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ABSTRACT When using the PSO (particle swarm optimization) optimization adaptive stochastic-resonance
method, the initial value and value range of the optimization parameters are defined inappropriately,
divergence problems may easily emerge in the calculation process, and optimization may stop prematurely.
To solve this problem, this research has analyzed the parameters that influence system stability using the
scale-transformation stochastic-resonance solution procedure, and the value range leading to algorithm
stability was obtained. On this basis, a stable mutation operator has been proposed, which is used in
mutation operations on particles outside the stable condition. To ameliorate the poor local search ability
and low convergence speed of the PSO algorithm in the later iteration stage, an inertial weight degression
strategy based on a particle distance index has been developed. Based on these two research results, a PSO
optimization scale-transformation stochastic-resonance algorithm with mutation operator has been proposed.
The proposed algorithm has been used to detect numerically simulated signals and rotor test-table data. The
results show that when the stable mutation operator acts on the SR optimization parameters, divergence is
effectively avoided, and the stability of the iterative algorithm is improved accordingly. By adding the inertial
weight degression strategy to the PSO algorithm, iteration speed could be improved at the same time.

INDEX TERMS Fault detection, particle swarm optimization (PSO), scale-transformation stochastic

resonance, signal processing, stability analysis.

I. INTRODUCTION

When faults occur in the rotors of aero-engines, their status
is always reflected by vibration signals [1]. These vibration
signals present different frequency characteristics for each
different fault status. Therefore, vibration analysis is a com-
mon and effective method for aero-engine fault diagnosis.
During practical use of this method, the vibration signals
detected by sensors always contain high-energy noise which
arises from the working environment. To solve this prob-
lem, various methods or algorithms are used to reduce or
filter the noise, thus boosting the signal-to-noise ratio (SNR).
However, when the noise is weakened, the fault signal is
also influenced, and therefore it will be difficult to obtain
an ideal fault-detection result. Moreover, the sensor detects
the vibration signals from the whole engine. The exciting
force induced by the rotors’ unbalanced weight is the main

reason that the engine vibrates [1]. Under this condition, if the
fault signal is somewhat weak, the fault characteristic may
be inconspicuous compared to the inherent vibration of the
engine. Therefore, a reasonable analysis method is needed to
detect the main fault feature, thus achieving an ideal fault-
detection result.

As a signal processing method, the stochastic-resonance
(SR) method is different from traditional methods which
improve the signal-to-noise ratio by reducing or modifying
noise [2], [3]. The SR method uses the properties of a special
nonlinear bistable system. When a signal acts on the system,
the noise in the signal will exert an impelling effect. Then the
periodicity of the output signal can be enhanced, and the SNR
will rise accordingly. With this method, the useful signals
will not be weakened, which always happens when traditional
filtering algorithms are used.
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However, classical SR theory is based on the adia-
batic approximation theory, which restricts the theory to
detection of small signals. To expand the theory to a
larger scale, researchers have proposed scale-transformation
stochastic resonance [3], sliding-window stochastic reso-
nance [4], parameter-tuning stochastic resonance [5], and
similar methods, with acceptable processing results. Accord-
ing to stochastic theory [6], the best stochastic-resonance
state can be achieved only when the signal and noise inten-
sities reach a sort of matching state. However, the signal
and the noise are both unknown in practice, making the
matching state difficult to achieve. To solve this problem,
different adaptive optimization methods are used to tune the
SR parameters adaptively, with the aim of achieving the ideal
SR effect.

Asdi et al. proposed an adaptive stochastic-resonance
algorithm based on a signal-to-noise ratio index, which
achieved improved detection performance for short-length
data [7]. Mitaim from the University of Southern California
defined the adaptive stochastic-resonance algorithm system-
atically [8]. His research aimed to find an appropriate type
of noise to match a given type of signal, in the expectation
that the best SR result could be obtained under the optimal
noise ratio. In addition, an adaptive stochastic-resonance sys-
tem was designed in this work. However, the situation with
unknown signal and noise was not addressed.

Since parameter-tuning stochastic resonance was pro-
posed, researchers have preferred to realize adaptive SR by
tuning the parameters. Ye et al. [9] obtained a set of optimal
system parameters using noise intensity, signal frequency,
and the proportional relationship between system parameters
and standard SR. The analytical result was used to design
an adaptive SR method. When the system is in its best SR
state, the output SNR will reach its maximum. Based on
this phenomenon, Yang et al. constructed an adaptive SR
algorithm using the SNR and a linear random search algo-
rithm which was used for periodic signal detection [10].
To overcome the limitation of sampling SR twice for large
parameters, Deng et al. [11] proposed an SR method that
could tune the sampling frequency and system parameters
automatically based on the cooperative relation between sig-
nal, noise, and system. Zhao and Guo [12] researched sys-
tem change trends in different frequency ranges according
to the relationship between system outputs and parame-
ters. An adaptive parameter-tuning SR method for nonlin-
ear bistable systems was proposed. Xu et al. [13] regarded
the highest peak in the output frequency spectrum as the
signal frequency. Then the output SNR was chosen as the
optimization parameter, and a genetic algorithm optimizing
the SR method was proposed and used for varying-amplitude
signal detection. Huang et al. [14] realized single-parameter
optimizing SR control, which took the power spectrum as the
optimization index. Tan et al. [15] took the highest spectrum-
peak location and zero distance variance as the optimization
index, thus offsetting the disadvantage that SNR needs to
have the accurate signal frequency. Then the periodic signal
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and the system were used to obtain the optimal match sta-
tus using the mesh optimization algorithm. The proposed
method was used for weak signal detection. Shen et al. [16]
performed recovery of noisy mixed pictures by tuning the
bistable system parameters]. Mutual information entropy was
chosen as the optimization index. Zhu et al. [17] investi-
gated the influence of adaptive coupling intensity on an SR
system based on a small-world network connection. Wang
et al. proposed a combination of a genetic algorithm and
a frequency-shift scale-transformation stochastic-resonance
method, with the system parameters a and b optimized syn-
chronously. Adaptive detection under large-parameter condi-
tions was achieved [18]. In [19], the output SNR was chosen
as the target value. To change the barrier height, a genetic
algorithm was used to tune a and b dynamically, and the
optimal stochastic-resonance result was obtained. Also in
this research, the best parameter curves for three parameter-
setting methods were compared, showing that when the noise
changes significantly, setting a and b together will be more
favorable. An adaptive cascade stochastic-resonance method
has been proposed in [20]. The method, which was described
earlier, was based on the correlation coefficient of input signal
and noise. A weighted SNR value was taken as the opti-
mization index, thus avoiding the effect of unknown signals
on the stochastic-resonance result. Li ef al. [21] combined
particle swarm optimization (PSO) and scale transformation
and chose the weighted kurtosis index as the fitness function.
The method was used to detect impact signals.

According to this literature analysis, the existing SR
methods focus mainly on selecting appropriate optimization
parameters and fitness functions to achieve an ideal SR result.
However, the intensities of the actual signal and the noise
are both nonadjustable when under detection. Consequently,
the system parameters are widely used as the tuning object
in adaptive SR methods designed for practical signals. The
most commonly used optimization parameters are the system
parameters a and b, as well as the frequency compression ratio
R in scale-transformation stochastic resonance. During the
application process, it has been found that divergence always
occurs when the parameters are being optimized. A literature
review revealed that very few relevant papers have analyzed
this problem. After study of the solution procedure, it was
found that when the Runge-Kutta method is used to solve the
Langevin equation, parameters a, b, and R participate in the
iteration process directly or indirectly. If the initial value is
inappropriate or the random value during the optimization
process is too large, the iteration cannot converge, and the
stability of the SR algorithm will be impacted accordingly.

The adaptive SR method also encounters divergence
problems due to inappropriate selection of initial val-
ues and ranges for the optimization parameters. To solve
this problem, a PSO optimization scale-transformation
stochastic-resonance algorithm with mutation operator has
been proposed in this article.

In the present paper, the basic theory of the classical
SR algorithm and the scale-transformation SR algorithm
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are introduced in Section II. Then, according to the scale-
transformation SR solution process, an analysis of the effect
of various parameters on system stability was conducted, and
the value range of R that could confirm stability was obtained,
as described in Section IIl. The theory of particle swarm
optimization is presented at the beginning of Section IV.
To overcome the algorithm’s inadequacies in local search,
an inertial weighted convergence strategy based on parti-
cle distance has been proposed. The stability analysis result
presented in Section III has been used to construct a stable
mutation operator. On this basis, a PSO optimization scale-
transformation stochastic-resonance algorithm is proposed.
Section V describes the use of numerical signal and rotor
test-table data to test the detection results of the proposed
algorithm. Finally, conclusions are drawn in Section VI.

Il. THEORETICAL BACKGROUND

A. CLASSIC STOCHASTIC-RESONANCE THEORY

The Langevin equation of classic stochastic resonance can be
written as [3]:

X = —U®X) + s(t) + n(t) (1)
where U (x) is the bistable potential function
UG = —2ax® + b @)
X) = 2ax 1 X

where a and b are the system parameters, which are greater
than one, s(¢) are the input signals, and n(¢) is noise. The mean
value is zero, and the noise intensity is D.

The bistable system has two stable states: x| » = ++/a/b
and a critical stable state x3 = 0. The barrier height is AU =
a*/4b. When the periodic signal is added to the system,
assume that the signal frequency is fp and the amplitude is A,
which is greater than the critical value A, = +/4a3/27b.
Driven by the signal, the stable value will move to unequal
status as a result. The stable value will rise and fall periodi-
cally with frequency fy. Noise can achieve the same arousal
effect. The transition movement can be judged by the mean
transition ratio rg.

Researches [22] has shown that when the periodic signal is
mixed with noise, state transition will occur even though the
signal amplitude A < A.. This phenomenon is the foundation
of classical stochastic resonance. The bistable system is under
the combined influence of a weak periodic signal and strong
noise; the stable value will change periodically. The transition
movement has the same frequency as the periodic signal.
Consequently, the system output will reflect the frequency
characteristics of the input signal, which will achieve the goal
of weak signal detection.

B. SCALE-TRANSFORMATION STOCHASTIC RESONANCE

Limited by the adiabatic approximation theory, classical
stochastic resonance is only appropriate for signals with fre-
quency much less than one. This situation has restricted the
application range of stochastic resonance. Taking an avia-
tion engine as an example, the rotation speed in cruise state
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reaches about 120007/ min. This means that the rotation
frequency is already 200Hz. At the same time, the gears and
bearings possess transmission relationships with the engine
rotors, and their frequency also reaches scores of Hertz.
Because the signal is a large-parameter signal, if classical
stochastic resonance is applied directly, it will be impossible
to achieve an ideal result.

Scale-transformation stochastic resonance can perform lin-
ear compression on the signal by resampling. This method
can transform the large-frequency signal into a series of
small-frequency ones, thus satisfying the requirements of
stochastic resonance. Then the characteristic frequency can
be obtained through spectrum analysis. The signal’s actual
frequency is obtained after signal scale reduction. To use
this method, the frequency compression ratio R must first
be determined. Then the second sampling frequency f; is
computed using R. Thus, the new sampling step length is
h = 1/f,r. The resampled signal is imported into the bistable
system, and the actual characteristic frequency can then be
determined through spectrum analysis on the output signal
and scale reduction.

IIl. STABILITY ANALYSIS OF THE SR ALGORITHM

When processing vibration signals with the stochastic-
resonance method, the results are usually sensitive to
the chosen system parameters. Therefore, the self-adaptive
stochastic-resonance method is commonly used to process
real vibration signals. When choosing optimization parame-
ters, it is best to concentrate on the system parameters a, b as
well as the frequency compression coefficient R of the scale-
transformation stochastic-resonance algorithm. It is known
from the definition of the potential barrier, AU = a? /4b, that
the system parameters a, b determine the barrier height of the
particle transition, while the output result is finally influenced
by the value of AU. Seen from this angle, singly optimizing
one parameter (a or b) while fixing the other has the same
effect as optimizing a, b at one time. To reduce the number
of parameters to be optimized, in this paper, a has been set to
one when changing the barrier height of the bistable system
AU through adjusting the value of b to obtain the optimal
stochastic-resonance result.

However, has it not been found by analysis of the
SR iteration process that because the equation is nonlinear,
the output result is severely affected by the parameter selec-
tion? If inappropriate parameters are chosen, this can easily
cause the iteration process to diverge, which makes it hard to
obtain the ideal stochastic-resonance result.

To avoid divergence effectively in the SR iteration process,
let us analyze the influence that b and R have on the stability
of SR.

It can be obtained from Eqgs. (1) and (2) that:

¥ =ax—bx>+ s(t) + n(1)
= ax — bx* + Sn(1) 3)
Where Sn(t) is the signal mixed with noise, and a real-

world vibration signal has been used.
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FIGURE 1. Stability region partition of ¢(x) curve.

Discretizing the system expressed in Eq. (3) [23], & is the
sampling step of the signal, and & = 1/fs; then:

Tl T =ax,~—bxl-3 + Sn;
h
In other words,
xiy1 = (1 + ah — bhx})x; + hSn; (4)

Under the conditions of the scale-transformation SR algo-
rithm, h = 1/fsr = R/fs,

1+ Py - R4 Bs
Xit1l = —)x; — —x; + —=Sn;
i+1 fS i fS i fS i
R
= ¢(x;) + —Sn; (5
fs

Where ¢(x;) = (1 + %)xi — 1}—§xi3.

Fig. 1 shows the ¢(x;) curve. If when the input signal is
Sn; = 0, the system will satisfy the following equation after
the iteration:

! aR bR ,

Xip1 =1+ f_s)xi - f_sxi =X (6)
By substituting x;4 into Eq. (6), it can be obtained that
Xi+2 = Xi+1. In a similar way, it is determined that x;;, =
Xi+3 = Xi+4 = Xiy5 = - - -; then the system reaches a stable
state, and the respective value of x is that of x; in Fig.1. The
two dot dash lines in Fig.1 are y = x and y = —x respectively,
while x; is the crossover point of y = x and the ¢(x;) curve,

for which the values are x; = 4=/a/b and 0.

When
aR bR ,
— — —x; < -1
fs s
It can be obtained from Eq. (6) that
aR bR
xit = (14 25— f—sx,-z)xl' < —x (7

Which leads to |x;+1] > |x;|; in a similar way, it can be
determined that |x;12| < |xi43] < |xita| < |xixs] < ---
If the iteration is carried out under this condition, it is certain
that lim |x;1%| = 0o, which means that the system must be

— 00
divergent. Thus, if the system is to be stable, the foremost
condition that it must satisfy is:

aR bR ,
1+f——f—sxl~>—l (8)
N
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Solving, it can be determined that

aR + 2fs
lxi| < Tf = Xlim 9
Where xjip, is the crossover point of y = —x and the ¢(x;)

curve in Fig.1.
In Fig.1, xmax is the extreme point of the ¢(x;) curve, while
X 1s its zero point. It can be seen easily that

| | fs + aR x| fs 4+ aR
X, = s X,| =
TV 3bR SV bR

According to [22], xmax must satisfy the following inequal-

ity:
[fs + aR \/E
[Xmax| 3R — |xs] b (10)

Solving, it can be determined that

aRgg (11)

Where the value of x is any point in the range determined
by Eq. (10).

It can be obtained from Eq. (9) and (11) that the conditions
that the SR parameters b, R need to satisfy are:

(b |x,‘|2 —a)R <2fsand R < f5/2a (12)
Furthermore, after deformation,
R <2fs/(b |x,-|2 —a)and R < fs/2a (13)

These inequalities are both used to obtain the range of R,
because R and fs are nonnegative.

The following two situations were further investigated:

(1) When b > 5a/ |xi|%, 2fs/(b|xi|*> — a) < fs/2a, and
Eq. (13) can be expressed as follows:

1 <R <2fs/(b|xi|*> —a) (14a)

where R > 1 because the small-parameter change status is
assumed in the scale-transformation SR algorithm.
(2) On the contrary, when

1 <R <f5/2a (14b)

Eq. (14) gives the value range in which the SR parameters
a, b, and R can satisfy the stability conditions.

IV. PSO OPTIMIZATION STOCHASTIC-RESONANCE
ALGORITHM WITH STABILITY MUTATION OPERATOR
PSO is a global algorithm which is based on the foraging
behavior of birds. Compared with the genetic algorithm or the
mosquito swarm, this method contains fewer parameters to
adjust, which makes it easier to implement and simplifies
the algorithm. Because of this, PSO is widely used in var-
ious multi-objective optimization problems. Consequently,
the PSO algorithm was chosen as the optimization method
for the adaptive SR algorithm proposed in this article. How-
ever, if the relationship parameters are defined inappropri-
ately, premature optimization and non-convergence problems
always emerge [24].
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Therefore, if PSO were to be used in the adaptive
stochastic-resonance method, the inherent premature opti-
mization and non-convergence problems of PSO would need
to be solved first. Even more important, divergence due
to inappropriate parameter values would also need to be
avoided. To solve these two problems, this paper has pro-
posed a PSO optimization stochastic-resonance algorithm
with mutation operator.

A. INTRODUCTION OF THE CLASSICAL PSO ALGORITHM

Classical PSO can be expressed as follows: assuming a par-
ticle swarm composed of m particles in a D-dimensional
search space, the location of particle i is defined as X(i) =
(xi1, X2, ..., xip), i = 1,2,..., m, where the optimal posi-
tion that it has experienced is P;, its fitness is F;, and its speed
is V;. The global optimal position is P, which is the optimal
position among those experienced by all particles. Then the
d™ dimension of the i particle in generation n + 1 can be
calculated iteratively according to the following equations:

+1
Vil = w x Vg 4+ xrp x (Piy —xjy)
+cr X 1 X (Pgd —xiy)  (15)
n+l _ .n n+1
Xig = Xig tVig (16)

Where w is inertial weight, ¢y, ¢, are acceleration coeffi-
cients, which usually have the same value, and rq, r, are two
random values in the range [0,1].

In the process of optimization, the speed of the particle is
usually limited to a range with vy as its critical value, and
the position of the particle is also limited within a permitted
range. In addition, during the iteration process, P; and P, will
be constantly renewed so that the optimal solution of P, can
be obtained.

B. INERTIAL WEIGHT DEGRESSION STRATEGY BASED ON
PARTICLE DISTANCE

One of the universal weaknesses of the classical PSO is its
inadequacy in local search, which causes the problem that
convergence speed is fast in the early stage, but slow in the
later stage, which decreases solution accuracy. According to
research, the inertial weight w in Eq. (15) has a remark-
able effect on the global and local search capabilities of the
algorithm [25]. This parameter can adjust the speed of the
particle dynamically in real time. When the value of w is
large, the particle tends toward global search, and when the
value is small, it tends toward local search.

Inspired by this observation, a weight-degression strategy
is proposed here. The most widely used weight-degression
strategy is the linear decreasing inertial weight (LDIW) strat-
egy, which can be described as follows:

® = OWmax — (Wmax — Omin) X 1/Nmax an

where wmax and wpip are the given bounds of the weight, n
is the number of iterations, and 7, is the maximum number
of iterations. It can be seen from Eq. (17) that when using this
strategy, the value of w changes linearly and is determined
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only by the current number of iterations. With this strategy,
the value of w decreases linearly, and the further the iteration
process continues, the smaller the value of w becomes. Thus,
the strategy guarantees that the particle value will not change
abruptly near the optimal solution. However, this method
ignores the variety of the particle population. If the value of
w is decreased at a constant rate in the convergence process,
it does not satisfy the requirements of a practical PSO search
process, and the solution will be affected to a large degree.

According to [26], when choosing the weight, the position
of the particle should be the main concern, and the concept
of particle distance is therefore introduced. If the number of
iterations is 7, the /" dimension of particle i can be expressed
as follows:

(18)

d n 7 2
(5 -Py)

The larger the value of r;, the farther the particle is from the
global optimal solution, in which case a larger inertial weight
should be chosen to reinforce the global search capability.

In fact, the optimal solution search process for PSO can
be analyzed as follows: in the initial iterations, the particle
is far away from the global optimal solution, which means
that a larger inertial weight should be used to guarantee a
relatively high particle speed, so that the particle can reach the
neighborhood where the optimal solution lies. On the other
hand, in the later iterations, the particle is already very close to
the global optimal solution, and therefore the inertial weight
should maintain a small value to slow down the particle so that
local search is performed about the global optimal solution
until the convergence conditions are met.

According to this concept, an inertial weight degression
strategy based on particle distance is proposed in this paper
in accordance with the concept of particle distance. It can be
expressed as follows:

1

~

Py

i __'min
Wmax 1=

) e (19)

®; = Omin( ]

@min

According to [25], the value range of w is defined as
[0.4, 0.95] to ensure an optimal result from the algorithm.

Setting r}l, = 0, rf.x = 10, the weighting curve shown

in Fig.2 is obtained. It is apparent that the longer the distance
between the particle and the optimal solution, the larger

n n

%‘ is, and according to Eq. (19), when the weight
max  "min

1s close to wmax, @ powerful global search capability will
be achieved. When the particle is close to the optimal solu-

n

%’ will decrease, which enables the particle to

tion,

pe1rf0rrrr1m}iocrenlli1 search better. The proposed inertial weight
degression based on a particle distance index can coordi-
nate effectively the relation between global search and local
search. The premature optimization and non-convergence of
classical PSO, as well as the low solution accuracy problem,

can be overcome to some degree.
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FIGURE 2. Inertial weight change with r.

C. MUTATION OPERATOR BASED ON STABLE RANGE
According to the stability analysis results for SR in Section 3,
the values of the system parameters a, b and of the frequency
compression ratio R can affect algorithm stability. For PSO,
in the initial iteration phase, the randomly generated parti-
cles are highly random. The particles’ value range changes
greatly during the iteration process. The parameter values will
probably overstep the stability constraints, which can induce
divergence and instability during the iteration process. Based
on the stability result presented in Section 3, and inspired
by the idea of mutation in a genetic algorithm, a mutation
operator based on the stable range is proposed, which will
be added to the PSO algorithm. This operator is used to
ensure that during the optimal solution search process, no
particle will deviate from the normal search range. By setting
x; = [bi, Ri]T, it is possible to obtain the specific mutation
process given the input signal:

x; = [b;, rand[R;, Rp11T + 18, R; > Ry (20)

where R; is the lower bound of R determined according to the
signal feature and R, = min(2fs/(b; Ix;|2 — a), fs/2a) is the
stability threshold of the current particle corresponding to the
frequency compressionratioR. . = [, (2] is the amplitude
of the random-disturbance parameter vector. The values of
u1 and uy should be defined as five percent of b; and Rp.
8 = [81, 8,]7 is the random vector that satisfies a Gaussian
distribution whose amplitude is one. Adding ud serves to
maintain particle variability and to avoid being trapped in a
local optimum.

D. PSO OPTIMIZATION SCALE-TRANSFORMATION
STOCHASTIC-RESONANCE ALGORITHM WITH MUTATION
OPERATOR

According to the improved PSO method presented in
Section IV part B and C, a PSO optimization algorithm based
on stability constraints is proposed in this paper to avoid
convergence and stability problems. The algorithm procedure
can be described as follows:

Step 1: Determine the population scale m and initialize the
position and the bounds of the speed vimax, Vmin, the acceler-
ation coefficients ¢, ¢;, and the disturbance coefficients rq,
r2. Generate the initial population randomly and obtain the
position and speed of every particle.
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Step 2: Calculate the fitness F; of particle i, determine
the optimal position P; of the particle itself and the global
optimization position Pg. Recalculate the inertial weight w;
of the particle according to Eq. (19) and recalculate the speed
and position of the particle.

Here the fitness function chosen is the SNR of the system
output signal, for which the calculation formula is [7]:

S Y (fo)l?
SNR = 1012 290 _ 1914 |N({;))|
0

N(fo)

Where S(fp) is the amplitude of the output power spec-
trum Y (fp) when the system generates an output signal of
frequency fp. The background noise N (fp) is the average value
in the frequency range when the frequency of Y (fy) is fo.
When the output SNR reaches the maximum value, the SR
is in the best state. Therefore, the SNR can be the fitness
function of the PSO algorithm.

Step 3: Check whether the position of particle i can satisfy
the calculated stability conditions. When R; > Ry, perform
the mutation operation x; according to Eq. (20), generate
a new population, and move to STEP 4; when R; < Ry,
this means that the particle satisfies the stability conditions,
so move to STEP 4 directly.

Step 4: Evaluate whether the stopping condition has been
satisfied. If so, output the current P, and terminate the algo-
rithm because the optimal particle that satisfies the conditions
has been obtained; if not, return to STEP 2.

2

V. NUMERICAL SIMULATION ANALYSIS AND
EXPERIMENTAL VERIFICATION

A. ANALYSIS OF LARGE-PARAMETER NUMERIC SIGNALS
Define the input signal as:

Sn(t) = AsinQ2rft) + v2DE(1) (22)

To simulate large-parameter conditions, the parameters in
Eq. (21) were selected as A = 0.5, f = 10, D = 10,
the sampling frequency was set to 2000 Hz, and the data
length was 20000 points. According to the design concept
of the proposed algorithm, the system parameter a was set
to one, and the search range of a was [1, 20]. Then Eq. (14)
defines the value range of R. During the computation process,
particles that fail to satisfy the stability conditions will mutate
based on Eq. (20). Fig. 3 shows the time-domain waveform
and amplitude spectrum of the original signal. Fig. 4 shows
the analytical results of the classical PSO optimization SR
algorithm, and Fig. 5 shows the analytical results of the
proposed PSO optimization SR algorithm. For the sake of
convenience, the classical PSO optimization SR algorithm
will be called the classical PSO-SR algorithm, and the PSO
optimization scale-transformation stochastic-resonance algo-
rithm with mutation operator will be called the proposed
PSO-SR algorithm if not further qualified.

According to Fig.3, the designed simulation signal satisfies
the large-parameter conditions. Under the influence of noise,
the time-domain signal is entirely disordered, and the fea-
ture frequency is indistinguishable in the frequency-domain
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FIGURE 3. Time-domain waveform and amplitude spectrum of the
original numerical signal.
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FIGURE 5. Signal-processing result of the proposed PSO-SR algorithm.

curve. However, the time-domain signal in Fig.4 shows a
periodic character. Three obvious peaks can be seen in the
low-frequency area, with values of 0.04591, 0.07322, and
0.1906 Hz respectively, where the frequency compression
ratio R is 53.2659. The real values of these frequencies can be
reverted according to Section 1.2 to yield values of 2.4454,
3.9001, and 10.1525 Hz respectively. It is obvious that the
first two frequencies have nothing to do with the given signal,
that is, that they are useless low-frequency values, and that the
third frequency corresponds to the signal feature frequency.
According to SR theory, the signal power is diverted to the
low-frequency range, which is driven by noise (the Lorentz
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FIGURE 6. Optimization results of the proposed PSO-SR algorithm.

effect). As a result, some inconspicuous frequency compo-
nents will appear. The result in Fig. 4 was induced by an
oversized R value. Because the dereferencing process is unre-
stricted in the traditional PSO algorithm, an inappropriate
R value was obtained. Then the signal power is diverted
too strongly to the low-frequency range, and some low-
frequency components mixed in with the signal are enhanced
and appear.

Fig.6 shows the analytical results of the algorithm pro-
posed in this article. The iteration process ended at the 77
generation. The optimal solution values were bpesy = 3.6559
and Rpesr = 33.7284, and the feature frequency in Fig.5 was
0.2971 Hz. The evolution processes of parameters b and R are
shown in Fig.6(a) and 6(b) respectively. Fig.6(c) shows the
change in the output SNR during the optimization process.
From Fig.6(b), the frequency compression ratio R clearly
remained inside the constraint range for a stable condition.
This suggests that the mutation operator worked. Conse-
quently, the stability of the parameter optimization process
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FIGURE 7. Sketch of the misalignment fault simulation.

can be guaranteed, and the result overflow problem has been
avoided. The output SNR increased from —24.6158dB to
—3.3868dB. According to scale-transformation SR theory,
the feature frequency could be reverted to f, = 33.7284 x
0.2971 = 10.0207dB, which corresponds to the original
signal. These results show that the algorithm proposed in this
article is competent for detecting large-parameter signals.

B. VIBRATION SIGNAL ANALYSIS OF ROTOR
MISALIGNMENT FAULT

To verify the functioning of the proposed algorithm with
real engineering signals, a birotor test table was used for
an early fault-simulation test. The test table consisted of a
foundation bed, electric motor, axle trees, bearings, coupling,
turntable, and other components. The rotors were carried
on sliding bearings and driven by a direct-current electric
motor. The rotational speed ranged from 0 to 15000 rpm.
The electric motor and rotors were connected by flexible cou-
plings, which provided vibration flexibility in the crosswise
direction. Fig. 7 shows a sketch of the misalignment-fault
simulation, where Bj(i = 1,...,3) are bearing tables and
D;(i = 1, 2) are turntables. S1, S» are vibration sensors; they
are eddy-current sensors and located in orthogonal directions,
which enables them to test the vibration displacement of
rotors. S3 is used to test the rotation-speed sensor, which is
a photoelectric speed sensor. J is a coupling, and S7 is an
electric eddy-current sensor which can measure the vibration
displacement in the horizontal and vertical directions of the
measurement point above.

Misalignment faults are a common fault in rotor sys-
tems [27]. In rotary machines with dual or multiple rotors,
the rotors are connected by couplings. However, during man-
ufacturing, installation, or operation, asymmetrical excur-
sions or deformations always occur in bearing systems. Then
parallel misalignment, angle misalignment, or both will occur
in the couplings. To simulate a misalignment fault, a shim was
inserted into the bottom of one bearing on one side. A devia-
tion was thus induced between the two sides of the coupling J,
and a misalignment fault resulted. In general, radial vibration
is strongest when a misalignment fault is present. The 2X
frequency components are the primary feature, which are
always coupled with 1X and 3X components, but the 2X
components are stronger than any others.
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FIGURE 8. Time-domain waveform and amplitude spectrum of
misalignment fault.
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FIGURE 9. Result of processing by classical PSO-SR algorithm.

The electric motor speed was set to 1500 r/min, which
meant that the rotor working frequency was 25 Hz. The
sensor sampling frequency was 200 Hz, and the sampling
time was 5 s. The vibration signal in the vertical direction
is analyzed here. Fig. 8 shows the time-domain waveform
and amplitude spectrum of the input signal. The time-domain
waveform is completely disordered, with the signal feature
drowned by strong noise. Hardly any effective fault informa-
tion can be obtained. The frequency spectrum is also irregular,
and no regularity can be found to ascertain faults. Irregular
peaks appear in all frequency ranges.

Fig.9 and Fig.10 show the output results of the
classical PSO-SR algorithm and the PSO-SR algorithm
respectively. The feature frequency was detected by both
algorithms. The highest peak in Fig.9 corresponds to a
frequency of 0.7563 Hz. The frequency compression ratio
R = 66.2561. The feature frequency could be reverted as
fe = 50.1095Hz. In a similar way, the feature frequency
in Fig.8 can be obtained as fo, = 0.7909 x 63.4702 =
50.1986Hz. These two feature frequencies are both 2X the
working frequency. At the same time, another two obvious
frequencies in Fig. 9 are 0.3778 Hz and 1.1298Hz, and the cor-
responding actual frequencies are 25.0316Hz and 74.8561Hz.
These are the 1X and 3X frequency components of the
rotor system. In conclusion, the frequency analysis results
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FIGURE 11. Curve of the parameter optimization process.

correspond with the frequency features of the misalignment
fault.

Fig.11 shows the optimization process for the two methods.
Fig.11(a) illustrates the optimization process of parameter b,
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TABLE 1. Computed optimization results.

Classical Proposed
Parameter PSO-SR  PSO-SR Algo-
Algorithm rithm
b 9.7116 1.7438
R 63.4702 66.2561
SNR -16.5365 -15.4354
1
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FIGURE 12. Overflow phenomenon in the classical PSO-SR algorithm.

Fig.11(b) shows the optimization process of parameter R, and
Fig.11(c) illustrates the changes in the output SNR.

The classical PSO-SR algorithm and the proposed PSO-SR
algorithm reach stable status in generation 93 and generation
53 respectively. Some key parameters of stable status are
shown in Table 1. Because b and R have been selected as
the optimization parameters, optimization by the PSO algo-
rithm will produce many different combinations. Moreover,
the parameters of the classical algorithm exhibit more severe
changes. Especially in the later iteration stage, because the
inertial weight is uncontrollable, the parameter optimization
process does not proceed in an acceptable neighborhood of
the optimal solution. This situation makes the parameter con-
vergence process excessively slow. However, the proposed
algorithm introduces the inertial weight convergence strategy
based on particle distance and a stable mutation operator. The
former sets w to a smaller value in the later iteration stage,
which will make the particle perform local search near the
optimal solution. The latter restricts the value of R. If a parti-
cle does not satisfy the stable condition, the mutation operator
will go to work immediately. Thus, the situation in which
the particle moves outside the stable range will be avoided.
Stability is guaranteed during the whole optimization process,
and the optimal solution can be reached more quickly.

After testing, it was found that overflow phenomena
always occur in the classical PSO-SR algorithm, and the itera-
tion stops prematurely. The time-domain data can be obtained
in the MATLAB workspace. Fig.12 shows the time-domain
waveform.

VI. CONCLUSIONS

With a focus on certain problems with the SR algorithm
(difficulty of parameter selection, keeping the calculation
from diverging), a PSO optimization scale-transformation
stochastic-resonance algorithm with mutation operator has
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been proposed in this paper. The results showed that when the
stable mutation operator acted on the SR optimization param-
eters, divergence was effectively avoided, and the stability of
the iterative algorithm was improved accordingly. By adding
the inertial weight degression strategy to the PSO algorithm,
the iteration speed was improved at the same time.

When using the method described in this paper for signal
processing, the authors found that differences in the noise
intensity of the original signal could possibly lead to dif-
ferences in the optimization parameters. Focusing on this
phenomenon, further research will explore how to determine
the appropriate pretreatment method according to the features
of the signal and how to filter out noise and certain irrel-
evant frequencies so that algorithm accuracy can be further
increased.
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