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ABSTRACT Saliency detection aims to find the most conspicuous regions in an image, which highly catches
the users’ attention. High-quality saliency map plays an important role in boosting many other computer
vision tasks, such as object detection and segmentation. To assess a saliency map’s quality, the only way
is to utilize a full reference metric, i.e., compute it with the ground-truth reference map. However, in the
real-world applications, the ground-truth reference map for the saliency region is unavailable, which brings
urgent demands for developing no reference saliency quality metric. In this paper, we propose a deep saliency
quality assessment network (DSQAN) to predict the saliency quality scores directly from saliency maps.
Furthermore, a joint metric is developed to better depict the quality of a saliency map. The proposed joint
metric can not only lead better quality prediction accuracy, but also bring out more robust results. As a
direct application of the proposed DSQAN, the predicted saliency quality scores are first utilized to choose
the optimal saliency map from a set of saliency map candidates. The experimental results on the MSRA10K
data set demonstrate that our proposedmethod could precisely predict the saliency quality. Particularly, when
the DSQAN is applied to recommend optimal saliency map to feed an object segmentation algorithm from
multiple candidates, its segmentation accuracy significantly outperforms the results outputted from the best
saliency detection algorithms.

INDEX TERMS Saliency quality assessment, deep convolutional neural network, saliency quality predic-
tion, regression neural network, joint metric.

I. INTRODUCTION
Salient object detection has drawn lots of attentions in recent
years, which aims to extract the salient object from an image.
Many computer vision problems can benefit from this, such
as image compressing [1], picture collage [2], movie summa-
rization [3], face segmentation [4], etc. The common proce-
dure of these applications is to generate saliency map in early
stages and use it to locate the foreground objects or regions of
interest. Generally, the subsequent procedures are dominated
by the performance of saliency detection algorithms, where
poor results of saliency detection will inevitably lower the
ceiling performance of such saliency-based applications.

Although the existing saliency detection algorithms have
achieved impressive performances in terms of a holistic met-
ric, there exist significant differences when dealing with
images across diverse visual contents. Figure 1 shows an
example of diverse saliency detection results when four
saliency detection DSR [5], MC [6], RBD [7] and GR [8], are
applied to different input images. The four input images are

chosen fromMSRA10K [9], where the aforementioned algo-
rithms achieve state-of-the-art performances range from 95.4
to 95.5 in terms of AUC score. In spite of the similar objective
performance, these algorithms behave quite different when
facing different input images. We denote the optimal saliency
map with red rectangles for the corresponding image. Take
MC [6] as an instance, it obtains the best results for the second
image, but it totally misses the salient object in the last image.
Therefore, it is risky to adopt only one single algorithm to
detect the salient objects on all test images.

Based on the aforementioned analysis, it will be great
helpful if one could be aware of a saliency map’s quality.
In general, the quality score of a saliency map is calculated
by comparing it with its corresponding ground truth saliency
map. However, the ground truth saliency map is unavailable
for a test image. In this paper, we propose to directly predict a
saliency map’s quality score where the ground truth saliency
map is unavailable. It is apparent that once the saliency
quality scores can be predicted precisely, these results will
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FIGURE 1. Examples of diverse salient detection results when four saliency detection algorithms, DSR [5], MC [6], RBD [7] and GR [8], are applied
to different input images. The four input images are chosen from MSRA10K [9], where the aforementioned algorithms achieve state-of-the-art
performances range from 95.4 to 95.5 in terms of AUC score. The saliency maps highlighted with red rectangles represent the best results for the
corresponding images.

greatly improve the performance of saliency-based appli-
cations or even improve the saliency detection algorithms
in return. For example, before applying saliency map, one
could only choose the optimal saliency map from a set of
candidate saliency maps, or only apply it when the quality of
saliency map is tolerable. Alternatively, one could just tweak
the algorithm’s parameters to get a saliencymapwith satisfied
quality.

To achieve this goal, we model saliency quality assessment
problem as a multi-output regression problem. We observed
that a good saliency map should not only locate the salient
objects accurately but also highlight the whole salient object
uniformly. Intuitively, when we look at a good saliency map
from a multi-scale perspective, it should give us such impres-
sions: 1. rough location from the low scale map. 2. fuzzy
shape of a salient object from the middle scale map. 3. precise
shape with a clear boundary from the finest scale. To leverage
such observations, we utilize the state-of-the-art deep con-
volutional neural network technique since it possesses the
ability to encode the aforementioned characteristics in its
hierarchical layers [10]. For example, the initial layers tend to
deal with the smooth boundary of salient objects [10]. It won’t
activate the following layer if there is no clear shape in the
saliencymap. Hencewe take advantage of deep convolutional
neural work to directly predict the quality score of a saliency
map. The proposed network, derived from canonical network
architecture, is referred as deep saliency quality assessment
network (DSQAN) in this paper.

To depict a saliency map’s quality, we propose joint
saliency quality metric, which is a vector concatenation of

multiple saliency quality scores. The motivation behind this
idea is that different saliency quality metrics emphasize dif-
ferent kinds of quality. And as a consequence, the proposed
joint metric brings us three evident advantages. The first
advantage is that when the proposed DSQAN is trained
with joint metric rather than single metric, it converges to a
lower training loss. This is because that the decrease of one
metric’s prediction loss is capable of bringing down other
metrics’ prediction loss, since they are complementary to
one another. Secondly, training with joint metric generates a
more robust convergence route than only using single met-
ric. The last benefit using joint metric prediction is that it
offers us more choices to select the optimal saliency map.
Specifically, we propose a simple fusion strategy to generate
a fusion saliency quality score by combining joint metrics.
Based on such fusion quality score, the result of our optimal
saliency map selection algorithm significantly outperforms
all single saliency detection algorithms in terms of all metrics.
In addition, we also apply our DSQAN for salient object
segmentation. The segmentation performance is improved
about 3% compared with the best single method in terms of
mean overlap score. This paper is an extended version of work
published in [11], and it significantly expands previous work
mainly in three aspects:

1) We propose joint metric to depict the quality of a
saliency map. The superiority of such strategy is that
it not only produces lower and more robust saliency
predicted performance than single metric learning, but
also introduces a more comprehensive saliency quality
criterion by fusing joint metric into a single metric.
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2) To explore the impacts of the architectures of DCNN,
we adapt four architectures to our DSQAN. We reveal
that the number of downsampling layers has a great
influence on the problem of saliency quality prediction.

3) Two applications of the proposed DSQAN are pre-
sented in this paper, which are salient object detection
and object segmentation. The experiments demonstrate
the proposed method significantly outperforms all sin-
gle algorithms in both tasks.

The remaining sections of this paper are organized as
follows: We first briefly introduce the existing works that
are related to our work in Section II. Then, the proposed
DSQAN with joint metric is presented in Section III. Next,
the experimental results are shown in Section V. Finally, the
applications of DSQAN are presented.

II. RELATED WORKS
As far as we know, there are no existingworks that are directly
related to our work. The most related work is [12], where they
develop an algorithm to rank different saliency results. They
extract a set of hand-crafted features from a saliency map and
its corresponding RGB image, which are considered to be
related to the quality of saliency map. These features include
saliency coverage, saliency map compactness, saliency his-
togram, color separation. After extracting these features, they
adopted the pairwise-based learning-to-rank methodology to
train a ranking model. Compared to their work, our proposed
method can directly predict the saliency quality score of a
single saliency map.

Although there are no existing works that can predict the
quality of a saliency map, a large mass of works have been
developed to detect the salient objects. Tang et al. [13] and
Li and Ngan [14] propose to generate the saliency maps
by integrating other saliency maps in order to get more
balanced results. Li et al. [15] propose a novel method to
discover co-salient objects from a group of images, which
is accomplished by linearly fusing an intra-image saliency
map and an inter-image saliency map. Li et al. [16] mod-
eled saliency computation as two parts, average-to-peak
ratio (APR) saliency and chrominance-aware (CA) saliency.
Li and Yu [17] propose a multi-scale fully convolutional net-
work as the first stream in our deep contrast network to
infer a pixel-level saliency map directly from the raw input
image. Reference [18] invented multiple saliency cues to
generate saliency map separately, then fuse these saliency
maps into final saliency map. Wang et al. [19] first train a
deep neural network to predict a pixel’s saliency value by
considering its local context, then integrate proposal gen-
eration algorithms to boost its performance. Liu et al. [20]
present a novel framework, named as Saliency Tree, to detect
the salient objects. Specifically, they first compute the initial
saliency map by combining global contrast, spatial sparsity,
and object prior, then refine the saliency map under the
proposed framework. Du et al. [21] propose to detect salient
object in RGBD images. Specifically, progressive region clas-
sification is invented to model the saliency distribution and

saliency map is generated via two scale integration. Saliency
detection on faces images is conducted in [22], where they
extract different types of face and facial features to model
the salient regions in faces images. Wang et al. [23] pro-
pose to detect the salient objects from videos by integrating
static saliency and dynamic saliency networks simultane-
ously. Zhang et al. [24] identify salient objects from super-
pixel clusters rather than pixels or super-pixels, which first
cluster super-pixels using Laplacian sparse subspace cluster-
ing (LSSC), then formulate the saliency detection of each
super-pixel cluster as a unified low-rankness and sparsity pur-
suit problem. Zhang et al. [25] deal with co-saliency detec-
tion problem by combining intra-saliency prior transfer and
deep inter-saliency mining. Specifically, a stacked denoising
autoenoder (SDAE) is built tomodel the saliency prior knowl-
edge while the deep inter-saliency mining is formulated by
using the deep reconstruction residual obtained in the highest
hidden layer of a self-trained SDAE. Zhou et al. [26] propose
a saliency quality weighted based fusion method to improve
the performance of initial saliency map. Zhou et al. [27] pro-
pose to boost the saliency detection performance by utilizing
the predicted ranking results [12]. Ye et al. [28] integrate
saliency and objectness to boost saliency detection result.
Liu et al. [29] improve the saliency detection performance on
unconstrained videos by construct a superpixel-level graph
and spatiotemporal propagation.

Another research field related to our work is image quality
assessment.Wu et al. [30] propose to assess the image quality
by introducing the multi-domain structural information and
piecewise regression. Specifically, they fuse the local features
and a complementary global feature to tackle different types
of distortion. Another kind of image quality assessment is
blind image quality assessment(BIQA), which is aimed to
assess the quality of an image when the reference image
and distortion type are not provided. In [31], they design a
new feature fusion strategy to accomplish the task, which is
conducted by fitting an image’s colors and frequency char-
acteristics and predicting the quality score via label transfer.
Wu et al. [32] propose faster-than-real-time approach named
local pattern statistics index (LPSI) to meet the industrial
needs, which also reached competitive quality prediction per-
formance with other state-of-the-art approaches.

III. DEEP SALIENCY QUALITY ASSESSMENT NETWORK
In this section, we present the details of the proposed deep
saliency quality assessment network (DSQAN) with joint
metric. We first briefly present the basic architecture of our
DSQAN. Then, the motivations and objectives of introducing
joint saliency quality score will be presented. Finally, to
explore the impact of different CNN architectures on predict-
ing the quality of saliency map, we utilize four classic CNN
architectures as variants of our DSQAN.

A. ARCHITECTURE
We generate our deep saliency quality assessment network
(DSQAN) from the basic architecture of existing deep
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FIGURE 2. Proposed Deep Saliency Quality Assessment Network. (a) Input saliency map. (b) Proposed Saliency Quality Assessment Network. (c) Joint
saliency quality score predicted by our DSQAN. (d) Actual joint saliency quality score computed with the ground truth saliency map.

convolutional neural network. Figure 2 shows an example of
our DSQANwhere Alexnet is applied. First of all, we modify
the size of the feature map in the first convolutional layer
from 227 × 227 × 3 to 227 × 227 × 1, since the saliency
map, as our network’s input, is a grayscale image. As a result,
all the saliency maps are resized to 227 × 227 × 1 before
fed into the deep convolutional neural network. Then, the
saliency map is subtracted by the mean saliency map, where
the mean saliency map is calculated on the whole training
set through averaging pooling. We preserve the intermediate
middle layers unchanged because it has the ability to express
the multi-scale processing of saliency map while not being
over-complicated. And we can also replace it with other basic
CNN architectures. As for the last layer, the 1000 neurons in
the last layer of Alexnet is designed for image classification,
while our goal is to accomplish image regression, i.e. predict
the saliency quality score. Based on this requirement, we set
the number of the last neuron to K , where K correspond to
the number of saliency quality metrics. Therefore, the size
of last fully-connected layer’s weight is 1000 × K (K is set
to 4 here).

Regarding the original architecture, we replace the origi-
nal normalization layer with batch normalization layer [33],
which means to perform the normalization for each training
mini-batch. The experimental results show this will decrease
the mean prediction error by about 1%.

B. JOINT SALIENCY QUALITY METRIC
To measure the quality of saliency map, there are multiple
standard metrics [34] used to compare the performance of
saliency detection algorithms. We first briefly introduce and
analyze four well-known metrics in the following.

a: AUC
The first metric is Area Under ROC Curve (AUC) score [34],
denoted as SAUC , where ROC is a two-dimensional represen-
tation of an algorithm’s performance. AUC synthesize this
information into a single scalar, calculated as the area under
the ROC curve. AUC score is proportional to the quality of a
saliency map.

b: MAE
Another easy and intuitive metric is mean absolute error
(MAE), denoted as SMAE between the continuous saliency

map M and the binary ground truth MG as the quality score
of saliency map. Both saliency map and binary ground truth
map are normalized in the range [0, 1]. The MAE score is
defined as:

SMAE (M ) =
1
N

∑
|M (i)−MG(i)| (1)

whereN is the number of pixels in an image, S(i) and SG(i) are
the saliency values in pixel i in the saliency map and binary
ground truth respectively.

The lower the MAE score is, the better the quality of
saliency map is. When the MAE is 0, it means that the
saliency map is completely the same as the binary ground
truth.

c: MAXF
To emphasize the precision of salient object detection algo-
rithms, maximal F-measure denoted as SMAXF , is defined as
weighted harmonic mean of precision and recall:

SMAXF = max
p

(1+ β2)× precision(p)× recall(p)
β2 × precision(p)+ recall(p)

(2)

where p represents the number of thresholds used to binariz-
ing the predicted saliencymap, β2 is set to 0.3 for considering
precision more valuable.

d: ADAPF
The last metric used in this works is Adaptive threshold
F-measure, denoted as SADAPF , is calculated in a similar way
to MAXF, except there is only one threshold used to binariz-
ing the saliency maps. The adaptive threshold is calculated as
follows:

TH =
1
N

∑
|M (i)| (3)

where N is the number of pixels in the saliency map, and the
adaptive threshold here refers to the mean saliency value.

Instead of picking a singlemetric, we propose a jointmetric
to measure the quality of saliency map. Specifically, we
concatenate the four aforementionedwell-knownmetrics into
a joint vector as the saliency quality measurement. The reason
for adopting this strategy mainly lies on three perspectives.
First of all, it can be observed from the above definitions,
these metrics are all linearly associated with the saliency
quality. Therefore, to predict such joint quality vector, it is
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intuitive to share the most previous layers in our DSQAN.
Secondly, different metrics emphasize different aspects of
saliency quality. For example, SMAE treats salient object and
backgrounds equally, when the scale of a salient object is
small, even the algorithm totally fails to detect such salient
object, the SMAE can still be low. Under such conditions, SAUC
and SMAXF are better choices to depict the salient quality.
To express the diversity of thesemetrics in a thoroughway, we
draw the statistics of these four metrics on the training set in
Figure 3. It can be seen from this figure, the distributions are
quite different from each other. For example, the distribution
of SMAE is like a gaussian distribution while SAUC is more like
a beta distribution. For such observation, it it obviously more
appropriate to adopt joint saliencymetric. Thus, the last fully-
connected layer with size N ∗ K is utilized to express such
differences. The last advantage of joint metric is that it leads
to better optimization since the decrease of the predicted loss
of one metric will directly influence other metrics’ predicted
loss.

FIGURE 3. Statistics of four well-known saliency quality metrics collected
on the training set. These metrics are AUC, MAE, Maximal F-measure and
Adaptive threshold F-measure.

Figure 4 shows an example of predicting saliency maps’
joint quality scores using our DSQAN. The above two pic-
tures in the first row of Figure 4 are the original input image
and corresponding ground truth saliency map. The two below
saliency maps are generated using SER [35] and GR [8]
respectively. The ground truth and predicted joint quality
scores are listed under the images. For both the high and low-
quality saliency map, our DSQAN is able to predict the joint
quality scores with quite small prediction errors.

Figure 2 shows an example of our DSQAN, where we
utilize Alexnet [36] as the basic architecture here. The basic
units contain three blocks: down-sampling convolutional lay-
ers, fully-connected layers, and joint metric prediction layer.
In figure 2, the joint quality metric of a saliency map is
predicted directly by our DSQAN with small prediction
error. The 4 neurons of the last layer are used to output the
joint quality metric. We can see that the proposed DSQAN

FIGURE 4. Examples of predicted joint saliency quality score for two
saliency maps using proposed Deep Saliency Quality Assessment
Network. The scores corresponding to GT are the actual saliency quality
score computed with the ground truth map, while the score
corresponding to PD are the predicted saliency quality score.

accurately predict the joint saliency score by offering very
low prediction error in terms of all four metrics.

C. VARIANTS OF DSQAN
From the previous section, it can be seen that our saliency
quality assessment network can be generated by modifying
any existing DCNN. In order to explore the performance
when applying different deep architectures to saliency quality
assessment, we modify several existing deep convolutional
networks. Specifically, four classic DCNN architectures,
Alexnet [36], VGG-f [37], VGG-m [37], VGG-s [37], are
adopted in this paper.

Alexnet is the winning model in ISLVRC 2012 and also the
first well-known deep convolutional neural model. The size
of input to this network is 227 × 227 × 3. The input is first
filtered with 96 kernels with size 11× 11× 3 with a stride of
4 pixels. After the first convolutional layer, ReLu layers and
normalization layer are followed. Next, three similar convolu-
tional architectures are applied with different size of kernels.
After these convolutional blocks, three fully-connected layer
are followed, and the numbers of neurons are 4096, 4096 and
1000 respectively. 1000 neurons in the last layer correspond
to 1000 categories.

VGG-f is similar to Alexnet, which consists of 8 layers in
total, 5 convolutional layers and three fully-connected layers.
The input image size is 224× 224, which is slightly smaller
than that of Alexnet. The difference to Alexnet is that VGG-s
uses fewer filters in the first convolutional layer. Since the
input of our saliency quality assessment network is gray
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scale, which has only one feature channel, the number of
filters can be reduced in the first place theoretically. And
this architecture can be used to verify such assumption by
checking if the performance will decrease.

VGG-m is similar to ZFNet [10], which is defined
by smaller stride and receptive field in the first convo-
lutional layer. The second convolutional layer uses larger
stride to keep the computation time reasonable [37]. Spatial
support is a key factor in saliency detection algorithms [5],
[7], [38]–[40]. Because both the receptive field and stride are
smaller, the most critical point is that this architecture adds
another scale of saliency map with a downsampling factor 2
rather than 4. Such discrepancy can explore the effectiveness
of multi-scale processing.

VGG-s is related to the accurateĂŹ network from the
overFeat package. It also uses 7 × 7 filters with stride 2
in the first convolutional layer. Unlike VGG-s, the stride in
the second convolutional layer is smaller (1 pixel), but the
max-pooling windows in layer 1 and 5 are larger (3 × 3) to
compensate for the increased spatial resolution. Compared
to [27], 5 convolutional layers are used as in the previous
architectures ([27] used 6), and fewer filters in the 5th convo-
lutional layer (512 instead of 1024);

IV. TRAINING
The goal of training is to find the parameters of DSQAN
that minimize the average predicted quality loss. To train our
DSQAN,wefirst generate a large number of saliencymaps on
theMSRA10K [9] dataset. For each input image, we generate
15 saliency maps using 15 state-of-the-art saliency detection
algorithms. The details of training data will be presented in
the Experiments Section.

A. LOSS FUNCTION
Since we modify the DCNN to regress the saliency quality
score, it’s necessary to define the task specific regression loss
function. Considering most regression loss functions depend
on the residual between ground truth value and predicted
value:

r = l − l̂ (4)

where l refers to the predicted continuous value, while l̂ refers
to ground truth continuous value.

In our DSQAN, we choose the square (l2) Loss as our
regression loss:

L =
∑
i

∑
k

√
(Sik − Ŝik )2 (5)

where i represents the ith saliency map i, k refers to the kth
saliency quality metric, S refers to the ground truth saliency
quality score and Ŝ refers to the corresponding predicted
score. In conclusion, the objective of learning DSQAN is
to minimize the average error between multiple predicted
saliency scores and ground truth saliency quality scores over
the training set.

B. OPTIMIZATION
Optimization is conducted by stochastic gradient descent
using mini-batches of N samples [36], and here N is up to
the architecture of DSQAN. In most cases, the weights of
modified network will use the learned weights on some larger
dataset. Considering the goal of our network is completely
different from image classification models, the weights of our
network are randomly initialized. Specifically, the weights
of the filters in our DSQAN were initialized by random
sampling from a Gaussian distribution with zero mean and
102 standard deviation. The training images were resized to
227 × 227. To deal with image classification tasks, the net-
work is fed with patches cropped from these images (where
crops change every time an image is sampled). However, our
saliency quality score is corresponding to the whole image.
Thus, we don’t apply the cropping strategy.

At test time, we fetch out the last layer, adopting the
output of last fully-connected layer as the continuous saliency
quality score of a saliency map.

V. EXPERIMENTS
A. SETUP
We evaluate our proposed method on MSRA10K [9] dataset,
which contains 10,000 images and corresponding ground
truth binary masks. To train DSQAN, we randomly spilt
this dataset into train, validation and test, with 6,000, 2,000,
and 2,000 images respectively. We select 15 state-of-the-
art saliency detection algorithms to generate saliency maps,
which are DSR [5], MC [6], RBD [7], GR [8], SeR [35],
CA [41], FES [42], AC [43], PCA [44], SEG [45], SIM [46],
SR [47], SUN [48], and SWD [49]. This gives us 150,000
saliency maps in total. The corresponding saliency maps are
generated from the code provided by the author or directly
downloaded from the author’s homepage. The DSQAN is
learned via cross validation on training set and validation set.
We utilize matconvnet [50], a CNN toolbox developed on
MATLAB, to implement our DSQAN.

Before the performance of proposed method is presented,
we propose two baseline algorithms to predict the saliency
map’s quality score. As the first baseline algorithm, it assigns
a random saliency quality score in [0, 1] for a given saliency
map, referred as RndUnif . The second one is to assign a ran-
dom saliency quality score based on the estimated gaussian
distribution, which is obtained by fitting all the saliency qual-
ity scores on the training set, and this algorithm is referred as
RndGaus.
To evaluate the generation of proposedmethod, we conduct

the same experiment on DUT-OMRON [51] dataset, which
has 5166 images. Generally, DUT-OMRON is used to com-
pare models on a large scale and has more complex back-
grounds. Similarily, we generate the saliency maps using the
aforementioned 15 saliency detection algorithms on all the
images of DUT-OMRON dataset. It is worth noting that
the salient objects on these two datasets are different from
those on the MSRA10k dataset.
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TABLE 1. Mean prediction errors in terms of four metrics on the test set of MSRA10k dataset (%). For one metric, the best three results are shown in red,
green and blue, respectively.

TABLE 2. Mean prediction errors in terms of four metrics on the DUT-OMRON Dataset (%). For one metric, the best three results are shown in red, green
and blue, respectively.

B. METRIC
We evaluate the quantitative results in terms of mean of
prediction errors, and the predicted quality error of a saliency
map is calculated as follows:

MPE =
1
N

∑
i

|S(i)− Ŝ(i)| (6)

where S(i) is the saliency quality score of saliency map i,
which is computed with the ground truth map, while Ŝi is
the saliency quality score of saliency map predicted by our
DSQAN. The mean prediction error is calculated over the
whole test set, and N is the number of saliency maps on the
test set.

C. COMPARISON AND ANALYSIS
In this section, we present and analyze the experimental
results when conducted on DUT-OMRON dataset [51] and
compare our DSQANwith [12]. Although [12] is designed to
rank more than one saliency maps, their hand-crafted features
are capable of describing the quality of a saliencymap. There-
fore, we implement the features proposed in [12] by ourself
(the author doesn’t provide the code), including Saliency
Coverage, Saliency Map Compactness, Saliency Histogram,
Color Separation, Segmentation Quality and Boundary Qual-
ity. All the parameters are specified according to their paper,
and it generates a 41 dimension feature for one saliency map.
Then, support vector regressor (SVR) [52] are used to predict
the saliency quality scores of saliency maps against these
features. The optimal parameters of SVR are learnt via cross-
validation on the same training and validation sets.

The results are shown Table 1 and 2 in terms of mean
prediction errors of four saliency quality metrics. First of
all, it can be observed that the proposed DSQAN has the
ability to predict the quality of a saliency map with a low
prediction error in terms of all four metrics. Specifically,
the mean prediction error of the proposed DSQAN is about
3.3% in terms of MAE score on MSRA10k dataset, which
roughly means that for a given saliency map, the predicted
saliency quality score is near the actual saliency score by only
3.3% error.

For the comparison and generalization, we can see that
our DSQAN consistently outperforms Mai’s method [12]
in terms of four metrics on both MSRA10k and DUT-
OMRON datasets. For example, the proposed DSQAN is
4.5% lower than Mai’s method [12] in terms of AUC score
on the MSRA10k dataset. Another phenomenon is that the
performances of both our DSQAN and Mai’s [12] method
are quite different when evaluated on DUT-OMRON dataset
compared to MSRA10k dataset. We presume there are two
reasons causing this diversity. The first reason is that the
salient objects are very different on various aspects, such as
scale, number and locations. Another reason is that the afore-
mentioned saliency detection algorithms show inconsistent
performances on DUT-OMRON dataset since DUT-OMRON
dataset is much harder for most saliency detection
algorithms [34].

In the end, we also exhibit the performances of different
network variants in terms of mean prediction errors are listed
in Table 1 and 2. From these results, it can be observed
that the architectures of VGG-m and VGG-s slightly outper-
form Alexnet and VGG-f. Incorporating the assumptions in
Section III-C, first of all, it demonstrates that the decrease in
the number of filters in the first convolutional layer has little
influence on the performance. On the other hand, increasing
the number of downsampling layers will elevate the predic-
tion accuracy according to the results of VGG-m and VGG-s.
This proves our idea presented in the very beginning that
multi-scale representation of a saliency map greatly influ-
ences its saliency quality.

D. THE EFFECTS OF THE NUMBER OF METRICS
In this section, we justify the choice of designing saliency
quality assessment network with joint metric, instead of uti-
lizing single metric separately. An evident superiority is that
such architecture can output multiple metrics using only one
network. To explore the impacts of the number of metrics,
we design a thorough and extensive experiment. For clarity,
we take metric AUC as an example to explain the details of
this experiment. We first train the proposed DSQAN where
only AUC is used as the predicted quality metric, and plot the
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FIGURE 5. The training error curves over a fixed number of iterations when the number of metrics is varying. From left to right: (a) AUC, (b) MAE, (c) MAXF
and (d) ADAPF. The dashed line refers to the training error curve using all the four metrics.

training error curve of AUC over training iterations. Then,
we add another metric (MAE, MAXF or ADAPF) to repeat
the same training process, which is designed to observe the
performance variation of AUC when adding another metric.
Next is to add another one from the remaining metrics until
all metrics are used. For other three metrics, we conduct the
same experiments. As a result, this gives us four illustrations
shown in Fig. 5. These experiments not only produce the
performances variations of adding or moving any metrics
but also evaluate the performances of all combinations of
multiple metrics. All these training processes are carried out
with the same parameters.

Observing from Fig. 5, adding more metrics improves the
performances in terms of four metrics in most cases, and we
explain our results in three ways. First of all, it brings us much
lower training error after the first iteration, which obviously
leads to quick convergence. Take metric MAXF (the third
plot in Fig. 5) as an instance, the training error is reduced
to 0.27 from 0.33 after the first iteration when AUC is added.
Furthermore, when four metric are joint learnt, the training
error is dramatically reduced to 0.13, which is 0.3 lower
than single metric. Secondly, adding more metrics draws a
lower final loss. Take ADAPF (the fourth plot in Fig. 5) as
an example, it is hard to reach a satisfied local optimal when
only ADAPF is used. When AUC is joint learnt with ADAPF,
the decrease of the training loss of AUC significantly drag
down the training loss cure of ADAPF. While four metrics
are adopted together, it leads to the lowest training losses
at all iterations and also the final loss. The final observa-
tions is that adding more metrics shows diversity boost for
different metrics’ performances. For metric AUC (the first
plot in Fig. 5), although adding more metrics leads to better
performances, the improvement is limited after adding two
metrics. In conclusion, these results prove the our assumption
that since different saliency quality metrics emphasize dif-
ferent kinds of quality, the decrease of one metric prediction
loss is capable of bringing down other metric prediction
loss. In addition, training with joint metric generates a more
robust convergence route than only using single metric. In the
following sections, we will show another benefit using joint
metric prediction, which offers us more choices to select the
optimal saliency map.

VI. APPLICATIONS
A. OPTIMAL SALIENCY MAP SELECTION
To further evaluate the effectiveness of our proposed
DSQAN, we apply DSQAN in choosing the best saliency
map from a set of candidate saliency maps. For simplicity, we
directly choose the saliency map with the highest predicted
quality score as the optimal saliencymap, then calculatemean
of the chosen saliency maps’ ground truth scores. For a fair
comparison, we adopt the standard way used to compare the
performance between different saliency detection algorithms,
which are mean scores of AUC, MAE, MAXF and ADAPF.
To express the ceiling performance of our optimal saliency
map selection algorithm, we add another method, denoted as
ORACLE , to show the theoretical upper limit.
To choose the optimal saliency map, there are multiple

alternatives which can be utilized in our DSQAN. First of
all, we use the predicted saliency quality scores to choose the
optimal saliency map separately. The corresponding methods
are denoted as DSQANAUC , DSQANMAE , DSQANMAXF and
DSQANADAPF . For example, DSQANAUC represents that the
optimal saliency map is chosen with highest AUC predicted
score. To better exploit the joint metric, we add another new
method to choose the optimal saliency map. Concretely, we
propose a simple strategy to fusion joint saliency quality
scores, denoted as SJOINT , as follows:

SJOINT = eSAUC + e1−SMAE + eSMAXF + eSADAPF (7)

1) QUANTITATIVE RESULTS
Table 3 shows the quantitative performances when com-
pare our optimal saliency map selection results with other
saliency detection algorithms. The bold numbers with black
colors in this table represent the best performances within
15 saliency detection algorithms. It can be observed that these
methods perform non-consistent across different saliency
quality metrics, and none of them could obtain the best
result in all metrics. For our first group of optimal selec-
tion algorithms(DSQANAUC , DSQANMAE , DSQANMAXF and
DSQANADAPF ), each of them obtains the best performance on
the corresponding metric, bold numbers with red colors. For
example, DSQANMAE acquires 9.95 in terms of MAE score,
about 1% lower than the best single method performance
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FIGURE 6. An example of saliency quality prediction and saliency maps ranking according to the predicted fusion quality scores. Each row
contains five saliency quality scores, which are listed from left to right: AUC, MAE, MAXF, ADAPF and our Fusion score. The row denoted as
‘‘GT’’ is the actual saliency quality score computed with the ground truth map, while the row denoted as the ‘‘PD’’ is the predicted saliency
quality score. The number with red color above each saliency map refers to its ranking order.

and only 1% higher than the ORACLE method, which is the
theoretical upper limit. For our fusion method,DSQANJOINT ,
although it performs slightly lower than the previous four
selection methods in terms of separate metric, it outper-
forms all saliency detection methods in terms of four metrics,
which strongly proves the efficacy of the joint metric learning
strategy.

2) QUALITATIVE RESULTS
To better visualize the results of proposed method, we plot
an example saliency quality prediction results and optimal
saliency map selection in Figure 6. In this figure, each row
contains five saliency maps with their corresponding joint
quality scores, where the joint saliency scores are listed from
left to right: AUC, MAE, MAXF, ADAPF and our Fusion
score. The row denoted as ‘‘GT’’ is the actual saliency quality
score computed with the ground truth map, while the row
denoted as the ‘‘PD’’ is the predicted saliency quality score.
For better visual effect, we rank these saliency maps accord-
ing to their predicted saliency quality fusion scores. Observ-
ing from this figure, the superiority of our joint saliency

quality scoring method not only lies in choosing the good
saliency maps with high performance in terms of objective
metrics but also gives us better subjective saliency quality.
Concretely, the saliency quality scores of fist five saliency
maps are significantly higher than that of last five ones.
In the meanwhile, they have more clear contours and they
are more uniformly highlighted. These characteristics are
very important when saliency map is used in other applica-
tions under most circumstances. As a contrasting example, to
depict the disadvantage of single metric, we take the saliency
map generated by SIM [46] as an example, which has a
92.8 AUC score, only about 5 % lower that the one generated
by RBD [7]. However, the result of SIM looks significantly
poorer than that of RBD.

B. SALIENT OBJECT SEGMENTATION
In this section, we apply our DSQAN to segment salient
objects from input image and corresponding saliency map.
We apply our DSQAN to choose the best saliency map
from the aforementioned 15 results, then apply the following
salient object segmentation method. In order to associate
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FIGURE 7. Mean IoU scores of different salient object segmentation algorithms on test set. The blue bars represents the performances of
single saliency detection algorithms, and the sold blue represents the highest score. The red bars represents the performances of our
proposed methods, where AUC means use predicted AUC score to choose the best saliency map and so on. (Best viewed in colors).

TABLE 3. Mean saliency quality scores of optimal saliency map selection
on the test set (%).

salient object detection and segmentation in amore consistent
way, we propose an straightforward objective function for
consistently segmenting salient objects:

E(y) =
∑
p∈V

U (yp)+ λ
∑
p,q∈E

V (yp, yq) (8)

where yp and yq refer to segmentation variables at pixel p and
pixel q respectively. When yp equals to 1, it means p belongs
to the salient objects.

The unary term U (yp) is designed to ensure that the final
segmentation result yp is close to the saliency value sp of given

saliency map at pixel p, therefore it is computed as follows:

U (yp) =
∑
p

log spyp (1− sp)1−yp (9)

The pairwise term V (yp, yq) is used to smooth the saliency
segmentation results, defined as follows:

V (yp, yq) = d(p, q)[yp 6= yq]e−β|fp−fq|
2

(10)

where d(p, q) represents the distance between region p and q,
[.] refers to the indicator function, β refers to the parameter
that weights the feature distance, and fp is the color feature
vector of region q. The λ is set to 10, and the trade-off param-
eter β is set to 1.5 in our experiments. The above objective
function is a submodular binary discrete optimization, and it
can be minimized using graph cuts [53].
To compare the performances of different salient object

segmentation algorithms, we adopt the standard segmentation
metric mean intersection-over-union(IoU) score, which is
computed between the salient object segmentation mask and
the ground truth mask.
We show the quantitative results in Figure 7, where the blue

bars refer to the results using all the 15 saliency detection
algorithms individually and the red bars denote the results
when applying our DSQAN to choose the optimal saliency
map as the input to equation 9. From this figure, we can see
the highest segmentation score of single method is obtain
by RBD [7], whose mean IoU is 66.37%. The mean IoU of
optimal saliency map selection algorithm using our fusion
score denoted asDSQANJOINT , achieves 69.18%, remarkably
outperforms the best single method by 3%. Another two
methods, DSQANMAXF and DSQANADAPF , also outperform
each single method.

VII. CONCLUSION
In this paper, we propose Deep Saliency Quality Assess-
ment Network (DSQAN) to directly predict the joint saliency
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quality score of a saliency map. DSQAN is derived from
the canonical state-of-the-art network through task-specific
modification. To better express the saliency map’s quality,
we propose joint saliency quality score, which is defined as
the vector concatenation of four well-known metrics. It does
not only produce more accuracy and robust predicted result,
but also bring better choice to rank saliency maps. To investi-
gate the effects of different architectures on saliency quality
prediction, we implement our DSQAN under different CNN
architectures. We demonstrate that the number of downsam-
pling layers has a great influence on predicting the saliency
quality. As the applications of our method, we apply the
learned DSQAN to both optimal saliency map selection and
salient object segmentation, and the experiments strongly
prove the effectiveness of proposed method.
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