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ABSTRACT The recent advent of electric vehicles (EVs) marks the beginning of a new positive era in
the transportation sector. Although the environmental benefits of EVs are well-known today, planning and
managing EV charging infrastructure are activities that are still not well-understood. In this paper, we are
investigating how the so-called EV-enabled parking lot, a parking lot that is equipped with a certain number
of chargers, can define an appropriate parking policy in such a way that satisfies two challenges: EV owners’
needs for recharging as well as the parking lot operator’s goal of profit maximization. Concretely, we present
three parking policies that are able to simultaneously deal with both EVs and internal combustion engine
vehicles. Detailed sensitivity analysis, based on real-world data and simulations, evaluates the proposed
parking policies in a case study concerning parking lots in Melbourne, Australia. This paper produces results
that are highly prescriptive in nature because they inform a decision maker under which circumstances a
certain parking policy operates optimally. Most notably, we find that the dynamic parking policy, which
takes the advantage of advanced information technology (IT) and charging infrastructure by dynamically
changing the role of parking spots with chargers, often outperforms the other two parking policies, because
it maximizes the profit and minimizes the chance of cars being rejected by the parking lot. We also discuss
howmaking a few parking spots EV-exclusive might be a good policy when the number of available chargers
is small and/or the required IT infrastructure is not in place for using the dynamic policy. We conclude this
paper proposing a technology roadmap for transforming parking lots into smart EV-enabled parking lots
based on the three studied parking policies.

INDEX TERMS Electric vehicles, parking lot, parking policy, decision making, simulation, data analysis.

I. INTRODUCTION
Electric vehicles (EVs) are becoming an increasingly popular
transportation choice, and this is greatly affecting society as a
whole regardless of whether or not one is still driving a con-
ventional vehicle with an internal combustion engine (ICV).
For example, on the negative side, the ‘‘refueling’’ with elec-
tricity at charging stations rather than with gasoline/diesel
at gas stations might cause the electricity grid to overload.
On the other hand, EVs are less harmful to the environment in
a sense that they produce much less noise and harmful gases
when compared to ICVs.

This paradigm shift introduced by EVs results not only
in changes in vehicle owners’ behavior, but it also causes

a redefinition of governmental and business policies. For
example, the last few years have witnessed a number of local
and/or national governmental policies aimed at subsidizing
purchases of EVs [1]–[4]. This led to a substantial increase in
EV market penetration in certain regions of the world such as
Norway and the Netherlands [5]. Furthermore, governments
and businesses (e.g., parking lots and car makers) consistently
promote EVs by offering subsidized (free) charging.

With more than a million EVs on the roads worldwide
in 2016 [6], one can safely say that the problem of technology
acceptance regarding EVs is becoming less of an issue. That
said, the key motivation behind this work is the fact that a
rapidly growing number of EVs fundamentally changes not

944
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-8241-4116
https://orcid.org/0000-0001-7070-9283


J. Babic et al.: Evaluating Policies for Parking Lots Handling Electric Vehicles

only the way people commute to work, but also business
models surrounding the transportation sector. In particular,
in this work, we are focusing on parking lots that have a
potential to offer a parking service to ICVs and EVs alongside
a charging service to EVs.

Even though one can argue that a parking lot operator
may invest in a few charging stations offering free charg-
ing services in the early EV adoption stages, it is obvious
that such an approach is not sustainable in a long-term.
It is now clear that the EV charging infrastructure develop-
ment and management has to be approached in a systematic
manner, as opposed to a previous common practice where
governments and businesses installed charging stations at
semi-random places aiming at maximizing EVmarketing and
popularization. Furthermore, charging cannot remain free for
EV owners since somebody has to pay for the electricity
cost.

As EV charging is a time-consuming process that can take
from many minutes to several hours, the car parking aspect
becomes a critical point to consider in this process. In spirit,
a charging station can be seen as a parking lot equipped
with chargers and, likewise, a parking lot with chargers
can be seen as a charging station. That said, we propose
a solution on how to redesign parking policies in parking
lots with EV chargers in a way that satisfies EV owners’
needs for recharging as well as the parking lot operator’s goal
of profit maximization. Our solution systematically tackles
the problems of how to manage parking lots and charging
stations.

Within the scope of this work, it is important to explain
our definition of parking policies. Following the definitions
by Young andMiles [7] and Ison and Rye [8], we use the term
parking policy to refer to a policy that determines the price,
supply, duration, and location of a parking event. Our primary
focus in this paper when looking for the optimal parking
policies is on the financial aspect of a parking lot, meaning
that the profit of a parking lot operator is the key metric
to determine whether a certain parking policy is performing
better than others.

The main contribution of this paper is twofold:
• a technology roadmap for transforming parking lots into
smart EV-enabled parking lots, including the proposal
of three novel parking policies for parking lots handling
EVs, which can be used by parking lot operators to cope
not only with ICVs, but with EVs as well;

• an evaluation method, based on real-world data and sim-
ulations, for assessing the efficiency of parking policies
in different contexts with respect to EV owners’ needs
for recharging and the parking lot operator’s goal of
profit maximization.

We operationalize our contributions and showcase the
proposed technology roadmap via a case study concerning
parking lots in Melbourne, Australia. Specifically, we pro-
vide a detailed sensitivity analysis of the proposed parking
policies as well as set recommendations for short-, mid- and
long-term transformations of current Melbourne parking

lots into smart EV-enabled parking lots. In our simula-
tions, we found that the charging-exclusive parking pol-
icy (CHARG-EXCL), which only allows EVs that actually
use the charging service to park on the spots equipped with
chargers, is optimal for parking lots that have less charg-
ers than what is required to satisfy EV owners’ charging
demand. On the other hand, the EV-exclusive parking pol-
icy (EV-EXCL), which extends CHARG-EXCL by allowing
EVs to be parked in a parking spot with a charger without
actually using the charging service, is better suited for parking
lots that have a bit of redundancy in the number of chargers
since, under that policy, the profit of a parking lot operator
increases and the number of cars being rejected decreases.
The dynamic parking policy, which under certain conditions
may allow ICVs to park on parking spots with chargers,
outperforms the previous two parking policies when the num-
ber of chargers increases substantially because it maximizes
profit and minimizes rejection rate.

Besides this introductory section, the rest of this paper is
organized as follows. Section II positions our work against the
relevant literature. Section III describes the need for redesign-
ing parking policies that are used in parking lots containing
EV chargers as well as it presents the methodology we used
to evaluate the parking policies. We note that all the variables
mentioned throughout the rest of the paper are defined in
Section III-B. Section IV formalizes algorithmically the three
EV-aware parking policies that we consider in this work.
Section V presents a case study based upon real-world data
from a parking lot inMelbourne, Australia. SectionVI reveals
the key insights from performed sensitivity analysis. Finally,
Section VII concludes the paper and provides an outlook on
future work.

II. RELATED WORK
Broadly speaking, the scientific literature related to park-
ing was relatively scarce until the mid-nineties [9]. There-
after, several research papers have elaborated upon theoretical
aspects of parking. For example, Arnott [10] analyzed the
parking garage problem where spatial competition between
parking garages exists. From an economic-theory perspec-
tive, the author looked into the impact of adding on-street
parking as well as mass transit on a central business district’s
parking policy. Following the importance of the theoretical
work, Arnott also emphasized the need for parking simulation
models [11], [12] to forecast the effects of different park-
ing policies with the aim of finding an efficient downtown
parking policy. A more comprehensive theoretical work on
parking are offered by Bartner [13], who focused on North
American parking planning, and by Mingardo et al. [9], who
conceptualized parking for European territories.

However, what seems to be noticeable in the current liter-
ature is the fact that the vast majority of the studies related
to parking policies do not take into account peculiarities of
EVs. This is perhaps not surprising as trends in the automotive
industry have been traditionally aligned with conventional
vehicles with internal combustion engines.
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For example, Tsai and Chu [14] proposed a reservation
parking policy in which a vehicle owner is able to reserve
a parking spot prior to her/his arrival at the parking lot.
With two different parking lots used as case studies, their
numerical simulation results showed the benefits of having
occupancy-dependent reservation prices. The benefits are not
only reflected through the parking lot operator’s revenue, but
also with the reduced amount of pollutant generated from
driving a car while searching for a parking spot.

In another work, van Ommeren et al. [15] focused on a
parking policy that includes on-street parking permits. The
focus of the research was in determining users’ willingness-
to-pay for an on-street parking permit by incorporating cruis-
ing costs and house price information, which in turn was used
as a proxy for the value of a private parking space.

Kotb et al. [16] proposed a parking system based on math-
ematical modeling using mixed-integer linear programming
with the aim of improving the management of current parking
systems. Notably, the model proposes parking reservations
and pricing policies with the lowest cost and search time for
drivers and the highest revenue and resource management for
parking operators.

From a methodological point of view, Benenson et al. [17]
showed how an agent-based model can be used to simulate
parking in a city. In particular, the model is able to simulate
the behavior of each driver situated in a spacial context. Even
though the model scenarios are prone to many assumptions,
e.g., parking demand distributions are arbitrary and decision
rules of agents are artificial, the simulation-based approach
led the authors to interesting conclusions regarding the emer-
gent behavior from a set of interacting agents. In particular,
the authors found out that adding several small parking lots
in dense areas of central Tel Aviv (Isreal) leads to a decrease
in the parking duration for the average car-owning resident.

All things considered, even with the recent advent of EVs,
it seems there is limited research on parking policies that
take into account EVs as crucial entities in modern parking
systems. On the other hand, there seems to be a considerable
interest in highly-relevant EV topics such as the impact of
EVs on the electric power system [18], [19], EV charging
scheduling [20]–[23], and the forecast of EV sales [24]–[26].
For example, Mozafar et al. [27] investigated the impact of
electric vehicles on the power system by proposing a com-
prehensive model that is able to provide insights on the
effects of power exchange between the grid and EVs on
the power system’s demand profile as well as on the stabil-
ity and reliability of the distribution network. Furthermore,
Amini et al. [28] showcased how important role EV parking
lots can play in the power systems by proposing a framework
for simultaneous allocation of EV parking lots and distributed
renewable resources considering the economic benefits of
parking lot investors as well as the technical constraints of
the distribution network operator.

Coming back to parking policies, in order to show the
importance of designing parking policies with EVs in mind,
Bonges and Lusk [29] found out that EV-only parking policy

is beneficial for increasing EV sales and lowering the range
anxiety of EV owners. These conclusions are consistent with
the insights found by Faria et al. [30]. In particular, these
authors used the net present value model to illustrate eco-
nomic and environmental benefits of electric vehicle parking.

In contrast to the existingwork, which focus on quantifying
the impact of parking policies that are designed with conven-
tional vehicles in mind, our work is novel in a sense that it
proposes three parking policies for EV-enabled parking lots
that are compatible with mixed scenarios, where both EVs
and non-EVs co-exist. Furthermore, we evaluate the proposed
policies by using a simulation-based approach based on a
real-world setting in Melbourne, Australia.

III. TRANSFORMING A PARKING LOT INTO A SMART
ELECTRIC VEHICLE ENABLED PARKING LOT
Among the several preceding work on parking poli-
cies [10], [13],Mingardo et al. [9] discussed the development
of parking policies in the most systematic way. Most notably,
Mingardo et al. identified three crucial phases of the parking
policy development in Europe.

In the first phase, parking policies addressed the absence
of parking measures by introducing the basic parking regula-
tions. For example, the parking spots in this phase are clearly
marked and there also may be rules that restrict vehicles to
park during a certain period of time. Such information were
communicated in an old-fashioned, non-digital way (e.g.,
parking signs).

The second phase marked the introduction of parking pric-
ing aiming at controlling car usage and traffic. From the
perspective of information and communication technologies,
the first parking-related information system emerged through
digital displays that indicate the number of available parking
spots in a certain facility (e.g., parking garage or parking lot).

Finally, the third phase describes the future trends in the
parking policy development. The focal point in this phase is
placed on managing parking demand through elements such
as advanced pricing schemes, multiple use of parking facil-
ities and extensive reliance on information technology (IT),
e.g., guiding vehicle owners to an available spot.

Although the scope of Mingardo et al. research is limited
to Europe and the term parking policy is used in a broader,
urban-level context, we argue that the emergent theory of
parking policy development is general to other contexts as
well, i.e., it is location-agnostic and applicable to the setting
we explain later.

From the described evolution of parking policies, one can
notice that advancements in parking policy design is driven
by societal needs (e.g., undersupply of parking spots) and
technological progress (e.g., introduction of IT systems).
As we are currently witnessing one of the most disruptive
technological changes in the history of personal mobility,
namely the introduction of EVs on a mass scale, it is rather
expected that a further redesign of parking policies is needed.
The major difference introduced by EVs is the fact that they
need to be charged while parked since the charging process
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FIGURE 1. Proposed parking lot transformation phases.

is time consuming. Clearly, the underlying assumption is that
the parking spot is equipped with a charger.

In this work, we propose a possible solution for an
upgrade of current parking policies where a substantial part
of users are EV owners. In other words, we are proposing
novel parking policies for parking lots upgraded with EV
chargers on a certain number of parking spots. Following
Mingardo et al. [9], we introduce these policies as potential
phases a traditional parking lot should go through.

A. TRANSFORMATION PHASES
Fig. 1 presents the parking lot transformation phases,
each of which is associated with a certain parking policy.
Furthermore, note that each transition between phases is asso-
ciated with necessary investments in either charging infras-
tructure (Phase 2) or advanced IT infrastructure (Phase 3).

The first phase is characterized by a parking lot in a form
that is most often available today. Trivially, the parking lot
is equipped with parking spots, which have the sole purpose
of providing the parking service for a certain price per hour.
Historically speaking, those parking spots have been most
often occupied by internal combustion vehicles (ICVs). It is
important to mention that, for the remainder of this work,
we refer to ICVs as non-EVs so as to avoid ambiguity related
to types of vehicles. Consequently, we refer to such parking
spots as non-EV spots. The parking lot operates by the default
parking policy (DEFAULT) presented in Fig. 2, and briefly
described and formalized in Section IV.

In the second phase, the parking lot, now called the
EV-enabled parking lot (EVPL), introduces parking spots

FIGURE 2. Flowchart of the default parking policy.

with installed chargers, i.e., EV spots. Such parking spots are
transformed from non-EV spots by investments in charging
infrastructure. As such, EV spots are used to offer the charg-
ing service for a certain premium price per hour where an
EV can be charged. It is obvious that the DEFAULT policy
is no longer appropriate since, for example, EVs should have
the highest priority for parking in EV spots. This leads to the
conclusion that new parking policies need to be developed.

Finally, the third phase marks the successful transition of
the EVPL into the smart EV-enabled parking lot (S-EVPL).
The emphasis in this phase is placed on the smart manage-
ment of parking spots thanks to the introduction of advanced
IT infrastructure. Following the ideas of a proactive planning
of parking facilities by Mingardo et al. [9], the S-EVPL has
EV spots that are flexible, i.e., the role of EV spots may be
changed in real-time given the circumstances the S-EVPL is
currently in. Naturally, to support such smart management,
further innovation in parking policies is needed.
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FIGURE 3. Electric vehicle enabled parking lot ecosystem, adapted
from [31].

B. (SMART) ELECTRIC VEHICLE ENABLED PARKING
LOT ECOSYSTEM
Fig. 3 shows the (S-)EVPL ecosystem comprising of three
types of entities: 1) the (smart) electric vehicle enabled park-
ing lot; 2) cars (EVs and non-EVs); and 3) an electricity
market (EM).

Recall that the key aspect behind the EVPL is its ability not
only to provide the parking service to cars, but also to offer the
charging service to EVs as well. The S-EVPL offers the same
services as the EVPL, while also enhancing the management
of the parking spots. That being said, the S-EVPL is defined
in terms of the following variables:
• nEV is the number of parking spots with installed
chargers, i.e., EV spots;

• nEVCurr is the number of EV spots that are currently
occupied;

• nnonEV is the number of regular parking spots, i.e.,
non-EV spots;

• nnonEVCurr is the number of non-EV spots that are
currently occupied;

• ntotal is the total number of parking spots in the S-EVPL,
i.e., nEV + nnonEV ;

• ppark is the price per hour a car pays for consuming the
parking service;

• pEV is the premium price per hour an EV pays for
consuming the charging service while being parked in
an EV spot.

Within the scope of this work, we define a car through the
following two variables:
• carType is the type of the car entering the S-EVPL, i.e.,
EV or non-EV;

• preservation is the maximum reservation price per hour
a car owner is willing to pay for the charging service.
Obviously, preservation = 0money units per hour for non-
EVs.

Regarding the parking service, it is important to men-
tion that a car owner does not have a reservation price for
parking. Hence, car owners implicitly accepts the underlying
ppark . That modeling choice is aligned with our data-driven
approach in that non-parking events, which could be used
as a proxy for calculating willingness to pay for the parking

service, are often non-existent in parking data sets.
Finally, the electricity market provides electricity for

the (S-)EVPL for the sake of charging parked EVs. The
electricity market can have time-varying prices per MWh and
it is assumed that the (S-)EVPL can procure the necessary
amount of electricity for such a price.

C. METHODOLOGICAL CONSIDERATIONS
Given the above setting, our goal is to find suitable parking
policies given different scenarios. One potential approach to
find the best policies in a scenario could be by defining an
optimization program. However, this would be challenging
given that, apart from primarily focusing on profit, we also
consider other objectives in our work, including charging uti-
lization as well as rejection rate (see Section V-B). Moreover,
our results are highly dependent on several variables that can
be extremely stochastic, such as the rates at which cars arrive
at the underlying parking lot, parking durations, and electric-
ity prices. That said, we rely on simulations to find optimal
parking policies, which are known to be particularly suitable
for studying emergent properties of highly dynamic and com-
plex systems [32], [33]. This statement is consistent with the
work by Davis et al. [34] who explain that simulation models
are able to shed light on complex theoretical relationships
among entities, even when the relevant empirical data might
be missing.

In theory, there can be an infinite number of parking poli-
cies. In Section IV, we describe the policies we focus on
in this paper, which are realistic in a sense that they draw
inspiration from the way the charging service is currently
offered (e.g., dedicated parking spots with chargers where
non-EVs cannot park).

We now explain our approach by describing the key steps
in the simulation process. First, we define the entities and
their behavior in our simulation model via algorithms. Next,
we configure the experiments by instantiating the simulation
model with real-life data. The next step is to run many differ-
ent scenarios given the experimental configuration, e.g., run
distinct scenarios having different EV shares. Importantly,
due to the stochastic nature of the simulation model (i.e., each
simulation run can produce different results), each scenario is
replicated a number of times, and the analysis is performed
based on average values resulting from each scenario. We use
these average values to evaluate the parking policies under
different scenarios.

To run our simulations and assess the performance of
the parking policies, we use the Electric Vehicle-enabled
Parking Lot simulator (EVPL simulator) developed by
Babic et al. [35]. Most notably, the EVPL simulator allows
one to configure, instantiate, run and reason upon a simu-
lation model that captures the underlying dynamics among
entities from the (S-)EVPL ecosystem. Recall from Fig. 3 that
such entities include the (S-)EVPL, cars that can be EVs and
non-EVs as well as the electricity market.

Fig. 4 shows the simulation model from the EVPL simu-
lator, which was designed following the principles of agent-
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FIGURE 4. Simulator artifact used for evaluation of different parking
policies.

based modeling and discrete-event simulations. One can
immediately notice that each of the entities from the EVPL
ecosystem is represented as an agent in the simulation model.
The focus of this study, i.e., the parking policies, are imple-
mented as modules within the EVPL agent in the simulator.

In short, the simulator works as follows. First, it estimates
arrival and departure rates per hour from historical parking
data concerning a particular parking lot. Based on a queuing
theory model, the simulator then simulates the arrival and
departure of cars to/from the parking lot. A fraction of these
cars are EVs, which is determined by a free-parameter in the
simulations. Once an EV arrives at the parking lot, it must
obey the parking lot’s parking policy. Each EV owner has
a reservation price that is derived based on the EV’s battery
capacity, battery status, and a reference electricity price. That
reservation price determines how much the EV owner is
willing to pay for the charging service. Specifically, if the
reservation price is higher than the charging service fee,
then the EV owner will be willing to pay for the charging
service. When that happens and an EV spot is available,
the parking lot must then provide electricity to charge the
EV battery, and the cost of that electricity to the parking lot
is determined according to the prices in a suitable electric-
ity market. Since our simulations are based on parking lots
located in Melbourne, Australia, the electricity cost is then
determined according to the prices in the Australian Energy
Market Operator (AEMO) at the time the charging happens.
For the sake of brevity, we refer the interested reader to the
paper in [35] for more specific details on the EVPL simulator.

IV. PARKING POLICIES FOR (SMART) ELECTRIC VEHICLE
ENABLED PARKING LOTS
In the following subsections, we describe three parking
policies that take into account the diversity of parking
spots (i.e., EV and non-EV spots), as well as cars (i.e., EVs
and non-EVs), as presented in Table 1. Note that some of the
parking policies are natural extensions of the default parking

Algorithm 1 DEFAULT - Default Parking Policy
Input: nnonEV , nnonEVCurr , ppark
Output: decision
1: if nnonEVCurr < nnonEV then
2: decision← car parks for ppark in a non-EV spot
3: nnonEVCurr ← nnonEVCurr + 1
4: else
5: decision← car leaves
6: end if
7: return decision

Algorithm 2 CHARG-EXCL - Charging-exclusive Parking
Policy
Input: ntotal , nEV , nEVCurr , nnonEV , nnonEVCurr , ppark , pEV ,

preservation, carType
Output: decision
1: if ntotal > nEVCurr + nnonEVCurr then
2: if carType is EV then
3: if nEVCurr < nEV then
4: if pEV ≤ preservation then
5: decision← car parks for ppark and charges for

pEV in an EV spot
6: nEVCurr ← nEVCurr + 1
7: else
8: decision← DEFAULT (nnonEV , nnonEVCurr )
9: end if
10: else
11: decision← car parks for ppark in a non-EV spot
12: nnonEVCurr ← nnonEVCurr + 1
13: end if
14: else
15: decision← DEFAULT (nnonEV , nnonEVCurr )
16: end if
17: else
18: decision← car leaves
19: end if
20: return decision

policy (DEFAULT), formalized in Algorithm 1, which is
compatible with a parking lot that offers only the parking
service. The reason why we introduce and formalize the
DEFAULT policy is to illustrate how the (S-)EVPL operates
in a so-called benchmark scenario, which corresponds to a
scenariowhere all the parking spots are non-EV spots. Simply
put, under the DEFAULT policy, the parking decision is based
only on whether there is an available spot for a car to be
parked. Clearly, the car will either occupy a free spot or it
will depart from the parking lot, a behavior which closely
resembles the Erlang-B queuing system [36].

A. CHARGING-EXCLUSIVE PARKING POLICY
Algorithm 2 and Fig. 5 describe the charging-exclusive park-
ing policy (CHARG-EXCL). Most notably, lines 3-12 in
Algorithm 2 handle arriving EVs. In this policy, EV spots can

VOLUME 6, 2018 949



J. Babic et al.: Evaluating Policies for Parking Lots Handling Electric Vehicles

Algorithm 3 EV-EXCL - Electric Vehicle Exclusive Parking
Policy
Input: ntotal , nEV , nEVCurr , nnonEV , nnonEVCurr , ppark , pEV ,

preservation, carType
Output: decision
1: if ntotal > nEVCurr + nnonEVCurr then
2: if carType is EV then
3: if nEVCurr < nEV then
4: if pEV ≤ preservation then
5: decision← car parks for ppark and charges for

pEV in an EV spot
6: else
7: decision← car parks for ppark in an EV spot
8: end if
9: nEVCurr ← nEVCurr + 1
10: else
11: decision← car parks for ppark in a non-EV spot
12: nnonEVCurr ← nnonEVCurr + 1
13: end if
14: else
15: decision← DEFAULT (nnonEV , nnonEVCurr )
16: end if
17: else
18: decision← car leaves
19: end if
20: return decision

TABLE 1. Summary table indicating under which circumstances a specific
type of a car may occupy a specific parking spot under a given parking
policy.

only be used by EVs that will consume the charging service.
The charging service will only be available to an EV if there
is an available EV spot and the EV owner is willing to pay
an extra pEV on top of the standard ppark for each hour the
car occupies the EV spot. Otherwise, EVs are treated as non-
EVs. Line 15 in Algorithm 2 reveals that CHARG-EXCL is
largely an extended version of DEFAULT.

CHARG-EXCL is consistent with the current business
practices used by charging service providers where the EV
spots are used for charging only [37].

B. ELECTRIC VEHICLE EXCLUSIVE PARKING POLICY
Algorithm 3 describes the electric vehicle exclusive
(EV-EXCL) parking policy. In contrast to CHARG-EXCL,
EV-EXCL relaxes the constraint regarding the usage of EV
spots for charging only. The green elements in Fig. 6 and Line
7 in Algorithm 3 demonstrate the aforementioned change

Algorithm 4 DYNAMIC - Dynamic Parking Policy
Input: ntotal , nEV , nEVCurr , nnonEV , nnonEVCurr , ppark , pEV ,

preservation, carType
Output: decision
1: if ntotal > nEVCurr + nnonEVCurr then
2: if carType is EV then
3: if nEVCurr < nEV then
4: if pEV ≤ preservation then
5: decision← car parks for ppark and charges for

pEV in an EV spot
6: else
7: decision← car parks for ppark in an EV spot
8: end if
9: nEVCurr ← nEVCurr + 1
10: else
11: decision← car parks for ppark in a non-EV spot
12: nnonEVCurr ← nnonEVCurr + 1
13: end if
14: else
15: decision← DEFAULT (nnonEV , nnonEVCurr )
16: if decision is car leaves then
17: // try to dynamically assign EV spot to non-EV

car:
18: if nEVCurr < nEV then
19: decision← car parks for ppark in an EV spot
20: nEVCurr ← nEVCurr + 1
21: end if
22: end if
23: end if
24: else
25: decision← car leaves
26: end if
27: return decision

introduced by the EV-EXCL policy. In particular, the arriving
EV is now allowed to park in an EV spot regardless of whether
the EV owner wants to charge or not.

C. DYNAMIC PARKING POLICY
Algorithm 4 shows the steps associated with the dynamic
parking policy (DYNAMIC). By design, it is an extension
of the EV-EXCL policy, as evident by the green dotted arrow
in Fig. 7. Similar to EV-EXCL, DYNAMIC allows EVs to
park on EV spots if there is at least one unoccupied EV spot
available or, otherwise, an EV will try to park on a non-
EV spot. The crucial change relates to the way non-EVs are
treated. That is, in the case when there is an available non-EV
spot to a non-EV, DYNAMIC behaves similar to all previous
policies: a non-EV will park on a non-EV spot. However,
if all non-EV spots are occupied, the S-EVPL will attempt
to dynamically assign an EV spot to a non-EV, as evident
from lines 16 to 22 in Algorithm 4. It is important to point
out that this will only be possible if there is at least one EV
spot available for parking, otherwise the car will leave the
S-EVPL. We use the term dynamic to emphasize the fact
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FIGURE 5. Flowchart of the charging-exclusive (CHARG-EXCL) parking policy. The green dotted
elements outline the changes w.r.t. the default parking policy.

that EV spots can be used by non-EVs in only extraordinary
circumstances, i.e., when all non-EV spots are occupied.
In practice, for example, the S-EVPL can dynamically mark
an EV spot as a non-EV spot by providing the appropriate
information on a digital display above the parking spot.

V. EVIDENCE FROM A CASE STUDY: MELBOURNE’S
PARKING LOT
In this section, we explain the case study concerning parking
lots in Melbourne, Australia, used to benchmark the parking
policies described in Section IV.

A. EXPERIMENTAL CONFIGURATION
To find the most appropriate parking policy from the
perspective of the parking lot operator’s profitability, we con-
sider one-year simulation scenarios where a parking lot oper-
ates under certain parking policies, i.e., CHARG-EXCL,
EV-EXCL and DYNAMIC. To perform detailed sensitivity
analysis, the experimental configuration includes a range
of values for charging fees (pEV ), the number of EV park-
ing spots (nEV ), and the EV adoption rate. Furthermore,
to account for the diversity among different parking lots,
we used real-world data from some parking lots in the city
of Melbourne. Figures 8a, 8b, and 8c illustrate per hour
car arrivals for the month of February, 2012, for the public
parking lots in the neighborhoods of Chinatown, City Square

TABLE 2. Experiment configuration.

and Tavistock, respectively. We note that, since the simulation
duration has 8,784 simulated hours (i.e., a leap year), we are
able to derive and use arrival rates for the whole year in
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FIGURE 6. Flowchart of the electric vehicle exclusive (EV-EXCL) parking policy. The green dotted
elements outline the changes w.r.t the charging-exclusive parking policy.

our simulations. As we detail in Section VI, we also include
the so-called Halved Chinatown and Quartered Chinatown
parking lots to investigate the impact of different parking lot
sizes on our results, i.e., what happens for different number
of parking spots (ntotal) when the parking demand remains
fixed.

Table 2 summarizes the values used for each of the vari-
ables. In total, the experiment considered 91,035 distinct sce-
narios for the (S-)EVPL ecosystem. Finally, to account for the
stochastic nature of our computational model, we replicated
each scenario 300 times. All of our analyses are then based
on average values resulting from these multiple runs.

B. PERFORMANCE MEASURES
We now briefly mention and explain the metrics used
for assessing the impact of the parking policies on the
(S-)EVPL’s operations.

1) ADDITIONAL GROSS PROFIT AGAINST
BENCHMARK SCENARIO
The additional gross profit against the benchmark sce-
nario (GPBS) in expressed in percentages. It is a key metric
that informs the parking lot operator how well a certain
parking policy does in comparison to the benchmark sce-
nario. Recall that the benchmark scenario uses the DEFAULT
policy, which does not differentiate between different types

of cars, and it only works when all parking spots are non-EV
spots. The GPBS for the ith scenario is calculated as:

GPBS(i) =
GP(i) − GPBS

GPBS
∗ 100% (1)

where GP(i) is the gross profit from the ith scenario and
GP(BS) is the gross profit from the benchmark scenario. The
gross profit takes into account positive cash flows regard-
ing the parking service and the charging service as well
as the negative cash flow from electricity procurement, i.e.,
the amount of money the parking lot pays to obtain the
required electricity to charge the EVs.

2) REJECTION RATE
The rejection rate (RR) of the ith scenario is the percentage
of cars that are rejected, i.e., leave the parking lot due to not
being able to park:

RR(i) =
N (i)
carsLeft

N (i)
carsParked

∗ 100% (2)

where the N (i)
carsLeft is the number of cars that left without

parking, and N (i)
carsParked is the number of cars that parked

in the (S-)EVPL. Given the (S-)EVPL ecosystem dynam-
ics (i.e., arrival patterns and EV adoption rates) and the
underlying parking policy, the RR may provide crucial infor-
mation regarding the size of the S-EVPL (i.e., whether it is
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FIGURE 7. Flowchart of the dynamic (DYNAMIC) parking policy. The green dotted arrow outlines the
change w.r.t the electric vehicle exclusive parking policy.

undersized or not) and whether a particular parking policy is
applicable to a given scenario.

3) CHARGING UTILIZATION
The charging utilization (ρcharge) is defined as the ratio
between the total sum of kilowatts charged into EVs and the
theoretical maximum sum of kilowatts that could have been
charged if chargers were operating at 100% during the time
vehicles were parked on EV spots. Mathematically speaking:

ρcharge =

|E|∑
i=1

γ (i)

t (i)park ∗ S
∗ 100% (3)

where |E| is the total number of parking events from a set
E of parking events related to EV spots, γ (i) is the amount of
electricity charged into a vehicle during the ith parking event,
t (i)park is total parking time during the ith parking event, and S
is the charger power, which determines the speed at which a
vehicle is charged. In our simulations, we only consider Level
II chargers that are able to provide 7.7 kW of power.

The charging utilization metric allows one to measure
how efficiently the charging infrastructure is being uti-
lized. Clearly, apart from external parameters (e.g., charg-
ing demand from EVs and their willingness to pay for the
charging service), ρcharge is also affected by the underlying
parking policy.

VI. RESULTS AND DISCUSSION
In this section, we present the results from our case study as
well as explain how the derived key insights can be used to
guide parking lot development and management.

A. SENSITIVITY ANALYSIS
In order to evaluate the parking policies, we present an exten-
sive sensitivity analysis whose underlying context changes
based on three different aspects. First, we explore how the
parking policies perform for different parking lots having
different arrival rates, departure rates, and the total num-
ber of available parking spots (ntotal). Second, the context
changes through different EV adoption rates. Third, the con-
text changes through different parking lot sizes (ntotal), while
having similar arrival and departure rates. Once again, it is
worth mentioning that the reported results represent the aver-
age values of 300 simulation runs of each scenario.

1) PARKING LOTS
Fig. 9 graphically presents the performance of the policies
CHARG-EXCL, EV-EXCL and DYNAMIC, represented,
respectively, as the red, blue, and green curves. Each scenario
is defined by a fixed EV adoption rate, fixed charging and
parking fees, and three different parking lots. In particular,
the EV adoption rate is set at 50%, the number which is
expected to be reached in Australia by 2030 [26]. The charg-
ing fee, i.e., the premium price per hour an EV owner pays
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FIGURE 8. The one-month excerpts (i.e., February 2012) of the arrival rates
for parking lots used in the experiment configuration. (a) Arrival rates for
Chinatown. (b) Arrival rates for City Square. (c) Arrival rates for Tavistock.

for consuming the charging service, is fixed at 0.45 $/h,
the number which was found to bring the highest profit to
all three parking policies.

Recall from Section V-B that we defined three KPIs.
In order to make the results comparable across different
parking lots, each row in Fig. 9 displays a certain KPI
on the Y-axis, i.e., gross profit against the benchmark sce-
nario (GPBS), rejection rate (RR), and charging utiliza-
tion (ρcharge). The x-axis always represents the percentage
of available EV spots. Finally, each column in Fig. 9 cor-
responds to a parking lot, i.e., Chinatown, City Square, and
Tavistock.

Looking at the columns, one can immediately notice that
the first two columns, representing respectively Chinatown
(Fig. 9a 9d, and 9g) and City Square (Fig. 9b, 9e, and 9h),
have similar curves for all the KPIs, albeit with slightly dif-
ferent values. Although the identified trends, upon which we
elaborate next, are the same for all three parking lots, the exact
curves for Chinatown and City Square are different than
curves for Tavistock (Fig. 9c, 9f, and 9i). The main reason for
this emergent behavior lies in the fact Tavistock is inherently
undersized, whereas Chinatown and City Square are well-
sized. We further elaborate upon the impact of parking lot
sizing (i.e., the total number of parking spots) later on.

Starting with the gross profit against the benchmark sce-
nario (GPBS). Recall that GPBS measures how much more
money, percentage-wise, a parking lot operator makes when
compared to the benchmark scenario where all parking spots
are non-EV spots and the parking lot operates under the
DEFAULT parking policy. It is evident from Fig. 9a, 9b,
and 9c that the GPBS for both CHARG-EXCL and EV-
EXCL increases up to a certain point after which the GPBS
decreases. The same does not hold true for DYNAMIC,
which increases to the point of saturation for Chinatown and
City Square (Fig. 9a and 9b), which are well-sized parking
lots, after which the GPBS remains constant. In contrast,
the GPBS for Tavistock (Fig. 9c) continually increases even
when the number of EV spots approaches 100%, suggesting
that the undersized parking lot may become more profitable
by increasing the number of parking spots (ntotal).

Regarding the relative GPBS performance of the parking
policies, we can identify that CHARG-EXCLmarginally out-
performs EV-EXCL before the maximumGPBS of CHARG-
EXCL is reached. It is also evident that the maximum
GPBS of EV-EXCL is consistently higher than the maximum
GPBS of CHARG-EXCL. Next, in well-sized parking lots
(Fig. 9a and 9b), the GPBS of DYNAMIC follows the GPBS
of EV-EXCL to its maximum, after which the GPBS of
DYNAMIC still marginally increases. Also, the GPBS of
DYNAMIC seems to substantially increase when used in the
undersized parking lot (Fig. 9c). Clearly, this is not surprising
whenwe consider the fact that parking demand is high and the
value of parking service (i.e., ppark = 5.5 $/h) is much greater
than the value of the charging service (i.e., pfee = 0.45 $/h).
Fig. 9a, 9b, and 9c not only shows which parking policy

performs best, but they also reveal the margin of error in
investment decision a parking lot operator has for each of
the parking policies. For example, for similar GPBS values,
the latus rectum of the red curve is smaller than for the
blue curve, indicating that the decision on the number of EV
spots is more critical for CHARG-EXCL than for EV-EXCL.
DYNAMIC trivially circumvents such a challenge when the
number of EV spots is increasing towards 100%.

We now move to the rejection rate (RR). From
Fig. 9d and 9e, one can see that the lines for
CHARG-EXCL and EV-EXCL remain close to zero from the
start until the number of EV spots increases to a certain point,
indicating that Chinatown and City Square are well-sized

954 VOLUME 6, 2018



J. Babic et al.: Evaluating Policies for Parking Lots Handling Electric Vehicles

FIGURE 9. The impact of the parking policies on a certain parking lot when the EV adoption rate is 50% and the charging fee is set at 0.45 $/h.
(a) GPBS for Chinatown. (b) GPBS for City Square. (c) GPBS for Tavistock. (d) Rejection rate for Chinatown. (e) Rejection rate for City Square.
(f) Rejection rate for Tavistock. (g) Charging utilization for Chinatown. (h) Charging utilization for City Square. (i) Charging utilization for Tavistock.

parking lots, i.e., on average, ntotal is enough to support the
parking demand. As already mentioned, Tavistock (Fig. 9f) is
different because the minimum RR is around 10%, suggesting
that the parking lot is inherently undersized, i.e., on average,
parking demand exceeds ntotal . Evidently, CHARG-EXCL
has the highest RR as the focus is placed on utilizing the
charging service, followed by EV-EXCL which results in a

slightly lower RR when the number of chargers increases.
It is also noticeable that the RR in DYNAMIC is the lowest.
Finally, Fig. 9g, 9h, and 9i represent charging utiliza-

tions (ρcharge). When comparing different parking lots, it is
evident that Chinatown (Fig. 9g) and City Square (Fig. 9h)
follow similar trends, with City Square having consistently
higher ρcharge than Chinatown. We attribute this emergent
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behavior to different arrival patterns among parking lots.
More concretely, on average, City Square had more EVs
parked during the time when the prices on the electricity
market were low in comparison to Chinatown. Not surpris-
ing, CHARG-EXCL has the highest ρcharge, followed by
EV-EXCL, while DYNAMIC performs the worst. Finally,
ρcharge of DYNAMIC in Tavistock is always lower than
EV-EXCL, proving once again that the parking lot is under-
sized.

2) ELECTRIC VEHICLE ADOPTION RATES
We now discuss how different EV adoption rates affect
CHARG-EXCL, EV-EXCL, and DYNAMIC parking poli-
cies. To do so, the focus of the analysis is placed on the
scenario where the observed parking lot is Chinatown and the
charging fee is fixed at the optimal value of 0.45 $/h. In par-
ticular, Fig. 10 presents the results for 0% (low extreme), 25%
(first midpoint), 50% (forecast for the year of 2030), 75%
(second midpoint), and 100% (high extreme) EV adoption
rates, which in turn are represented as the red, brown, green,
blue, and purple curves, respectively. Each row in Fig. 10
represents a certain KPI, while each column contains infor-
mation for one parking policy.

Starting with the first row, which represents the GPBS for
CHARG-EXCL, EV-EXCL, and DYNAMIC parking poli-
cies in Fig. 10a, 11b, and 10c, respectively. The decline of the
red curves indicates that it does not make sense financially
to deploy new parking policies when there are no EVs as
customers. DYNAMIC is the only exception because it allows
non-EVs to be parked on both EV and non-EV spots. Further-
more, one can notice that the maximum GPBS increases with
the increase of the EV adoption rate, meaning that the prof-
itability of the charging service increases with the increase
of the EV adoption rate. Looking at the maximum GPBS for
CHARG-EXCL (Fig. 10a) and EV-EXCL (Fig. 10b), it can
be seen that the relative benefits of choosing the optimal
number of EV spots increases with the EV adoption rate.
Lastly, the GPBS for DYNAMIC, shown in Fig. 10c, reveals
that for the observed scenario, the parking lot operator can
get the maximum GPBS of 2%, 4%, 6% and 8% by investing
in the appropriate number of chargers for, respectively, 25%,
50%, 75% and 100% of the total number of parking spots.

Moving on to the RR in Fig. 10d, 10e, and 10f. For
CHARG-EXCL and EV-EXCL, it is clear that the number
of EV spots positively affects the RR, with CHARG-EXCL
having slightly higher RR than EV-EXCL. This is most
noticeable by looking at the RR when the number of EV
spots is set at 100%, i.e., the rightmost values in the curves
in Fig. 10d and 10e. Note that the values in Fig 10e are the
complement of the EV adoption rate, meaning that the RR is
25% for scenarios where the EV adoption rate is 75% and
so on. This is very much expected because, for example,
when all the spots are equipped with chargers, EV-EXCLwill
no longer be able to serve non-EVs. Looking at DYNAMIC
in Fig.10f, it is clear that EV adoption rate does not affect
the RR.

Lastly, themaximum ρcharge is reported to be around 87.5%
for CHARG-EXCL (Fig. 10g) and around 76% for EV-EXCL
and DYNAMIC (Fig. 10h and 10i). When DYNAMIC is used
in a setting where there are more EV spots than needed by EV
users, the ρcharge will decrease, meaning that chargers will not
be used as frequently as they could be given the demand for
charging service.

3) PARKING LOT SIZES
In our final sensitivity analysis, we investigate how a cer-
tain parking policy behaves when the size of the parking
lot (ntotal) changes, while arrival rates and parking time
remain the same. Again, we fix the EV adoption rate at 50%
and the charging fee at 0.45 $/h. The observed parking lot
is Chinatown, displayed in Fig. 11 with red, blue, and green
curves to denote, respectively, the original Chinatown parking
lot (ntotal = 91), halved Chinatown (ntotal = 45), and
quartered Chinatown (ntotal = 23). Chinatown is particularly
well-suited for analysis because, in its original state, it iswell-
sized by design, as we discussed in Section VI-A1. For the
sake of consistency, note that Fig. 11 organizes the same level
of information as Fig. 10 does, with each row representing a
certain KPI and each column representing a certain parking
policy.

Regarding GPBS, CHARG-EXCL, and EV-EXCL have
similar trends regardless of the ntotal (Fig. 11a and 11b).
Also, it is interesting that the maximumGPBS of the original,
well-sized Chinatown (i.e., around 4%) noticeably outper-
forms the halved and quartered counterparts (i.e., around 2%).
However, as shown in Fig. 11c, the maximum GPBS for
DYNAMIC reaches around 4% for all three parking lot sizes,
thus suggesting that DYNAMIC is more versatile than the
other two parking policies.

Fig. 11d, 11e, and 11f reveal that for the current arrival
rates: (i) the original Chinatown is well-sized by design
because its RR is 0% when there are no chargers installed in
the parking lot; and (ii) both halved and quartered Chinatown
parking lots are undersized because their RRs are greater
than zero.

Finally, Fig. 11g and 11h capture the trends for
CHARG-EXCL and EV-EXCL similar to the ones already
shown in Fig. 10g and Fig. 10h, thus suggesting that the
parking lot size does not affect pcharge as much when either
CHARG-EXCL or EV-EXCL is used. However, as shown
in Fig. 11i, parking lot sizing positively affects charging
utilization when DYNAMIC is used. The reason behind
this emergent behavior lies in the fact that parking demand
in undersized parking lots (i.e., green and blue curves
in Fig. 11i) outweighs demand for the charging service.

B. IMPACT ON PARKING LOT DEVELOPMENT
AND MANAGEMENT
Based on the performed sensitivity analysis, one can conclude
that the relative share of EV spots within the total number of
parking spots is crucial when deciding which parking policy
should be used. We conclude that:

956 VOLUME 6, 2018



J. Babic et al.: Evaluating Policies for Parking Lots Handling Electric Vehicles

FIGURE 10. The impact of the parking policies on different EV adoption rates when the observed parking lot is Chinatown and the charging fee is
set at 0.45 $/h. (a) GPBS for the CHARG-EXCL parking policy. (b) GPBS for the EV-EXCL parking policy. (c) GPBS for the DYNAMIC parking policy.
(d) Rejection rate for the CHARG-EXCL parking policy. (e) Rejection rate for the EV-EXCL parking policy. (f) Rejection rate for the DYNAMIC parking
policy. (g) Charging utilization for the CHARGEXCL parking policy. (h) Charging utilization for the EV-EXCL parking policy. (i) Charging utilization for
the DYNAMIC parking policy.

• When the number of EV parking spots is small, it is
preferable to use CHARG-EXCL. The reason behind
this lies in the fact that such a policy promotes efficient

usage of EV spots for the charging service. In other
words, CHARG-EXCL has the best return on investment
as it minimizes the number of chargers needed to be
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FIGURE 11. The impact of the parking policies and parking lot size for the Chinatown parking lot when the EV adoption rate is 50% and the charging
fee is set at 0.45 $/h. (a) GPBS for the CHARG-EXCL parking policy. (b) GPBS for the EV-EXCL parking policy. (c) GPBS for the DYNAMIC parking policy.
(d) Rejection rate for the CHARG-EXCL parking policy. (e) Rejection rate for the EV-EXCL parking policy. (f) Rejection rate for the DYNAMIC parking
policy. (g) Charging utilization for the CHARGEXCL parking policy. (h) Charging utilization for the EV-EXCL parking policy. (i) Charging utilization for
the DYNAMIC parking policy.

installed. This policy also results in a low rejection rate
and relatively high GPBS for a small number of charg-
ers.

• EV-EXCL is a valuable upgrade of CHARG-EXCL
when the number of EV spots is further increased
because profit will increase and the rejection rate will
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FIGURE 12. Parking policies deployment.

decrease. It is a preferable parking policywhen a parking
lot operator is able to accurately forecast parking and
charging demand.

• DYNAMIC is the optimal parking policy for a parking
lot whose number of EV spots exceeds the demand for
the charging service. Consequently, it is the preferable
parking policy when a parking lot operator is not able
to cope with uncertainties related to parking and charg-
ing demand. Also, DYNAMIC is favorable among car
owners as the rejection rate is minimized.

The aforementioned observations seem to be general to all
parking lots operating in different contexts (e.g., EV adoption
rates). Clearly, as the EV adoption rate increases, the impact
of the three proposed parking policies increases as well.
Finally, the parking lot size is shown to be an impor-
tant variable when choosing the appropriate parking policy.
In well-sized parking lots, the parking lot operator can the-
oretically (i.e., if he/she is able to deal with uncertainties
related to parking and charging demand) obtain the opti-
mum GPBS by using EV-EXCL. However, DYNAMIC in
the undersized parking lots is able to significantly outperform
both CHARG-EXCL and EV-EXCL. The reason for this lies
in DYNAMIC’s flexible nature when dynamically assigning
EV spots to non-EVs.

Taking into account all the identified patterns related to
a parking lot’s operations, Fig. 12 shows how a parking lot
operator, i.e., a decision maker, can choose the right parking
policy given the phase a parking lot is currently in. In the
first phase, it makes no sense to use any parking policies
other than DEFAULT as there is no need for the charging
service. The initial investment in charging infrastructure

marks the transition to the early-stage EVPL, which operates
with CHARG-EXCL so as to optimize charging utilization
and, consequently, to quickly monetize the installed chargers.
Once the extra chargers are added, we refer to a parking lot
as late-stage EVPL. In such a parking lot, it is advisable
to switch to EV-EXCL as it increases profit and lowers the
rejection rate. Also, the introduced chargers implicitly help a
parking lot operator in scenarios where he or she is not able
to accurately predict parking and charging demands. Finally,
after significant investments in advanced IT infrastructure,
the newly-formed S-EVPL should be operated under the
DYNAMIC policy so as to maximize profit and minimize
the rejection rate.

VII. CONCLUSION
Although the need for appropriate parking policies, tailored
to both internal combustion vehicles (ICVs) and electric
vehicles (EVs), may be an understandable and obvious idea,
the context under which a certain parking policy should
be deployed is not immediately known a priori due to the
inherent uncertainties related to the (smart) electric vehicle
enabled parking lot (S-EVPL) ecosystem. Therefore, we used
a data-driven approach coupled with simulations to propose a
technology roadmap for transforming parking lots into smart
EV-enabled parking lots and evaluate three parking policies
that extend the default parking policy (DEFAULT), which in
turn only offers the parking service: 1) the charging-exclusive
parking policy (CHARG-EXCL) ensures that the parking
spots with chargers (i.e., EV spots) are only used by EVs that
will accept the price for charging; 2) theEV-exclusive parking
policy (EV-EXCL) relaxes such a constraint by allowing
EVs to be parked on EV spots regardless of whether the
charging service is used; and 3) the dynamic parking policy
(DYNAMIC) may allow non-EVs to be parked in EV spots if
there are not enough available non-EV spots.

Based on the obtained results and detailed sensitivity anal-
ysis, it was shown that CHARG-EXCL is a particularly suit-
able policy for parking lots that tend to have less chargers than
what EV owners charging demand would require. EV-EXCL
is a valuable upgrade of CHARG-EXCLwhen there is a small
redundancy in the number of chargers as profit increases and
the number of cars being rejected decreases. Once the number
of chargers increases substantially and the required advanced
IT infrastructure is deployed, the resulting S-EVPL operates
the best when the DYNAMIC policy is used as it optimizes
profit and minimizes the rejection rate at the same time. From
a methodological point of view, the strength of our approach
lies in the fact that we are able to specify scenarios in a
detailed manner as well as to determine the boundaries at
which certain parking policies operate optimally with respect
to profit, rejection rates, and charging utilization.

We strongly believe that the prescriptive nature of the
insights derived from our simulations are highly relevant to
practitioners involved in parking lots. For example, the results
from the case study concerning parking lots in Melbourne
suggest that, by 2030, a Chinatown parking lot operator can
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expect almost 4% more profit if the price of the charging
service is set at an optimal value, i.e., at 0.45 $/h. Of course,
when choosing the appropriate parking policy, careful plan-
ning needs to be considered. Our results suggest that, if the
decision maker is able to perfectly predict the demand for
both the charging and parking services, the parking lot should
adopt CHAR-EXCL and install chargers in around 37% of
the parking spots. To increase profit slightly and to lower
the impact of demand prediction error, our results suggest
that the decision maker should adopt EV-EXCL and install
chargers in around 49% of the parking spots. Finally, to com-
pletely hedge the risk of a wrong demand prediction, the deci-
sion maker should equip all the parking spots with chargers
and invest in advanced IT infrastructure in order to adopt
DYNAMIC.

For future work, we aim at performing more experiments
to study the performance of parking policies in other contexts.
For example, in our current simulations, the EV owners’ will-
ingness to pay function for the charging service remains the
same throughout the experiment (see [35]), although in real-
life that may be context-specific. In particular, early adopters
maywant to pay differently than late adopters, suggesting that
such a willingness-to-pay function can incorporate EV adop-
tion rate as a predictor. Furthermore, the methodology we
proposed can be used to assess the impact of various charg-
ing technologies that have different charging speeds. Also,
a particularly interesting future direction is the development
of a real-time algorithm that is able to switch parking policies
given a tactical horizon, meaning that parking policies are not
fixed, but they can change on a daily or hourly basis based on
relevant variables.
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