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ABSTRACT In the cloud computing environment, the source-level energy consumption (EC) estimation
is employed to approximately measure the EC of a cloud computing task before it is executed. The
EC estimation on tasks is critical to task scheduling and source-code improvement in the aspect of EC
optimization. The existing studies treat a task as a program, and EC of the task as the simple summation of
each statement’s EC. However, EC of two tasks consisting of the same statements with different structures
is unequal; therefore, the code structure should be highlighted in source-level EC estimation. In this paper,
an abstract energy consumption (AEC) model, which is static and runtime-independent, is proposed. For the
model, the two quantitative measurements, ‘‘cross-degree’’ and ‘‘reuse-degree,’’ are proposed as the code
structure features, and the relationship between EC and the measurements is formulated. Although AEC
is not a precise EC measurement, it can properly represent the EC of a task, compare with other tasks,
and verify the optimization effect. Experimental results show that the ratios between the EC and AEC with
50 test cases are stable; the standard deviation is 0.0002; and the mean value is 0.005. The regularities of EC
and code structures, represented as ‘‘cross-degree’’ and ‘‘reuse-degree,’’ are also validated. Though AEC, it
is easier to schedule the cloud computing tasks properly and further reduce the consumed energy.

INDEX TERMS Abstract energy consumption, code structure, energy consumption estimation, cloud
computing tasks, source-level.

I. INTRODUCTION
Energy Consumption (EC) is a critical concern for the
IT industry especially in the field of cloud computing. Lever-
aging the cloud to maintain or scale up business will be the
norm for customers and enterprises while cutting down on
the budget. However, EC of the cloud is predicted to increase
rapidly in the next decade [1]. Therefore, the the hardware
level, the early technologies on energy saving are developed
on circuit [2], component [3] and architecture; At the infras-
tructure level, the energy-efficient scheduling algorithms and
memory systems, storage systems as well as the resources
management policies are also helpful to EC reduction; At the
platform level, there are many energy-efficient middlewares
which can not only improve the energy-efficiency greatly but
also support the green applications such as mobile ones [4].
In this paper, the platform level of cloud computing is studied,
where the EC of tasks is estimated.

At the platform level, the cloud computing tasks, such
as data processing task, Web searching tasks, and scientific

calculation tasks, are scheduled to the nodes of cloud data
center and allocated with the proper resources. They compete
for multiple resources available on nodes while they are in
execution, and the always-on components of computer will
waste the energy while they are idle. The main objectives of
the task scheduling and resource allocation algorithms are to
maximize the resource utilization and minimize the waiting
time of resources in cloud data center. Otherwise, unbalanced
task scheduling and resource allocation will cause the idle-
ness of nodes and the waste of energy [5].

The traditional task-oriented EC optimizations are mainly
applied to embedded software or mobile applications, and
most of them run on battery-powered hardware [6]. On the
energy restriction environment, the EC optimization could
efficiently extend the service time of a system [7]. In recent
years, with the popularization of cloud computing tech-
nologies, tasks oriented EC optimizations are gradually
applied to the more general areas, especially those require
distributed frameworks and larger-scale clusters [8]. It is
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generally believed that the scheduling algorithms would be
more efficient if the EC of scheduled tasks are pre-known.
Thus, the EC estimation of tasks before they are executed is
necessary.

The task scheduling and resource allocation should be trig-
gered prior to the task execution, however, it is a challenge to
estimate task ECwithout its execution.. To solve the problem,
we propose a source-level EC estimation for cloud computing
tasks. No matter what kinds of tasks, they all consist of
source codes. Despite of differences on functions and run-
time environments, the source-level EC estimation has better
applicability [9]. Source codes consist of statements and the
relations among the statements, while the latter is called code
structure. To estimate EC, both statements and code structures
should be considered by the following three principles:
(1) Complex operations and data structures cost more

energy than their simple ones,.
(2) Among the tasks with the same calculation workload,

the one which can maximize the CPU utilization and
reduce CPU idle time has lower EC.

(3) Among the tasks with the same calculation workload,
the one which prefers to use high performance storage
has lower EC.

Among these principles, principle (1) relates to statements
themselves, while principle (2) and (3) relate to code struc-
tures. Due to the effects of code structures, the EC of a task is
not equal to the simple summation of each statement’s EC.
The existing researches suggest to estimate tasks’ EC by
source-level analysis. However, most of these estimation
approaches emphasize on specific languages, code structures
and scenarios. According to the previous descriptions, we
may raise the following questions:
(1) What are general features of EC-related code

structures.
(2) How to quantify the code structure features, as well as

the relations between features and EC of tasks.
(3) Without taking the runtime environments into consid-

eration, EC of a task is not a measured value but an
estimated one. Then, how to estimate it through the
statement features and structures features of source
codes and whether the estimated EC is consistent with
actual EC remain a problem

To our best knowledge, though several researches as
explained in section 2 focus on the similar topics, but they
do not solve the questions well.

In this paper, we study the source-level EC estimation
which highlights the code structure features. Firstly, the
Abstract Energy Consumption (AEC) is proposed, offering
a static and source-level EC model. Secondly, based on the
model, the cross-degree and reuse-degree are employed to
quantify the effects of code structures on EC, and such effects
are aggregated for source-level EC estimation. Referring to
Principle (2), the cross-degree represents the interleaving of
storage statements and calculation statements; and referring
to Principle (3), the reuse-degree represents the possibility
of reusing caches. Finally, the estimation is verified to be

effective through the elaborated experiments. Our contribu-
tions are listed as follows:
(1) The two general, abstract and quantitative measure-

ments, named as reuse-degree and cross-degree are
proposed to represent the EC-related features of code
structure.

(2) The relationship between EC and above measurements
is concluded.

(3) The source-level EC estimation in reasonable abstrac-
tion and approximation is proposed.

The rest of paper is organized as follows: Following the
introduction, section 2 introduces the related works; Section 3
introduces the source-level AEC model; Section 4 explains
the EC-related features of code structure; Section 5 discusses
the relationship between code structures and EC of tasks, and
also derives the quantified estimation of AEC; In Section 6,
plenty of experiments and results show the effectiveness of
AEC estimation; Finally, conclusions and future works are
summarized in Section 7.

II. RELATED WORKS
Source codes oriented EC estimation is a hot research topic.
Some researchers believe that the compiling processes are too
complex and the effects of instructions’ execution sequence
on EC are unpredictable. As a result, it is extremely diffi-
cult to analyze EC at source-level. However, many existing
research results, as introduced in this section, have shown that
the source-level EC estimation is feasible and effective.

Brandolese [10] built a ParseTree by source codes analysis.
In ParseTree, each node is an atomic unit which consumes
energy, and edges are the combinations of the units. ParseTree
represents the structures and statement features of source
code. To estimate EC, Brandolese proposed the instructions-
level EC estimation approach, and designed a compiling
and runtime environment dependent engine, by which EC
of a program is consolidated line-by-line and function-by-
function. Zhou et al. [11] proposed a C language based
EC model. They considered that there are 3 steps in an
execution process of instruction: acquiring, decoding and
executing. Thus, code EC is NOT equivalent to the sum-
mation of instructions’ EC, but the summation of EC of
all the three steps. Additionally, some researches measured
EC by executing the program, and proposed runtime EC
profiling tools [12]. The profiling tools collected the states of
computer components, such as CPU and memory, to deduce
the EC of program [13]. Schubert et al. [14] designed Eprof
tool which estimated EC precisely. It helps developers to
locate high EC statements. They considered that traditional
CPU-oriented EC estimation did not consider accessories,
such as hard drivers and network devices, which consume
energy as well. They pointed out that a program accesses
CPU synchronously, so that statements execution and CPU
EC are synchronous as well. On the contrary, the program
may access accessories asynchronously, so that statements
execution and accessory EC are asynchronous as well.
Eprof focuses on both CPU synchronous EC and accessory
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asynchronous EC. Developers could choose between
CPU-depended codes and I/O-depended codes. For exam-
ple, when transmitting data, developers decide whether
data is compressed (CPU-depended) or not (I/O-depended).
Noureddine et al. [15] argued that traditional solutions
focused on coarse-granularity approaches in order to monitor
EC of devices and processes. By contrast, they proposed
a fine-granularity runtime EC monitoring framework in
order to locate the higher EC code-blocks in source codes.
The framework includes two levels monitoring components:
OS-level (OS, operating system) and process-level energy
monitor. The former focuses on monitoring hardware, while
the latter focuses on monitoring execution of Java codes. The
results from two monitors are consistent and consolidated.
Noureddine’s other works [16] are also concerned in this area.

Despite of instructions-level or source-level approaches, it
is impossible to estimate EC of a program precisely without
executing it. Because the logical structures of a program
are complex, and it is difficult to determine its execution
paths exactly, such as conditional branches, execution times
of loops, scale of data structures, etc. Hence, power meter
is a better solution for measuring EC precisely. The source-
level EC estimation, which fully considering code structures,
is NOT to substitute for approaches of measuring EC by
instruments, but to locate high EC statements, optimize EC,
or evaluate effects of EC optimization. The source-level
EC estimation approaches as mentioned above are for special
cases, they are not much abstract and universal, and they
did not conclude code structure features to the general and
quantitive models. That is why we propose a code struc-
ture highlighted, universal, coarser-grained and source-level
EC estimation in this paper

III. ENERGY CONSUMPTION MODEL
A task, represented as a program, consists of continuous
statements. Thus, studying source-level EC estimation usu-
ally starts with defining the EC of each statement. However,
we cannot trace the executions of all statements, or statically
analyze EC of all statements exhaustively. As a solution, we
define the concept of Abstract Energy Consumption (AEC).
Definition 1 (Abstract Energy Consumption (AEC)): The

runtime EC of a task is the amount of energy consumed by
the hardware during the execution of task. Runtime EC can
be measured by equipments. In contrast, the AEC of a task
is the amount of consumed energy represented by the static
features of source codes. It is independent from hardware and
runtime environments, so that it may differ from, but should
accord with the runtime EC. AEC is estimated through the
static analysis on code, with joule as the unit.

AEC is a theoretical EC quantification, so it ignores the
runtime situations and environment. The task EC is analogous
to the task performance. Runtime performance of a task is
highly coupled with the input scale, data distribution and
hardware environments, while the static optimization tools
for tasks, such as pclint, can evaluate and optimize abstract
performance according to the code features. The abstract

performance is especially important in programming because
it can help programmer avoid the codes with proper-function
but low-performance. In the same way, the proposed AEC is
also a static measurement. The AEC is not a precise EC
measurement. Also, AEC and runtime EC are different, of
course. However, AEC has four advantages: Frist, it is simple
enough to be estimated by the static analysis; second, it is
effective to represent the differences of consumed energy
among tasks; third, it is beneficial to the task scheduling
and resource allocation approaches; fourth, it highlights the
EC-related features of source codes.

For a task, it is well known that the relation between
the execution time and the execution EC should follow the
physical theorem as it states that EC equals to time multi-
plied by power. This theorem can be applied to any runtime
environment, as shown in Equation (1):

E = power(W )× T (1)

Where the symbol W represents the parameters set which
has effects on computer power; the symbol T means exe-
cution time of a task; the power() represents the function
between computer powers and characteristic parameters.
Computer real-time power shifts dynamically. It depends on
whether the computer is busy or not. The computer’s power is
relatively low when it is idle, and vice versa. In the same way,
the values ofW also varies with time. So that Equation (1) is
a proper approximation. The symbol W contains the repre-
sentative values of characteristic parameters, and power(W )
is also the average value.

According to Equation (1), we define AEC of a task as:

AEC = power(V )× t(n) (2)

In Equation (2):
(1) The symbol n is the number of executing statements.

It relates to the scale of task and input. If the input scale is 1,
then n represents the number of statements in source code.
Fox example, in section 6 the linear-search task has three
statements, then n = 3x if input scale is x.
(2) The function t(n) means the estimated execution time of

n statements. t(n) is a monotonic increasing function with n.
Different statement has different execution time, but we treat
them as the same. For easy derivation, we deem that t(n) ≈ n.

(3) The setV is a subset ofW .V contains parameters which
relates to both code execution and computer power. However,
it ignores the static features of hardware.

The relation between computer power and CPU frequency
is P = Pfix + Pf × f 3. Where Pfix is a constant, represent-
ing powers of other devices except CPU; Pf is CPU power
coefficient, and f is CPU frequency [17]; In the previous
study, computer power relates to CPU utilization ω and CPU
frequency f , as the function pcpu(f , ω) = a1f 3 + a2ωf 3 +
a3ω, where a1, a2, a3 are all hardware specified coefficients.
Most of researches assume that power of computer compo-
nents, except for CPU, are stable [18], also others consider
that working states of computer CPU, motherboard, memory
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and hard disk are all typical features relating to computer
power [19].

The power of common DDR3 (8GB) memory fluctuates
from 4 to 8 watt. There are two working states: idle state
(no data access) and loaded state (data access). The former
one only consumes the minimum energy for maintaining
data in memory, while the latter one requires extra energy
to support reading or writing data. Thus, the memory power
includes I/O power when reading or writing data, and storage
power when just storing data. I/O power is twice of storage
power, which can be explained as that the power of working
state (accessing memory) is twice of that of idle state (only
store data) [20]. We assume idle state power is p, idleness (%)
is d , busy-rate (%) is 1-d , so pmem(d) = p× d + 1.5× p×
(1− d) = 1.5× p− 0.5× p× d = a4d + a5 , where a4, a5
are all hardware specified coefficients.

The power of a hard disk is about 8 watt. A hard disk
consumes energy in three aspects: EC of integrated circuits
and chips; EC to support platters spinning; and EC to move
actuator arm and position read/write head. The former two
account for 90% of the hard disk EC. When the disk is idle
(no read/write), only the latter one is saved [21]. As a result,
power of a hard disk is almost independent from its working
states, together with constant power of other devices, we
define them as constant pother.
According to the analysis above, V = {f , ω, d}, f is CPU

frequency, ω is CPU utilization, d is memory utilization. The
following sections discuss the effects of code structures on f ,
ω, d and t(n). Therefore:

AEC = [pcpu(f , ω)+ pmem(d)+ pother]×t(n)
pcpu(f , ω) = a1f 3 + a2ωf 3 + a3ω
pmem(d) = a4d + a5
pother = a6 (3)

IV. STRUCTURE MODEL
As explained before, EC of a task is not the simple summation
of that of its statements [22]. Statements executed in different
orders consumes different amount of energy. For source-level
estimation, the logical relations among statements, named
as code structures, should be modeled. In this section, we
propose two structural features for the code structures, and
the quantitative relationship between features and EC will
be derived in the next section. We firstly define the state-
ment model because code structure features involve statement
features.
Definition 2 (Calculation Statements and Storage

Statements): A statement is the smallest standalone element
of a task. In Equation (3), the AEC relates to the working
state of CPU and memory, so that the statements are clas-
sified into CPU-depended and I/O-depended. Calculation
statements, including the statements of logical operation,
arithmetic operation and control flow, are CPU-depended;
Storage statements, including the statements of creating,
retrieving, iterating, searching, modifying, and destroying
(deleting) date structures, are I/O-depended.

A. CROSS-DEGREE
The AEC of a task not only relates to the numbers of cal-
culation statements and storage statements, but also relates
to the interleaving frequency between two groups. Ignoring
the concrete features of statements, if a storage (calculation)
statement is adjacently followed by a calculation (storage)
statement, then we consider the two statements have a inter-
leaving (cross), otherwise they are independent. We define
cross-degree as the interleaving frequency of statements.
Definition3 (Cross-Degree): Cross-degree r(n) of a task is

the frequency of the storage statements and the calculation
statements interleaving with each other. We assume that the
executing statements of a task is as a sequence < I1, U1, I2,
U2, . . . , Ir ,Ur >. In whichUi and Ii are the set of calculation
statements and storage statement, respectively, the suffix i is
the order number, and the number of sub-sequences < Ii,
Ui > is r (r ≥ 1). If there are n executing statements
of the task, interleaving frequency is r /n, then cross-degree
r(n) = r /n.
Fig. 1 shows examples of cross-degree and statement

sequence.

FIGURE 1. Example of Cross-degree.

Different cross-degree result in different arrangements of
statements, what is more, the cross-degree has effects on EC
of the task. The reasons are as follows: CPU power correlates
positively with CPU frequency. According to CPU Frequency
Scaling1 and CPU Frequency Governor2 techniques, CPU
actively decreases its frequency in order to save energy when
its utilization is lower. Consequently, on one hand, the cross-
degree is lower when sequential storage statements are exe-
cuted, and CPU is continuously idle thus Scaling technique is
activated, as a result, CPU keeps in low-frequency and low-
power mode; On the other hand, the cross-degree is higher
when storage statements and calculation statements are alter-
natively executed one by another, and CPU is continuously
busy (idle time slots are very short). Thus, scaling technique
hardly works,3 as a result, CPU keeps in high-frequency and
high-power mode.

CPU power correlates positively with CPU utilization.
For example, a multi-core processor partly closes its cores
and its EC decreases linearly when CPU utilization is low.

1https://en.wikipedia.org/wiki/Frequency_scaling
2https://en.wikipedia.org/wiki/Governor_%28device%29#Computing, 2016.
3Linux provides CPU Frequency Governor technology, sample interval of

CPU utilization rate is at millisecond level.
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However, these features only relate to the number of storage
statements, rather than their execution order. In other words,
code transformationmay changes the cross-degree rather than
the number of calculation statements and storage statements,
therefore, the overall workload of CPU is fixed while only the
temporal distribution of workload is updated.

B. REUSE-DEGREE
Locality is a term for the phenomenon in which the same
values, or related storage locations, are frequently accessed.
Temporal locality refers to the reuse of specific data, and/or
resources, within a relatively small time duration. Spatial
locality refers to the use of data elements within relatively
close storage locations. The layered storages, from the fastest
one to the slowest one, is as ‘‘register→ cache (L1 − L3)→
primary memory → hard disk → remote memory’’. Level
by level, the I/O performance and price decrease, while the
capacity increases. When a locality-optimized task is run-
ning, most data is accessed in cache while stored in hard
disk, it takes both advantages of higher level and lower level
storages. Statistics show that hit rate of cache can be up
to 90%.

Locality has effects on EC of a task. Lower locality
means higher cache-miss rate. On one hand, cache-misses
increase the utilization of the memory, as explained previ-
ously, the power of memory in loaded state doubles than that
in idle state. On the other hand, cache-misses break down the
I/O performance and increase the possibility of CPU await
state, while the CPU’s idleness wastes energy.

Let H be the cache size. The data is stored on disks but is
accessed via the cache. Cache uses queue (first-in-first-out)
to manage data. When a CPU tries to access data, it firstly
checks whether the required data exists in the cache. If so,
cache hits, the data is accessed directly from the cache, and
the data is moved to the tail of the queue. Otherwise, cache
misses, CPU accessesmemory to retrieve the data, remove the
head of the queue, and put the data in the tail of the queue.
Therefore, whether the cache-miss occurs or not depends on
the ‘‘interval’’ between the current access and the previous
access. If there are too many other data been accessed in
the interval, then the data item is replaced and cache-miss
occurs. The ‘‘interval’’ , defined as reuse-distance, is not
measured by duration, but by size of distinct data item be
accessed.
Definition 4 (Reuse-Distance): Assume that {xt |t =

0, 1, 2 . . .} is an execution sequence of storage statements.
The symbol t represents the logical clock. ∀i < j, xi happens
before xj. A(xt ) is the data item been accessed by statement
xt . |A(xt )| is data size of A(xt ). The logic ⊕ operator is as:
If A(xi) = A(xj), A(xi) ⊕ A(xj) = |A(xi)|; If A(xi) 6= A(xj),
A(xi) ⊕ A(xj) = |A(xi)| + |A(xj)|. Then, if A(xi) = A(xj),
and ∀k ∈ (i, j), A(xk ) 6= A(xi), let reuse-distance of xj be
d(xj), or denoted as dj, then dj = A(xi+1)⊕ A(xi+2)⊕ . . .⊕

A(xj−1). For estimating easily, assuming the size of each data
item is equal and unity, then dj = count(distinct(A(xi+1),
A(xi+2), . . . ,A(xj−1))). If !∃A(xi) = A(xj), dj = +∞.

If the reuse-distance is less than H (the size of a cache),
then the cache hits, and vice versa. However, reuse-distance
is theoretical and cannot be calculated by statically analyzing
source codes because the sizes of data items cannot be accu-
rately estimated. As a result, we assuming the sizes of data
item are equal in definition 4.
Definition 5 (Reuse-Degree): Reuse-degree u(n) is defined

as the possibility of cache-hit when n storage statements
are executing. In a task containing n storage statements, the
function h(i) returns the number of statements whose reuse-
distance is i, and H represents the maximum number of the
data items in cache; then reuse-degree u(n) is :

u(n) =
1
n

∫ H

0
h(x)dx (4)

Reuse-distance histogram can be drawn according to the
function h(). For any storage statement xi in this function,
the possibility of reuse-degree di being equal to d is h(d)/n.
Cache-miss can be predicted through reuse-distance, it hap-
pens when dj > H . From Fig. 2-(a), the ratio of ‘‘the area
of curve h with reuse-distance lower than H (cache size)’’ to
‘‘n’’ is the cache hit rate.

FIGURE 2. Relationship among Reuse Distance, Cache Size H and Cache
Missing Rate.

In theory, we could statically analyze code, count
sequences of storage statements, calculate the distribution
of reuse-distance, deduce the h curve by mathematical
approaches, and then calculate reuse-degree according to
Equation (4). In practice, ‘‘h curve’’ is not a continuous
curve but a distribution histogram. Fig. 2-(b) is the h curve
concluded from a real case. We calculate the reuse-degree by
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accumulating the discrete frequencies, such as Equation (5).
In order to be consistent with the definition of cross-degree

(r(n) = r /n), let u =
H∑
i=o

h(i), u(n) = u/n.

Let u =
H∑
i=0

h(i) u(n) =
1
n

H∑
i=0

h(i) =u/n (5)

V. REGULARITY
In this section, we will, according to Equation (3), derive the
quantitative relationship between AEC and the cross-degree
as well as the reuse-degree. We also propose the quantified
estimation of AEC. Table 1 lists the major notations and their
meanings

TABLE 1. Description of notation.

Given a task, AEC is derived according to the equation
AEC = power(V )× t(n)= p(r(n), u(n))× t(n). In the equa-
tion, t(n), r(n), and u(n) represent the execution time, cross-
degree and reuse-degree, respectively. They are all known
functions. As a result, the key to the derivation is to determine
the expression of power(V ).

Firstly, as mentioned in section 3, Equation (6) shows the
power(V ) as:

power(V ) = pcpu(f , ω)+ pmem(d)+ pother

= a1f 3 + a2ωf 3 + a3ω+a4d + a5 + a6 (6)

In Equation (6), f is CPU frequency, ω is CPU utilization,
and a1 ∼ a6 are all hardware-specific coefficients. Constant
a6 represents power of computer components with approxi-
mately stable power.

Secondly, the cross-degree has effects on the CPU fre-
quency, CPU power, and further EC through CPU Fre-
quency Scaling technique. As a result, if ω is continuously
low, the CPU Frequency Scaling will reduce f value. The
cross-degree r(n) affects the trigger of CPU throttling. The
higher the cross-degree is, the smaller possibility of ω being
continuously low, which means the possibility of throttling
becomes lower. Let r(n) = r /n, and cross-degree r0 be the
threshold of enabling throttling, therefore, when r < r0,

f = scal(ω); when r ≥ r0, f = fmax . Thus, there
is a functional relation between CPU utilization ω and
cross-degree r(n), assuming ω = idel(r(n)). pcpu(f ,ω) =
pcpu(scal(idel(r(n))), idel(r(n))).
Next, reuse-degree represents the possibility of cache-hit.

It affects the memory utilization d . As a result, we assume
that the functional relation between the reuse-degree u(n)
and the memory utilization d is d = miss(u(n)). Then
pmem(d) = pmem(miss (u(n))). Since r(n) and u(n) are both
functions about n, let a p(n) be the relationship between n and
power (V ):

power(V ) = pcpu(scal(idel(r(n))), idel(r(n)))

+ pmem(miss(u(n)))+ pother

= p(n) (7)

After that, in Equation (6), r(n) = r /n and u(n) = u/n.
The scal() and miss() are monotone increasing linear func-
tions [23]; If r ≥ r0, idel() is constant. If r < r0, there is
a constant k which makes ω = idel(r(n)) = O(k × r(n)).
We adopt an upper-bound function of idel() to substitute the
unknown idel(). As a result, in Equation (6), power(), scal(),
miss() and idel() are all known.

Then, it is known from Equation (6):

p(n) = pcpu(scal(idel(r(n))), idel(r(n)))

+ pmem(miss(u(n)))+ pother (r < r0)

p(n) = Pmax + pmem(miss(u(n)))+ pother (r ≥ r0) (8)

Combined with Equation (6), by merging the coefficients,
we derivate p(n) as the following format:

p(n) = b1r(n)4 + b2r(n)3 + b3r(n)+ b4u(n)+b5 (r<r0)

p(n) = Pmax + b4u(n)+ b5 (r ≥ r0)

r(n) = r/n

u(n) = u/n (b1, b2, b3, b4, b5 are constants,Pmax >0) (9)

To conclude, Pmax , b1-b5 are both constants relating to the
runtime environments. Therefore, we merge them into c1-c6.
The r , u, n, t(n) are all variables related to the source codes,
which means that the values of these variables are predefined.
Remaining the constants r and u, variable n and t(n), equation
e(n) = p(n)× t(n) is transformed as follows:

AEC(r, u, n)

= (c1r4n−4 + c2r3n−3 + c3(r + u)n
−1
+ c4)× t(n) (r<r0)

AEC(r, u, n)

= (c5un
−1
+ c6)× t(n) (r≥r0)

(c1, c2, c3, c4, c5, c6 are all code-independent constants)

(10)

In Equation (10), the main part of EC is the product of
the constant power (c4, c6) and time, while the effect of the
code structure on EC is reflected by the effect of exponent
of n on the constant power (c4, c6). On one hand, if r <

r0, c3 includes r (cross-degree) as well as u (reuse-degree),
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TABLE 2. The experimental environment.

which are major effects of code structure on EC, and c4 is
the power of components except CPU and memory. On the
other hand, if r ≥ r0, c5 includes only u (reuse-degree),
in such situation, the CPU is fully loaded. The effect of the
code structure on EC is mainly reflected by the variation of
memory power, and c6 is the power of components except the
memory.

Finally, t(n) is studied. The execution time of a task
relates to the input scale, number of execution statements and
execution time of each statement. First of all, the relation
of input scale and execution time can be measured through
algorithm complexity. However, this reflects the differences
of execution times of statements eventually, the same as be
reflected by the variation of n.Next, the number of executing
statements is still not equivalent to that of statements in
source codes even if the input scale is 1. Some statements
are not executed and others are executed more than one time
due to the branches and the loops. According to the proper
approximation of AEC, let all the statements be executed
only once. At last, different execution time of statements are
ignored and simplified to 1 unit, then t(n) = n.
In conclusion, e(n) is as:

e(n) = c1r4n−3 + c2r3n−2 + c3(r + u)+c4n (r < r0)

e(n) = c5u+c6n (r ≥ r0)

(c1, c2, c3, c4, c5, c6 are constants) (11)

VI. EXPERIMENTS
In this section, we design a group of experiments to verify
the relationship between EC and cross-degree, reuse-degree,
as well as AEC, respectively.

1) SETUP
We perform experiments in a real environments, and measure
the EC of computer during the executions of tasks. The
experimental environment, as shown in Table 2 and Table 3,
includes the experimental computer, monitoring computer,
data processing and analyzing tasks as cases.

TABLE 3. Description of the test use cases set (x is input scale, expressed
with one decimal points).

FIGURE 3. Statements EC of Different Cross-degrees.

FIGURE 4. Statements EC of Different Reuse-degrees.

2) VERIFICATION OF THE RELATIONSHIP BETWEEN
CROSS-DEGREE AND TASK EC
This experiment is designed to verify the effect of cross-
degree on the EC. The test cases are not real algorithms, they
contains the fixed number of statements. With the different
proportions of storage statements (40%∼85%), we could
simply change the cross-degrees as the zero-cross, semi-cross
and full-cross. The Zero-cross means executing all storage
statements firstly and executing all calculation statements
secondly; the full-cross means that each storage (calcula-
tion) statement and each calculation (storage) statement are
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FIGURE 5. In Different Algorithms and Input Scale, Values of EC, AEC and EC/AEC.

executed alternately (statement by statement)4; and the semi-
cross is some degree in between.5

In Fig. 3, the horizontal axis represents the proportions
of storage statements; and the vertical axis represents the
measured EC consumed by the experimental computer on
which test cases are executed. On one hand, the EC increases
obviously with the increment of the cross-degree in the same
proportions of storage statements. It is close to a linear rela-
tion. On the other hand, in the conditions of same cross-
degree, the EC positively correlates with the proportions
of storage statements since the storage statements consume
more energy than the calculation statements.

3) VERIFICATION OF THE RELATIONSHIP BETWEEN
REUSE-DEGREE AND TASK EC
This experiment is designed to verify the effect of reuse-
degree on the EC. We prepare a task containing only the
storage statements which simply access an object in a large
linked list. Based on it, we measure the EC in various
reuse-distances adjusted by the different memory accessing
ordersand various size of accessed objects. The objects are
small-size (byte[100]), medium-size(byte[200]) and large-
size (byte[400]). The enlargement of object sizes is equivalent
to the reduction of the maximum numbers of objects stored
in cache, the same as reduction of cache size (H ), and vice
versa.

In Fig. 4, the horizontal axis represents reuse-degree, and
the vertical axis represents measured EC. For the same test
case, the EC increases with the increment of reuse-degree.
It is close to a linear relation, and the tendency is obvious.
The memory power is small in proportion compared to the
entire computer power. However, the CPU is idle and its

4Full-cross: Assuming there are 2 calculation statements and 8 storage
statements. Each calculation statement is followed by 4 storage statements.
Vice versa.

5Semi-cross: Assuming there are 2 calculation statements and 8 storage
statements. First 4 storage statements are followed by 2 calculation state-
ments, and they are followed by another 4 storage statements.

power is lower since the test cases are all storage statements.
As a result, the variations of memory powers have relatively
obvious effects on EC. For different test cases, theoretically,
the case that accesses the larger objects runs longer and
consumes more energy. However, according to the Fig.4,
EC of three cases are similar, because changing sizes of
objects is equivalent to changing sizes of caches. If the reuse-
degree remains the same, the case accessing large objects
must contains less statements. So that the effects of accessing
large object (small cache size) on EC are offset by effects of
less statements on EC.

4) VERIFICATION OF THE CONSISTENCY OF AEC AND EC
To verify whether the AEC is consistent with EC, we compare
the measured ECs and estimated AECs of five cases when
the input scale increases. AEC represent the EC of tasks
properly if the tendency of AEC and EC are consistent, and
also the ratios of EC and AEC are relative stable. Search,
Insert Sort, Merge Sort, LCS, Floyd are selected as the test
cases, and their EC, AEC, and EC/AEC values are compared
with different input scales (number of data items x = 100,
200, 300, . . . , 1000).We expect that the values of EC/AEC of
the same case under different scales should be approximately
equal, or their variances should be small.

Comparing Fig. 5-(a) and 5-(b) ( logarithmic coordinates),
the tendencies of both EC and AEC values for the five tasks
are consistent6 no matter that their values are not equal. EC
and AEC represent the differences of five tasks consistently.
In Fig. 5-(c), the curves are almost stable. The mean val-
ues of EC/AEC for Search, Insert Sort, Merge Sort, LCS,
Floyd are 0.0076, 0.0059, 0.0067, 0.0050, and 0.0059, respec-
tively, meanwhile the standard deviation of them is 0.00026,
0.00027, 0.00024, 0.00028, and 0.00029 respectively. The
experimental results shows that the proposed AEC can not
only statically estimate, but also compare the EC of tasks.

6In fact, measured EC fluctuates, but the fluctuating is not obvious on
logarithmic coordinates, while AEC curve accords with function curve.
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VII. CONCLUSION AND FUTURE WORK
The paper proposes a static, code-structures highlighted
EC estimation for cloud computing tasks. Firstly, the abstract
EC model, named as AEC, is proposed as a simplified
sources-level EC model. Then, the EC of a single statement
is defined. Based on the model, the cross- degree and reuse-
degree are proposed to quantify the effects of the code struc-
tures on EC. Next, the quantitative relationships between
AEC and the cross-degree as well as the reuse-degree
are derived, and an estimation function of AEC is given.
Finally, the effectiveness of the AEC is verified through the
designed experiments. In conclusion, AEC has the following
advantages:
(1) Independence: It does not depend on the compiling

environments and runtime environments.
(2) Rich features of code structure: The energy-related

code structure features are well abstracted and
modeled.

(3) Static estimation: Compiling or executing task is
unnecessary. Instead, it can measure EC only by ana-
lyzing source codes.

(4) Reasonable precision: The precision requirement is
appropriately relaxed by considering the consistency of
the estimated values and actual values as well as the
variation trend.

(5) Fairness: The runtime environment does not affect the
fairness of AEC. In the same context, the differences of
AEC among tasks should be almost consistent with the
differences of actual EC, or they should satisfy a stable
ratio.

On one hand, the AEC model does not fully consider
the differences of statements, which will be extended in our
future work. There are many similar or related researches
to define a classification model of statements EC, thus, it
is feasible to apply them to the source-level EC estimation.
On the other hand, although the general estimation is easy to
be applied to various cloud computing tasks, the features of
a certain kind of tasks will also be considered in future. For
example in the battery-powered computing environment such
as wireless sensor networks [24], the proposed approach has
a better application if AEC can be adapted to the tasks in the
sensor networks.
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