
widely applied to many areas of computer science research,
including mobile and cloud computing [97]-[99], and smart
systems [5], [90], [100]-[102], as well as across various
research spectrums. In application for edge resource man-
agement, auction schemes shall provide secure and privacy-
preserving bidding on services by need and bid value, and
shall satisfy the needs of users. In the context of edge
computing and IoT, auction schemes shall be envisioned to
hide users from service providers, and allocate service in
a fair and unbiased way. For service providers, there is an
incentive to maximize the use of their capacity to achieve
the highest profit. This concept assumes a scenario where
data center cloud and edge computing providers are different
organizations, and where various edge nodes are hosted by
different organizations as well. Assuming vast interconnected
networks, subnetworks, ad hoc networks, etc., the targets,
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paths, and destinations of gargantuan network data needs to
be handled efficiently, and must be appropriately distributed
to satisfy QoS.

2) OPTIMIZATION

As formulated, the application of optimization could
likewise handle resource allocation and division in edge com-
puting. Like auction schemes, optimization can present ben-
eficial properties to system participants, optimizing welfare
or profit. Though organizations may intend for local edge
systems to rely on subscription or patron services, as edge
infrastructures provide a middle layer between users and
cloud services, this notion may not be feasible. As applied to
cloud and edge computing [77], [103], and various other areas
of resource management, optimization has shown increas-
ing promise, and is a contender that complements auction
schemes.

C. SECURITY AND PRIVACY

As moving targets that span all domains, security and privacy
are critical issues that demand careful consideration. In the
adoption of Edge Computing-based IoT, these are, in fact, the
most important issues. Edge computing is centered around
the complex interweaving of multiple and varied technolo-
gies (peer-to-peer systems, wireless networks, virtualization,
etc.), and requires the adoption of a comprehensive integrated
system to safeguard and manage each technology platform,
and the system as a whole.

Despite this lofty goal, the culmination of edge computing
will raise some new and unforeseen security issues. Unique
and unstudied scenarios, such as the interplay of heteroge-
neous edge nodes, and the migration of services across global
and local scales, create the potential for original channels
of malicious behavior. Furthermore, the inherent properties
of edge computing may very well dictate what security and
privacy measures are viable, and which cannot be realized.
Similar to cloud computing, there are numerous distinct secu-
rity issues and challenges in edge computing environments.

The distributed structure has numerous benefits for IoT.
Nonetheless, the security and privacy of distributed struc-
tures is a significant challenge. With respect to privacy, edge
computing could provide an effective computing platform to
future IoT. As edge computing processes data at the edge,
the privacy-sensitive information associated with end users
could be exploited. Notice that sensing data from IoT sys-
tems is stored at edge nodes, which can be more vulner-
able than cloud servers [2], [49]. Thus, privacy protection
needs to be considered in edge computing and the effective
privacy-preserving mechanisms, such as local differential
privacy [104] and differential privacy with high utility [49],
[105] need to be designed to protect the privacy of users in
the edge computing-based IoT environment.

With respect to security, one of the typical security prob-
lems of edge computing is to authenticate gateways in differ-
ent levels. An example is smart meters in residential homes,
where each of the smart meters has its own IP address.
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FIGURE 8. Problem space of Edge Computing-based loT security.

In this context, an adversary could report false data, modify
the other user data, tamper with their own smart meter, or
spoof IP addresses, and further disrupt the effectiveness of
energy management in IoT systems (smart grid, etc.) [2], [6],
[7], [106]-[109]. From a management perspective, different
edge nodes are managed by different owners, making it dif-
ficult to deploy an equivalent security strategy throughout.
Based on the above concerns, we identify the problem space,
shown in Fig. 8, and its dependence on the IoT structures in
Fig. 6.

1) TRANSMISSION

Ensuring security in the data transmission process is one of
the key challenges for Edge Computing-based IoT. During
message transmission between end users and servers, some
attacks (jamming attacks, sniffer attacks, worm propagation,
resource-depletion denial-of-service, and others [110], [111])
could be launched to disable the links by congesting the
network, or could monitor network data flow. Normally, in
a traditional network, the configurations input by a network
administrator need to be trustworthy and validated [112].

Nonetheless, Edge Computing-based IoT is deployed in
the edge of the network structure, and various types of
networks, such as Mobile Wireless Networks [113], Ultra-
Dense Networks [33], [114], and Wi-Fi, will obviously be
challenging to manage. Thus, in managing edge networks,
significant management traffic will be necessarily generated,
making it a further challenge to isolate regular data traffic.
In this case, adversaries would be able to control the network
easily [111]. To mitigate this problem, Software-Defined
Networking (SDN) [40], [115] must be introduced. SDN can
mitigate the aforementioned security risks from the following
perspectives:

L. Detection: Deploying a Network Monitoring and Intru-
sion Detection System (IDS) provides the ability to mon-
itor data traffic and scan data packets for applications to
detect the malicious code. In SDN, it is easy to deploy an
IDS system and improve the manageability of traffic flow in
Edge Computing-based IoT.

II. Protection: To protect data in the transmission pro-
cess, traffic isolation and prioritization is the most efficient
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method. Here, SDN is able to easily use VLAN ID to isolate
different types of traffic into VLAN groups, and can be used
to further segregate malicious traffic. Thus, traffic isolation
and prioritization is usually used to prevent some types of
attacks, including those that aim to congest the network or
dominate shared resources and hardwares.

II. Reactions: Following from a long history of conven-
tional countermeasures against network threats in cyber-
physical systems [106], [107], [109], there are ongoing
efforts to assess and prevent cyber-attacks in edge computing
environments [116].

2) STORAGE

In Edge Computing-based IoT, massive data is generated
by the innumerable sensors and devices, and all the storage
is provided by different third party suppliers. User data is
outsourced to those storage suppliers, whose storage devices
are deployed in the edge of the network and located at
many different physical addresses. There are numerous rea-
sons why this clearly increases the risk of attacks. First,
it is difficult to guarantee data integrity, since the data
is separated into many parts and is stored across differ-
ent storage locations, making it easy to lose data packets
or store incorrect data. Second, the uploaded data in stor-
age may be modified or abused by unauthorized users or
adversaries, which will lead data leakage and other privacy
issues.

To address these problems, various techniques can be
used, such as homomorphic encryption [117], [118] so
that integrity, confidentiality, and verifiability for edge stor-
age systems can be realized. Furthermore, the technologies
increase the security of users such that they are able to
store their data to any untrusted servers [112]. For example,
in [119], the authors proposed a privacy-preserving public
auditing for protecting data stored in the cloud via involving a
third-party auditor (TPA). The same technique can be used in
edge storage as well. In [120], the authors proposed effective
protocols to verify the file search results from the cloud. In
this study, two protocols are designed. One is to enable veri-
fication of the file search result in the scenarios where users
have the same security privilege. The other is to consider the
scenario, in which users access files with different security
privileges. In the edge computing environment, a user trusted
TPA can improve the security of the storage system and
reduce the management overhead. As for the security of TPA
itself, it uses homomorphic encryption and the random mask
technique to protect itself.

Another challenge for storage is ensuring data relia-
bility. Traditional methods to detect and repair corrupted
data in storage systems use erasure codes or network cod-
ing. Nonetheless, these require laborious program develop-
ment and a great deal of storage overhead. For example,
Anglano et al. [121] proposed a secure coding-based storage,
which introduces Luby transform (LT) code into programs,
reducing the storage space overhead and communication
time, and increasing the data search speed.
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From a management perspective, network Resource
Access Control (RAC) is also an important method to protect
the data in edge storage, and is the most efficient approach
for data security. As a means for securing data resources, a
secure network resource access system utilizes terminals to
access network resources located behind enterprise firewalls.
Specifically, a proxy server is located outside the firewall,
and receives application data from a terminal, while a polling
server is located inside the firewall. The polling server has
several functions, these being the initialization of data trans-
mission from proxy to polling server, the receipt of applica-
tion and associated network resource data, and the direction
of the application data to corresponding network resources
based on the resource data.

3) COMPUTATION

Another important security challenge in Edge Computing-
based IoT is to maintain security and privacy in uploading
computational tasks to edge computation nodes.

To ensure computation security, Verifiable Comput-
ing [122] was introduced for Edge Computing-based
IoT. Generally speaking, Verifiable Computing enables an
untrusted computation node to offload the computation tasks.
Meanwhile, this computational node maintains the verifiable
results, and uses these results to compare them with the
results calculated by some other trusted computation nodes as
proof that the computing has been correctly completed. In the
case of Edge Computing-based IoT, each IoT device should
be able to verify the correctness of the results, which are
computed by edge nodes. A system was built in [123], named
Pinocchio, which allows the clients to verify computation
results based solely on cryptographic assumptions. Using
Pinocchio, a public evaluation key is created by clients, which
describes the computation task, and servers will compare
the value of the key and the computation result to prove
correctness. This is similar to the verifiable computing pro-
tocol, which was proposed in [122]. This protocol allows the
computation nodes to return a computationally-sound result,
and the clients can check the result to verify the computational
soundness of the computed task.

Due to the decentralized management of edge networks,
which cannot supply adequate security and management fea-
tures, it is a complex and difficult problem to manage and
secure networks with such a large number of connected
devices. For example, Hafeez et al. in [124] proposed a
service-based solution to safeguard the network edge, called
Securebox. By leveraging the security and network manage-
ment features provided by the proposed system, the designed
system can enable security services by detecting and reacting
to malicious activities in the system.

Because computation tasks are migrated from the
cloud to edge nodes, it is necessary to establish trust
between edge servers and the end devices, especially with-
out trusted third party security. Related to this issue,
Clemens et al. in [125] proposed some solutions, which
can extend integrity measurement and attestation systems
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to incorporate integrity evidence from edge devices under
their restricted capabilities and constrained operating envi-
ronments. Echeverria et al. in [126] proposed a trusted
identity solution in disconnected environments based on
identity-based cryptography and secure key exchange in the
field, which operates without a trusted third party. With
proper application-, OS-, network- and site-level controls,
this solution can be resilient to most of the threats present
in disconnected environments.

For other security issues, like software verification or
malicious intrusion detection, there are several prelimi-
nary works designed to address these issues. For instance,
Tan et al. in [127] proposed a bottom-up and foundational
approach for verifying the security of the software stack in
an IoT system, which is called BUFS. With this approach,
the software of the end devices can be verified from the
bottom-up. Mtibaa et al. in [128] proposed a defense tech-
nique for malicious device-to-device (D2D) communication
called HoneyBot. With this method, the HoneyBot nodes are
capable of identifying and isolating D2D insider attacks. Fur-
thermore, it has been proven that the number and placement
of HoneyBot nodes in the network can impact speed and
accuracy measurements significantly.

In addition, to further improve the efficiency of threat
analysis and detection and to reduce the performance impact
of threat analysis and detection in edge computing-based IoT
systems, edge computing infrastructures shall be leveraged
to assist in threat analysis and detection [25], [31], [32]. For
instance, the use of edge computing to improve the perfor-
mance of detection of threats against IoT and smart systems
must be studied (e.g. efficiently learning the profile of threats
in parallel to speed up threat detection).

Designing an integrated defense system against cyber
threats on edge servers, should span three generic and defense
strategies: proactive defense, reactive defense, and predictive
defense. In particular, for proactive defense, it is critical to
develop techniques at both the data-level and the system-
level. The detection should consider edge resource utilization
and allocation, and require low overhead (time, code, mem-
ory, compute, I/O, storage, architecture heterogeneity, and
others). At the data-level, mechanisms (data self-correction
to detect and recover compromised computational data, and
others) should be considered. At the system level, monitoring
and detection tools in the edge system need to be to designed
and integrated into the edge computing infrastructure to effec-
tively and proactively discover exploitable vulnerabilities to
make the system secure. For reactive detection techniques,
effective techniques should be designed at both the data and
the system levels. In addition, at the data level, techniques
such as low-cost data attestation mechanisms [129], [130]
shall be considered, which can confirm the integrity of
data processing results and identify malicious nodes based
on inconsistency of results. At the system level, effective
anomaly detection techniques based on machine learning
(such as deep learning) principles must be considered.
Further, for predictive defense mechanisms, machine
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learning-based techniques need to be designed to not only
foresee impending system anomalies, but also to predict
behaviours of new threats in the system.

D. ADVANCED COMMUNICATION

As a shift in the current paradigm of remote computa-
tion and storage, edge computing is removing the bar-
riers to rapid, low-latency, high-computation applications.
Likewise, the technologies of future 5G cellular networks,
including Ultra-Dense Networks (UDNs), massive MIMO
(Multiple-Input and Multiple-Output), and millimeter-wave,
are improving daily, advancing to reduce latency, increase
throughput, and support massively interconnected groups
in dense networks [33], [34], [115]. With these advances
in communication technologies, edge computing will fur-
ther progress as integration of these technologies becomes
inevitable.

5G Communication: 5G is known as the next generation
communication technology. Its goal is provide ubiquitous
network connectivity and access to information needed for
users [33]-[35], [114]. Thus, the concepts of 5G, 10T, and
edge computing can be integrated together to achieve flexible
and efficient communication. In addition, 5G technology can
help improve the efficiency of many IoT applications.

For example, Cau et al. in [131] proposed schemes
for effective subscriber state management in 5G scenarios.
Hung et al. in [132] conducted a comprehensive survey of
fog network and cloud radio access network structures and
discuss the need to integrate both for 5G. Chagh et al. in [133]
proposed a VoWiFi solution with edge computing technol-
ogy, which can help address its main drawback (i.e., the
lack of user location). With the proposed scheme, loca-
tion information related to VoWiFi users can be retrieved.
Zeydan et al. in [134] proposed a big-data-enabled archi-
tecture for proactive content caching in 5G wireless net-
works. Ardi and Joshi [135] studied a cloud-based frame-
work for accessing private medical records in the context of
5G networks. With this framework, the private records can be
protected and access authorization can be enhanced.

E. SMART SYSTEM SUPPORT

Smart systems necessarily interweave network communica-
tion technologies with sensors and actuators to realize system
awareness and subsequent remote control, and can be seen as
an extension of IoT technologies [2], [3]. The integration of
sensing devices provides untold opportunities for data collec-
tion, physical system management, and resource allocation
and optimization. Key areas of smart systems include smart
grid, smart city, smart transportation, smart health, and others.
As more systems become smart, edge computing can provide
the lowest latency computing and storage for computationally
deficient devices. Similarly, data analysis at the edge can
facilitate the highest resiliency to compromised systems.

1) SMART GRID
The Smart Grid is considered to be the next generation in
power grid technology and implementation. To achieve the
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advantages afforded by the smart grid (e.g., safety, secure,
self-healing), a large number of smart meters, sensors, and
actuators are needed to collect and exchange measurement
data in the smart grid [7], [107], [136]-[138]. Thus, edge
computing has potential satisfy the requirements of smart
grid deployment. Nonetheless, how to involve multiple edge
servers to process the data streams from meters and sensors
spanning large and varying areas and provide optimal and
timely energy management decisions remain open issues.

Related to this direction, there are some existing research
efforts. For example, Emfinger er al. in [136] proposed
the RIAPS (Resilient Information Architecture Platform for
the Smart Grid). With this architecture, some challenges
can be solved, such as resource and network uncertainty.
Kumar et al. in [137] leveraged the mobile edge comput-
ing paradigm and proposed a smart grid data management
scheme based on a vehicular delay-tolerant network. In this
study, the optimal charging for plug-in hybrid electric vehi-
cles is designed.

2) SMART CITY

To effectively and efficiently use public resources in cities
and increase the standard of living for the citizens, the con-
cept of the Smart City has been proposed and realized [8],
[9], [139], [140]. One of the most critical challenges is the
non-interoperability of the heterogeneous technologies in
cities. For example, Zanella ef al. in [139] surveyed the rele-
vant technologies, protocols, and architecture for urban IoT.
Sapienza et al. in [140] investigated a scenario, which can
exploit the MECs to recognize abnormal or critical events
(terrorist threats, disasters, etc.). Although a large num-
ber of connected devices can affect network performance,
they can be helpful in detecting the occurrence of anoma-
lous events through user-generated content and appropriate
algorithms.

Specifically, there are already some preliminary research
studies in this direction, such as real-time video analysis
with edge computing. For example, Zhang et al. in [141]
proposed an Edge Video Analysis for Public Safety frame-
work, named EVAPS. With this framework, the computing
workload for real-time video analysis in both edge nodes
and the cloud can be distributed in an optimized way. Then,
unnecessary data transmissions can be eliminated and the
energy of edge devices can be conserved. Chen et al. in [142]
proposed a fog computing-based smart urban surveillance
solution. With a case study of traffic monitoring, the proposed
system can track speeding vehicles and obtain vehicle speed
information in real-time.

3) SMART TRANSPORTATION

To achieve safe and effective autonomous driving, a cloud-
based vehicle control system is needed, because it can col-
lect information from the sensors via a vehicle-to-vehicle
network [5], [106], [143], [144]. Thus, it can control
and coordinate a large number of vehicles. It is obvious
that a real-time management of vehicles necessitates strict
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requirements, such as short latency, which can be provided
by edge computing.

Related to this area, there are some existing research
efforts. For example, Sasaki et al. in [145] proposed an
infrastructure-based vehicle control system to support safe
driving. In their designed system, states between edge and
cloud servers are considered to enable resource sharing. With
this proposed system, the latency can be significantly reduced
and instability of the cloud control is mitigated. Lin et al.
in [5] proposed a dynamic decision scheme for real-time
route guidance by mitigating road congestion and improving
transportation efficiency. It is worth noting that the real-time
traffic information collected through vehicular networks can
be processed via edge computing infrastructure, which can be
further provided to drivers in real time.

VI. FINAL REMARKS

With the development of 10T, edge computing is becoming
an emerging solution to the difficult and complex challenges
of managing millions of sensors/devices, and the correspond-
ing resources that they require. Compared with the cloud
computing paradigm, edge computing will migrate data com-
putation and storage to the “edge” of the network, nearby
the end users. Thus, edge computing can reduce the traffic
flows to diminish the bandwidth requirements in IoT. Further-
more, edge computing can reduce the transmission latency
between the edge/cloudlet servers and the end users, resulting
in shorter response time for the real-time IoT applications
compared with the traditional cloud services. In addition, by
reducing the transmission cost of the workload and migrating
the computational and communication overhead from nodes
with limited battery resources to nodes with significant power
resources, the lifetime of nodes with limited battery can be
extended, along with the lifetime of the entire IoT system. To
summarize our work, we have investigated the architecture
of edge computing for IoT, the performance objectives, task
offloading schemes, and security and privacy threats and
corresponding countermeasures of edge computing, and have
highlighted typical IoT applications as examples.
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