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ABSTRACT In hardware/software (HW/SW) co-design, hardware/software partitioning is an essential
step in that it determines which components to be implemented in hardware and which ones in software.
Most of HW/SW partitioning problems are NP hard. For large-size problems, heuristic methods have to be
utilized. This paper presents a parallel genetic algorithm with dispersion correction for HW/SW partitioning
on CPU-GPU. First, an enhanced genetic algorithm with dispersion correction is presented. The under-
constraint individuals are marched to feasible region step by step. In this way, the intensification can
be enhanced as well as the constraint problem can be handled. Second, the individuals performing costs
computation and dispersion correction are run in parallel. For a given problem size, the overall run-time
can be reduced while the diversity of genetic algorithm can be kept. Third, especially when a number of
under-constraint individuals should be corrected in an irregular way, the computation process is complicated
and the computation overhead is large. Therefore, we present a novel parallel strategy by leveraging the
parallel power of a multi-core CPU and that of a many-core GPU. The proposed strategy computes the
costs of each individual in parallel on GPU and corrects the under-constraint individuals in parallel on
the multi-core CPU. In this way, a highly efficient parallel computing can be achieved in which dozens
of irregular correction computing steps are mapped to the multi-core CPU and thousands of regular cost
computing steps are mapped to the many-core GPU. Fourth, at each iteration of the hybrid parallel strategy,
the solution vectors of individuals are transferred to the GPU and their costs are transferred back to the CPU.
In order to further improve the efficiency of proposed algorithm, we propose an asynchronous transfer pattern
(stream concurrency pattern) for CPU-GPU, in which the transfer process and computation process are
overlapped and eventually the overall run-time can be reduced further. Finally, the experiments show that the
solution quality obtained by our method is competitive with existing heuristic methods in reasonable time.
Furthermore, by combining with the multi-core CPU and many-core GPU, the running time of the proposed
method is efficiently reduced.

INDEX TERMS Hardware/software co-design, heuristic method, genetic algorithm, multi-core CPU,
many-core GPU.

I. INTRODUCTION

In most embedded systems, a hardware platform is made
up of the predominant digital components which execute
software application programs. Due to the increasingly need
of raising the potential quality and shortening the devel-
opment time of electronic products, plus the emergence
of computer aided design (CAD) tools, hardware/ software
co-design has become a hot topic since 1990s [1]-[3]. In hard-
ware/software co-design, hardware/ software partitioning

(HW/SW partitioning) is an essential procedure because it
determines which components to be implemented on hard-
ware and which ones on software. HW/SW partitioning can
improve the overall performance of modern embedded sys-
tems. Over the past two decades, a number of works have
been done for HW/SW partitioning [4], [5].

The target architecture of embedded systems generally
consists of software component and hardware component.
The software component usually refers to RISC CPU.
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The hardware component refers to Field Programmable Gate
Array (FPGA) or Application Specification Integrated Cir-
cuit (ASIC). When the application is implemented on hard-
ware, it is significantly faster and more power-efficient.
However, the spending is very high. Relatively, when
the application is implemented on software, it is power-
consuming and the spending is small, but the speed is slow.
HW/SW partitioning can ensure an optimal trade-off between
cost, performance and power.

At the theory and methodology level, HW/SW partitioning
was taken a more theoretical description. The application to
be partitioned is given in the form of a task graph, or a set
of task graphs. For example, the system to be partitioned was
modeled as an undirected communication graph [6]. Based on
the model, Araté et al categorized two different versions of
HW/SW partitioning. One can be solved optimally in polygon
time complexity, while the other was NP-hard in the strong
sense [7].

On algorithmic aspects of HW/SW partitioning, two cate-
gories of algorithms are utilized, namely exact methods and
approximate methods (widely implemented with heuristic
algorithms). The exact algorithm is used to obtain an exact
solution for the small size problem. The typical exact methods
include dynamic programming [8], linear programming [9]
and branch and bound [10]. When the problem size becomes
large and the solution space of HW/SW partitioning increases
exponentially, exploring the exact solution in reasonable time
is impractical. Heuristic algorithms therefore become popular
approximate alternatives due to their superior ability to obtain
good quality solutions within the limited computing time.

In the early stage of HW/SW partitioning, domain-
specific heuristics, including hardware-oriented heuristic
algorithm and software-oriented heuristic algorithm, were
proposed [11], [12]. The former starts with a complete hard-
ware solution and iteratively moves parts of the system to
the software, while the latter starts with a software program
moving pieces to hardware. The hardware-oriented approach
is treated as a performance-constraints method. The software-
oriented approach is treated as a time-constraint method.

After then, many general heuristics or metaheuristics
were also adopted, such as genetic algorithm [6], [7], [13],
ant colony algorithm [14], [15], artificial bees [16], par-
ticle swarm optimization (PSO) [17], [18], simulated
annealing [19], [20], artificial immune algorithm [21], tabu
search [8] and the hybridization of these methods [22]-[26].

HW/SW partitioning is a problem of constraint optimiza-
tion. No matter what kind of heuristic is adopted, handling
with infeasible solutions is an important issue. For example,
in [7], genetic algorithm was outperformed by a problem-
specific method. The main reason is the genetic algorithm
did not consider the problem-specific issues. Therefore, how
to combine genetic algorithm with problem-specific exploita-
tion is the key.

However, a genetic algorithm with problem-specific
exploitation is time-consuming. On the one hand, multi-core
CPU and many-core GPU have become the mainstream of
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FIGURE 1. An example of task graph for HW/SW partitioning. White
nodes are implemented on software and gray nodes are implemented on
hardware.

personal computer systems as cheap alternate of high perfor-
mance computing. On the other hand, how to leverage the
computing resources of both multi-core CPU and many-core
GPU for HW/SW partitioning and to reduce the run-time
of genetic algorithm with problem-specific exploitation are
unknown.

This paper presents a novel parallel genetic algorithm
on CPU-GPU with dispersion correction for HW/SW par-
titioning. Firstly, a novel genetic algorithm for constraint
optimization is presented. The under-constraint individuals
are marched into feasible region step by step. Therefore,
the search intensity can be enhanced as well as the constraint
problem can be handled. Secondly, because a number of
infeasible individuals are needed to be corrected and the com-
putation overhead is high, we devise a parallel strategy and
asynchronous transfer pattern to match well the architecture
of multi-core CPU and many-core GPU. Finally, the experi-
ments testify the effectiveness of our method.

The rest of this article is organized as follows. In section 2,
we formulize the problem. In section 3, we firstly propose
our method of serial implementation for HW/SW partition-
ing. We secondly propose the CPU-GPU parallel strategy.
In section 4, computational experiments are conducted to
evaluate the effectiveness of proposed method and the effi-
ciency of hybrid parallel strategy. Conclusion and future work
are given in the final section.

Il. RELATED WORK
A. HW/SW PARTITIONING MODEL
Formally, the application to be partitioned is represented
as an undirected graph G (V, E), s, i V. — R+, and
c: E - R+.V = {v,v,..., ]} indicates the task
nodes. Each node includes hardware cost h(vj) and software
cost s(vj). E indicates the set of edges between the nodes.
The weights c(vi, vj) on the edges indicate the communication
cost when the two adjacent nodes are separated implemented
(hardware or software). P = {Vy, Vs} is called a HW/SW
partitioning, if it satisfies Vg N Vg = & and Vg U Vg = V.
Accordingly, the edge set of P is defined as Ep = {(vi, vj)Ivi €
VH, vj € Vs orv; € Vg, vj € Vy}. Figure 1 gives an example
of task graph for HW/SW partitioning.

As in [7] described, a partition is characterized by three
metrics, namely hardware cost Hp, software cost Sp, and
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communication cost Cp, which are formulated as follows.

Ho= Yy (1)

vieVy

Sp = Z S (2)
vieVs

Cp = Z C (v,‘, Vj) (3)
(vi,vj)€EEp

The total cost of partition P is defined as Tp = aHp +
BSp + yCp. In Tp, «, B, y are weights, which are non-
negative constants, reflecting the relative importance of the
three costs. Hence, two versions of partitioning problem are
defined as.

Problem Pj. Given a graph G with the cost function
s, h, ¢ and the constant o, 8, y > 0, finding a hard-
ware/software partitioning P with minimum Tp.

Problem P. Given a graph G with the cost function s, &, ¢
and R > 0. Finding a hardware/software partitioning P with
Sp + Cp < R that minimize Hp.

The Problem P can be solved in polynomial-time, and the
Problem P is NP-hard. Therefore, many challenging methods
for HW/SW partitioning focus on Problem P [7], [27]-[31].

B. EXISTING METHODS FOR PROBLEM P
Problem P can be directly solved or indirectly solved with
different algorithms.

Among direct methods [4], genetic algorithm was firstly
proposed [7]. However, the solution quality and run-time of
this method is not good.

In order to address the deficiencies of above method,
an indirect method based on 2D search was proposed
to search the solution space of P. The search process
of P was guided by the solution of Problem Pgy [7].
To search the 2D space more precisely and efficiently,
Tahaee and Jahangir [27] analyzed the search space and
improved the search process.

The second indirect methods tried to transform Problem P
into a variation of standard 0-1 knapsack problem. Specially,
Wu et al. [28] proposed three new algorithms, named /D
search method to obtain better quality in shorter execution
time, by comparing against the previous 2D search method.
However, on a variation of the standard 0-1 knapsack prob-
lem, there was a defect in the theoretical description, which
was checked and perfected by Quan et al. [31].

Instead of a variation of standard 0-1 knapsack problem,
Wau et al [29] proposed HEUR method. He treated problem P
as a standard 0-1 knapsack problem without consideration of
communication cost. The temporary solution without com-
munication cost was adjusted into a feasible solution by con-
sidering the impact of the communication cost. Experiments
showed that Wang’s method could produce better solution
quality than /D search method [28].

After introducing the idea of PageRank, Chen et al. [30]
proposed NodeRank algorithm, an iteration-based HEUR,
to further improve the solution quality in some cases.
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In a short, there was no one method of absolute advantage
in both quality and run-time for problem P. Therefore, this
manuscript proposes a novel approach to solve problem P.

-- We combine the advantages of direct method and indi-
rect method. Firstly, we search the solution space of
problem P using genetic algorithm. Secondly, we also
adopt the correction idea from the second indirect
methods for problem-specific constraint issue.

-- Especially, our correction strategy is different from
that of existing methods. In existing methods, such as
in [29] and [30], only one infeasible solution is cor-
rected. In our method, a number of infeasible solutions
are corrected. In this way, our strategy can enhance the
search intensity and eventually improve the solution
quality as well as address the constraint issue.

- - Furthermore, a novel parallel pattern for our correction
strategies is proposed to match well the architecture
of CPU/GPU hardware and eventually to reduce the
run-time of about steps, otherwise it would be time-
consuming.

The experiments testify the effectiveness of our method.

C. ARCHITECTURE AND PROGRAMMING OF
MULTI-CORE CPU AND MANY-CORE GPU

On the one hand, there are some pioneering publications on
parallel method for other HW/SW partitioning. The known
works include parallel genetic algorithm [32] and PSO algo-
rithm [33]. Both works were implemented on the cluster
platforms.

On the other hand, multi-core CPU and many-core GPU
has become a popular parallel computing platform with low
power-consuming and high ratio of performance to price.
Multi-core CPU and many-core GPU are available on very
general PC systems. They are playing an important role in sci-
ence and engineering domains [34], [35]. Therefore, how to
use the parallel power of multi-core CPU and many-core GPU
on personal computers for HW/SW partitioning is an interest-
ing topic. The manuscript proposes a new CPU-GPU parallel
genetic algorithm with dispersion correction for HW/SW
partitioning.

CPU GPU

control
Arithmetic Arithmetic Arithmetic Arithmetic Arithmetic
Cache
control
Arithmetic || Arithmetic | |e—s]

e Arithmetic || Arithmetic || Arithmetic
‘ Cache ‘

a-10d

Cache

control
Cache

Arithmetic Arithmetic Arithmetic

‘ Main memory Video memory

FIGURE 2. Difference of architecture between CPU and GPU. Data
transfer between CPU and GPU is through PCI-E.

The architecture comparison between CPU and GPU is
shown in Figure 2. The architecture of CPU is latency-
oriented. When there are complex logic judgements in
application programs, the architecture of CPU shows a
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significant advantage over that of GPU. The architecture of
GPU is throughput-oriented [34]. When there are computing-
intensive parts in application programs, the architecture of
GPU shows more advantages over that of CPU. The main
reason of the difference is that in CPU, logic control units
and cache take up most of space, while in a single chip of
GPU, arithmetic units take up most of area.

At present, there are various parallel programming lan-
guages supporting multi-core CPU and many-core GPU. This
paper focus on OpenMP and Compute Unified Device Archi-
tecture (CUDA).

-- OpenMP is an industry standard for parallel program-
ming of shared memory system, which uses Fork/Join
parallel execution model. It provides a simple and easy-
to-use mechanism of multi-threading on multi-core
CPU. When parallelizing a serial program in OpenMP,
there is no need to make a big change to resource code.
Adding a simple directive statement before the loop
body is enough to unroll the loop.

-- CUDA is a programming model to provide a pro-
gramming interface to GPU devices. It is released by
NVIDIA in the purpose of popularizing GPU com-
puting. The functions writing in CUDA C and run-
ning on GPU are kernels. All the threads running the
same kernel are organized into a thread grid. In a
thread grid, all of the threads execute the same ker-
nel on different data, which is known as Single Pro-
gram Multi Data (SPMD). The threads in a grid are
divided into equally sized thread blocks and dispatched
on the Stream Multi-Processors (SMs) of the GPU in a
cyclic manner. Within a thread block, the continuous
32 threads are organized into a warp and the warps
are dispatched by the warp dispatcher on the SM. This
way hides the latency result from memory accessing
because there are other idle warps waiting for being
executed within a thread block.

-- In PC platforms, GPU is an independent computing
device. The data between CPU and GPU is trans-
ferred through PCI-E bus. Therefore, an efficient algo-
rithm should minimize the transfer overhead between
GPU and CPU.

In this manuscript, we proposed a novel GPU-CPU parallel

pattern to support genetic algorithm with dispersion correc-
tion for HW/SW partitioning.

Ill. THE PROPOSED METHOD

A. OVERVIEW OF PROPOSED PARALLEL GENETIC
ALGORITHM WITH DISPERSION CORRECTION

As a population-based metaheuristic, standard genetic algo-
rithm is based on the principle of natural genetics and natural
selection. The core elements in the genetic search include
reproduction, crossover and mutation.

In our method, these core elements are adapted for HW/SW
partitioning. We stop our algorithm when a given max number
of generation is reached. In addition, if the global hardware
cost was not improved in a given number of iterations, we stop
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the algorithm as well. If the global hardware cost is improved,
we reset the no-improvement counter as 0.

In overview, the proposed genetic algorithm with disper-
sion correction for HW/SW partitioning is shown in Figure 3.

’ Generate M initial individuals ‘

{
O

Correct the infeasible individuals

N|

Perform genetic operations to
generate M offspring

l
v 3 bbbl

Compute hardware cost, software cost and
communication cost of M offsprin

v i b b

Correct the infeasible offspring

’ Update population and global hardware cost ‘

No @
Yes

FIGURE 3. Flowchart of proposed method.

B. PROPOSED GENETIC ALGORITHM WITH

DISPERSION CORRECTION STRATEGY

1) INDIVIDUAL REPRESENTATION

In standard genetic algorithm, an initial codification of
individuals is the starting point to the following steps.
For HW/SW partitioning, let x be (x1, x2,...,x,). Here,
x denotes a HW/SW partitioning of problem P. x; = 1
(xi = 0) indicates that the node v; is assigned to software
(hardware), | < i < n. Hence, an individual is an expres-
sion of O1...01. The length of expression equals to number
of nodes in the task graph. Figure 4 shows an example of
randomized individuals.

mdividiat 1 | 1] 0] 1|01 1]1]0]

mdividwal 2 | 0] 0] 1]o]of1]1]1]

Individual n |1|o.|1|o|1|1|0|1|

FIGURE 4. An initialized population for HW/SW partitioning.

In our method, we initialize one individual by the solution
of NODERANK [30]. The remaining individuals are gener-
ated by randomly flipping two genes in the first individual.
Comparing with random population, this ensures the initial
population of high quality.
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2) OBIJECTIVE FUNCTION

The goal of problem P is to minimize the hardware cost while
satisfying the constraint of software cost plus communication
cost. Here, h; denotes the hardware cost of v; and s; denotes
the software cost of vj. C(x) indicates the communication cost
in which cj; denotes the communication cost between v; and v;
if the two nodes are in different context. Hence, the hardware
cost, software cost and communication cost of problem P are
formulized as.

H@) =Y hi(l—x) )
i=1

S (x) = ZS,‘ * Xi (5)
i=1
n—1 n

C=> > cjlui—x| (6)
i=1 j=i+1

According to definition, HW/SW partitioning is for-
mulized as.

min H (x)
S +Cx <R
The inequality in P is extended by the equation (4) to (6)

as.

n—1 n

n
Zsi-x,-—i-Zchj‘xi—xj‘fR 7)
i=1

i=1 j=i+1
In summary, the final formulation of problem P is as
follows.

n
min Z h; (1 —x;)
i=1

n n—1 n
Dosicxi+Y Y cjli—x[ <R
i=1

i=1 j=i+1

P

Although the costs of randomized individuals are obtained
by the above formulas, it is necessary to further judge whether
each individual satisfies the constraint. If it does, the indi-
vidual is a feasible HW/SW partitioning. Otherwise, it is an
infeasible partitioning. The following section will describe
the method we propose for handling with the infeasible
individuals.

3) DISPERSION CORRECTION STRATEGY

In evolutionary computation, how to solve constrained opti-
mization problems is an important research topic. Among
different techniques, penalty function-based method is very
practical [36]. For HW/SW partitioning, it is also a concern to
find an effective penalty function to handle with these infea-
sible individuals [6], [24]. However, penalty function-based
method does not change the nature of infeasible individuals.
In our problem, when the number of infeasible individuals
is much more than that of feasible solutions, whether such
method is still effective is doubtful. Although function-based
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method can search for the solution by enhance the diversity of
search process, it fails to enhance the intensification of search
process.

In this paper, we propose a dispersion correction method,
which involves two procedures. Specially, when some indi-
vidual does not satisfy the constraint, it means one of the tasks
assigned to software component is needed to be switched to
implementing on hardware component. That is to say, setting
xi as 0. The process of correction involves multiple nodes
assigned to software component. The goal of correction is to
make under-constraint individuals feasible.

When node i is assigned to software component, the sum
of communication cost of all its adjacent nodes assigned to
hardware is given as

Coa = Y _ c(i.j) ®)
J€VH

If node i is corrected, the sum of communication cost of
its adjacent nodes is changed as well. After it is changed to
implementing on hardware component, there will be com-
munication cost between all its adjacent nodes assigned to
software component. The sum of communication cost of v;

becomes as.

Cuew = )_ ¢ (i, k) ©

keVs

Let Acj denotes the change of communication cost of
node i. It is obtained by the following formula.

old — Cnew (10)

Combining Ac; with the hardware cost and software cost
of node i, we select the node assigned to software component
with the minimum ratio and set it as O (hardware component).
At each step, only one node is corrected and the hardware
cost H(x), software cost S(x) and communication cost C(x)
are updated. The procedure does not stop until the HW/SW
partitioning satisfies the constraint, as in algorithm1 shows.

Ac; =

Algorithm 1 One-Step Correction
Input: Task graph G, constraint R and HW/SW
partitioning x
Output: corrected HW/SW partitioning x

1. while S(x) + C(x) > R
2. foreachx; =1do

3 compute Ac; and h;/(s; + Ac;)

4 choose node k with minimum #%;/(s; + Ac;)
5. end for
6

7

8.

set x; as 0
update H (x), S(x), C(x)
end while

After the first correction, the under-constraint individual
becomes feasible. In order to optimize its solution, it is
further corrected by setting the nodes assigned to hardware
component as the one implemented on software component.
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The process is called intensification correction. Likewise,
the process involves the change of communication cost.
Similar to equation (8) to equation (10), when the node v;
assigned to hardware component is changed into implement-
ing on software component, the change of communication
cost of node vj is given as.

Aci= Y clik)= Y c(j) (11)

keVy JjeVy

Although the intensification correction involves selecting
node of minimum value ratio, it is different from the first
correction. After the first correction, by constraint R sub-
tracting the sum of software cost and communication cost of
feasible individual, there exists a residual value. The process
of intensification correction is based on that residual value.
Therefore, the process of intensification correction does not
stop until the update of residual is less than 0. Besides,
we select the node of maximum ratio value to be implemented
on software component, just as Algorithm 2 shows.

Algorithm 2 Intensification Correction
Input: task graph G, constraint R and HW/SW partitioning
x in the first correction
Output: HW/SW partitioning x of two-step correction

1. residual = R — (S(x) + C(x))

2. while residual > 0

3. for each x; = 0 do

4. assume x; = 1

5. compute Ac; and h;/(s; + Ac;)

6 choose node k with maximum #4;/(s; + Ac;) in
the condition of (Ac; + hi/(s; + Ac;)) < residual

7. end for

8. if exists node k then

9. xp =1

10. residual = residual — (s + Acg)
11. update H(x), S(x), C(x)

12. else

13. break

14. end if

15. end while

In algorithm 1, line 3 and line 4 are implemented in O (n).
In line 7, H(x), S(x) can be implemented in O (1) and C(x)
is implemented in O (m;), in which m; denotes the number of
edges associated with node i. At the worst case, m; equals to
that of edges in the task graph, namely m. Therefore, the time
complexity of algorithm 1 is O (k; * (n + m)), in which k;
denotes the while loop in line 1. Similarly, the time complex-
ity of algorithm 2 is O (k2 * (n 4+ m)), in which k; denotes
the while loop in line 2. Let k be max {k1, k2}, the time
complexity of dispersion correction strategy is O (k * (n+m)).

4) GENETIC OPERATIONS FOR HW/SW PARTITIONING
At each generation, standard genetic algorithm selects
two individuals in the current population as parents.
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The algorithm either passes these parents directly to the new
population or generate two offspring individuals from the
parents. Hence, how to select the two individuals from current
population is an important issue. Among different selec-
tion strategies, roulette wheel selection is a general option.
It is a probability-based approach in which the individuals
with higher fitness have more priority. However, roulette
wheel selection can not handle a minimization problem
directly [37].

In our problem, the goal is minimizing the hardware
cost. For HW/SW partitioning, the smaller the hardware
cost, the more the saved hardware cost. Based on the fact,
we adapt the roulette wheel selection based on saved hard-
ware cost. The individual with more saved hardware cost
has higher probability to be selected. Meanwhile, the prob-
abilistic characteristics of roulette wheel selection makes
individuals with small saved hardware cost have a chance to
be selected. However, it is possible for the same individual
to be selected again as a parent individual if directly using
roulette wheel selection twice.

To overcome the shortcoming, we propose a random sam-
pling and combine it with roulette wheel selection. Specially,
we still use the roulette wheel selection to select the first
parent individual and the first parent individual’s position is
obtained. Next, we set it as a start point and generate a random
offset to select the second parent individual. The modular
operation keeps the result within the range of population. This
random sampling ensures that the two selected parents are
always different. The formula of random sampling is given
as follows.

pos, = (posl + rand (1, pop_size — 1)) mod pop_size
(12)

To generate the new individuals, standard genetic algo-
rithm generates offspring individuals either by crossover
operation to combine the vector entries of a pair of par-
ents or by mutation operation to make random changes to a
single parent.

Parent 1 |0|1|1|0|0|1|0|1|

parent2 |1 fofofuft]ofifo]

Children1|1|0|0|0|1|l|l|1|

chidren 2 [0 [ 0] 1[1]0]0]0]0]

FIGURE 5. Crossover based on component.

In our work, we perform the crossover operation as follows.
For each component in the parent individuals, every two
of them are swapped. After that, two new individuals are
generated, as Figure 5 shows.
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Standard genetic algorithm further increases the diversity
of population by mutation operation. In HW/SW partitioning,
we perform the mutation on some component of offspring.
Whether performing the mutation or not depends on a given
probability. After mutation operation, the nodes assigned to
hardware component is changed into software component,
and vise versa.

5) UPDATE STRATEGY
After the genetic operations, a new population is created. It is
noteworthy that genetic operation only generate the solution
vectors of individuals. Next, the hardware cost, software cost
and communication cost of each new individual are obtained
according to formula (4)~(6). Besides, the process of genetic
operations does not check whether the new individuals satisfy
the constraint or not, resulting in under-constraint individu-
als in the new population. Dispersion correction mentioned
before is utilized to make the infeasible solutions feasible.
Finally, the old population is replaced with the new popu-
lation. Meanwhile, an individual with the optimal hardware
cost is obtained. If its hardware cost is better than the global
hardware cost, then updating the global hardware cost.

6) ALGORITHM COMPLEXITY

At each iteration, for each individual, the complexities of
computing costs is O(n%), which means the worst case is
dominated by computing the communication cost. At the
stage of dispersion correction, the time complexity is O
(k*(n + m)). The time complexity of genetic operation
is O (M*n), in which M denotes the individual number.
Therefore, the overall time complexity at each iteration is O
(M* (n? + k* (n + m))).

C. CPU-GPU PARALLEL STRATEGY

1) HIGHLY EFFICIENT PARALLEL APPROACH FOR
ENHANCED GENETIC ALGORITHM

On the one hand, modern personal computer systems consist
of multi-core CPU and many-core GPU, which form a het-
erogeneous computing platform. How to combine advantages
of both CPU and GPU to solve real-world applications is
challenging [38].

On the other hand, most of exiting methods for HW/SW
partitioning focus on sequential implementations which do
not leverage the available computing resources on personal
computer systems. There are scarce publications on parallel
method for HW/SW partitioning. A few works include par-
allel genetic algorithm [32] and parallel PSO algorithm for
HW/SW partitioning [33], which were implemented on the
cluster platform.

Based on above enhanced genetic algorithm with dis-
persion correction for HW/SW partitioning, this section
devises a highly efficient parallel approach for the algorithm,
which addresses several key issues. The first one is how
to parallelize the algorithm components. The second one
is how to map these algorithm components on CPU-GPU.
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The mapping should match well the architecture of
CPU-GPU. The third one is how to transfer the data between
CPU and GPU efficiently.

Therefore, we present a parallel genetic algorithm
with dispersion correction for HW/SW partitioning,
in which the individual processing are run in parallel on
CPU and GPU.

Especially, a number of under-constraint individuals are
corrected in an irregular way, in which the computation
process is complicated and the computation overhead is
large. We present a CPU-GPU parallel strategy to take the
advantage of the parallel power of both multi-core CPU
and many-core GPU. The proposed strategy computes the
costs of each individual in parallel on GPU and corrects the
under-constraint individuals in parallel on multi-core CPU as
follows.

2) COMPUTING INDIVIDUAL'S COSTS IN

A WAY OF DATA-PARALLEL ON GPU

In our method, the GPU will be utilized to compute each
individuals’ hardware cost, software cost and communica-
tion cost. In order to perform the roulette wheel selection,
GPU will also be used calculate the saved hardware cost of
each individual.

Although the thread running on GPU is the basic unit
and one thread can be mapped to one individual logically.
However, this configuration has following drawbacks.

-- The number of individual in genetic algorithm is gen-
erally less than that of arithmetic units on modern
GPU. Therefore, this configuration does not leverage
the available computing resources of GPU.

- - Furthermore, this configuration fails to make fully use
of the data-parallel characteristics in the process of
computing each individual’s costs.

Equation (4) to (6) show that the process of hardware
cost, software cost and communication cost mainly involves
summation operation in GPU. It is the first choice to imple-
ment the operation with GPU reduction in data-parallel pat-
tern. However, due to the peculiarity of HW/SW partitioning
problem, this reduction process is different from standard
reduction.

Therefore, the computation method of hardware cost is
proposed as follows.

-- According to the partitioning of each node, the intra-
block threads firstly perform the product of hardware
cost of nodes in the task graph and the hardware/
software partitioning of individuals in parallel.

- - After the product, each intra-block thread performs the
partial summation in parallel. This is different from the
standard reduction in which the input data is directly
used to perform the partial summation.

- - Next, the partial summations are uploaded in the shared
memory. The finally summations are finished by the
intra-block threads in a cooperative way. Computing
software cost and saved hardware cost follow the same
way.
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-- After the summation, the hardware cost and software
costs are written into global memory. The saved hard-

ware costs are also written into global memory.
In our method, a thread block is mapped to an individual

and the intra-block threads are mapped to the genes of an
individual. For HW/SW partitioning, a gene of individual
represents the partition of a node in the task graph.

Figure 6 shows the difference between the process of stan-
dard reduction and that of computing hardware cost in context
of HW/SW partitioning.

HW/sW partiioning | 1[ 0 0] 1] 1] 0] 1] 0]

)

— o
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FIGURE 6. The difference between the process of standard reduction and
that of computing hardware cost for HW/SW partitioning.

For computing the software cost and the saved hardware
cost, they follow the same way as the computation of the
hardware cost.

However, computing communication cost is quite different
from above computation methods.

For each individual, the efficiency of computing the com-
munication cost depends on the representation of task graph
on GPU. It is noteworthy that the weight on each edge denotes
the communication cost between a pair of nodes if they are in
different context. In the original formula (6), the task graph
is represented as an adjacent matrix in which the complexity
of sequential procedure of communication cost is O(n?).

Therefore, our method of computing communication cost
is as follows.

-- When computing communication cost of each individ-
ual, only the information of edge in the task graph
is necessary. Therefore, the complexity of original
sequential procedure is reduced to O (m) in our method.

-- When porting the process of communication cost to
GPU, we configure a thread block as an individual.
Furthermore, different from above computing of hard-
ware cost, a thread within a block is mapped to an edge
of task graph.

-- Because two nodes of each edge is accessed by their
own threads, the data-placement of solution vector is
located on shared memory. Likewise, the summation
of each edge is finished by the intra-block cooperative
threads.

Figure 7 shows the process of computing communication

cost on GPU.

In summary, this section propose a data-parallel method
to calculate the four types of costs. When computing the

890

partial summation |9|7|8|1 6

Lol vfs]slofslofs]

[=]]8]3]ofs]o]s]

Lol w]s]slofs]o]s]

FIGURE 7. The process of computing communication cost on GPU.

costs of each individual in parallel on GPU, our strategy
exhibits three levels of parallelism. These are the parallelism
between the new individuals, the parallelism among the nodes
in each individual and the parallelism among the edges in
each individual, respectively.

In implementation, we assign two kernels running on GPU.
The first kernel is to compute each individuals’ hardware cost,
software cost and saved hardware cost. The second kernel is
to compute each individual’s communication cost.

3) MULTI-CORE CPU BASED DISPERSION

CORRECTION OF INFEASIBLE INDIVIDUALS

After each new individual obtains the hardware cost, software
cost and communication cost, the feasibility of individual will
be checked based on constraint R. If an individual does not
satisfy the constraint, a dispersion correction strategy will be
invoked.

However, the procedures of dispersion correction inside

Algorithml and Algorithm2 are extremely irregular.

- - Firstly, at each iteration, when the two algorithms stop
depend on how far the under-constraint individuals is
away from the constraint.

- - Secondly, for example of Algorithml,line 2 to line 5 are
the main procedures, but the number of loop depends
on the number of nodes assigned to software.

-- Lastly, in order to correctly realize the two algorithms,
two data structures of managing the partitioned nodes
are created and the data structures are accessed fre-
quently in the whole procedure. The same data struc-

tures are also used in the Algorithm?2.
Therefore, this section proposes a multi-start strategy of

parallel dispersion correction on multi-core CPU for our
algorithm with following reasons.

-- The irregular dispersion correction processes inside

each individual is more suitable for CPU than for GPU.

- - Furthermore, for overall individuals, the processes of

dispersion correction are independent of each other,
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meaning that they can be parallelized. Multi-start
of correcting the under-constraint individuals can be
accelerated by multi-core CPU.

4) AN ASYNCHRONOUS TRANSFER PATTERN FOR
REDUCING THE TRANSFER OVERHEAD

At each iteration, solution vector of each individual is trans-
ferred from CPU to GPU. After computing costs, the results
are transferred back to CPU side. Hence, the transfer over-
head is unavoidable.

In order to further improve the efficiency of proposed
algorithm, we proposed an asynchronous transfer pattern
for CPU-GPU computation in which the processes of data
transfer and cost computation run in a way of pipeline. This
way can minimize the transfer overhead. Figure 8 shows an
example in which the number of individuals is 4 and number
of stream is 2 respectively.

‘ Tine ‘
Transfer the solution vectors of individual Kernels of i " Transfer results of individual
123,4t0GPU emels of computing cos 1,2,3,4 back to CPU
Transfer the solution Kernels of Transfer results
vectors of individual computing of individual 1.2
1,2 to GPU cost back to CPU
Transfer the solution Kemnels of Transfer results
vectors of individual computing of individual
3,4to GPU cost 3.4 back to CPU

FIGURE 8. Asynchronous transfer pattern between data transfer and
kernel execution.

In summary, the proposed flowchart of CPU-GPU paral-
lel genetic algorithm with dispersion correction strategy for
HW/SW partitioning is shown in Figure 9.

C

[ Generate Minitial_individuals |

Adjust the infeasible individuals

Allocate memory space on GPU
Transfor task graph to GPU

v Genetic operation

Select two parcnt individuals_by roulette wheel
selection

[ [ Perform cross-over and mutation |

Individual M-1 GPU side

7 Individual 1
Individual 0,

‘ Transfer solution vectors to GPU ‘ Computing individual's hardware

costand software cost
T

Computing individual’s
communication cost

‘ Adjust individual 0 ‘ ‘ Adjust individual 1 ‘ "" Adjust individual M-1 ‘ Multi-core CPU

[ I J
v

[ Update popuation and global hardware cost |

e

Yes

‘ Launching kemels of computing costs ‘

‘ Transfer individual’s costs back to CPU I

FIGURE 9. Flow chart of CPU-GPU parallel genetic algorithm with
dispersion correction for HW/SW partitioning.

IV. EXPERIMENT

A. BENCHMARK AND PLATFORM

Because the proposed method is population-based meta-
heuristic, empirical evaluation is widely used to test the
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performance and effectiveness in many researches [7],
[27]-[30]. So does in this manuscript.

We also follow the same benchmark according to the
method mentioned in [7] and [28]-[30]. TABLE 1 shows the
number of node n and that of edge m in each task graph
respectively, the total size is given by 2 x n + 3 x m. This
is because each node is assigned two values (its hardware
and software costs) and each edge is assigned three num-
bers (the identities of its endpoints and its communication
cost).

TABLE 1. Benchmark.

no. name n m size
1 cre32 25 34 152

description

32-bit cyclic
redundancy check.
From the tele-
communications
category of
MiBench [39]
Routine to insert
values into patricia
tries, which are used
to store routing
tables. From the
Network category
of MiBench [39]
Computes shortest
paths in a graph.
From the Network
category of
MiBench [39]
Image segmentation
algorithm in a
medical application
RC6 cryptographic
algorithm

random graph
random graph
random graph
random graph
random graph
random graph
random graph
random graph
random graph

2 patricia 21 50 192

3 dijkstra 26 71 265

4 clustering 150 333 1299

5 rc6 329 448 2002

6 random1 1000 1000 5000
7 random2 1000 2000 8000
8 random3 1000 3000 11000
9 random4 1500 1500 7500
10 random5 1500 3000 12000
11 random6 1500 4500 16500
12 random7 2000 2000 10000
13 random8 2000 4000 16000
14 random9 2000 6000 22000

The software cost is generated as uniform random numbers
from the interval [1,100]. The hardware cost is generated as
random numbers from a normal distribution with expected
value k - s; and a given standard deviation k - A - s;, where s;
is the software cost of the given node. The value of k denotes
the choice of units for software and hardware cost. The value
of Adenotes the correlation between a node’s hardware cost
and software cost. In [7], [28], and [29], the author pointed
out that the value of k has no algorithmic implications and
that of Adid not have any impact on the performance of the
algorithm.

The communication costs were generated as uniform ran-
dom numbers from the interval [0, 2 - o - S;ax ], Where $p,qx 1S
the highest software cost. Thus, communicat-ion cost have
an expected value of p - spuq, and  p is the so-called
communication to computation ratio (CCR). p was taken
as 0.1, 1 and 10, corresponding to computation-intensive
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FIGURE 10. Solution quality averaged on 30 random instances in the 6 cases. (a) CCR = 0.1, R = low. (b) CCR = 0.1, R = high.
(c) CCR = 1.0, R = low. (d) CCR = 1.0, R = high.

case, intermediate case, and communication-intensive case,

respectively.

R was randomly generated as a uniform random number (1)
from the interval [0, 1/2x >_ s;], corresponding to the strict
real-time constraints, (2) from the interval [1/2x > s;, Y 571,
corresponding to the loose real-time constraint. The two cases
are indicated as R = low and R = high, respectively.

The development tool is Visual Studio2012, program-
ming in C++. The computing platform running multi-
core parallel procedure is Intel Pentium (R)Dual-Core CPU
E5300 with 2.6GHz clock frequency that has four cores. The
size of CPU main memory is 16GB. The computing platform
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running many-core parallel procedure is NVIDIA GTX 780,
consisting of 12 SMs, 192 SPs per SM. The clock frequency
of each SP is 1.059GHZ. The size of GPU global memory
is 3GB. We implement our method in OpenMP and CUDA,
respectively.

B. RESULT ANALYSIS
According the section 2, a convincing test should consider
following reasons.
-- The proposed approach solve the Problem P. The com-
pared algorihtms should be existing methods which
also sovle Problem P.
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FIGURE 11. The improvement of solution quality by doubling the individual number step by step. (a) CCR = 0.1, R = low.
(b) CCR = 0.1, R = high. (c) CCR = 1.0, R = low. (d) CCR = 1.0, R = high. (¢) CCR = 10.0, R = low.

-- The proposed approach combine the advantages of
direct methods and indirect methods. The existing
indirect methods outperformed existing direct method
in [6] and [7]. It is reasonable to compare with existing
indirect methods.

According to the existing indirect methods for problem P,
we compare the solution quality of our method with that of
Alg-new3 in [28], HEUR in [29] and NODERANK in [30].
For Alg-new3, the search solution space dx was set as 20,
the same as in [28]. For NODERANK, the iteration number
is 4, the same as in [30]. We tested the proposed method in
different values of CCR and constraint R.

VOLUME 6, 2018

Our proposed CPU-GPU parallel method is name as
HPGA, while our method of serial inplementation is

name as SGA. The parameters in our method is shown
in TABLE 2.

TABLE 2. Parameters.

Parameter Value
Size of population 48
Cross-over probability 0.8
Mutation probability 0.2
Max generation 200
No improvement count 50
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Figure 10 shows the solution quality by the methods in the
six cases. In our problem, minimizing the hardware cost is
our goal. The smaller the quality, the better. The figure shows
that the solution quality by our method is the best at most
cases. Besides, since the existing methods is superior to the
proposed genetic algorithm in [7], this indirectly reflects that
our proposed HPGA is superior to it.

TABLE 3 shows the average improvement of each
method over alg-new3 on all benchmarks in six cases.
Formally, the improvement of algorithm Aover algorithm Bis
defined as

hw_costqa — hw_costpg

improvement = x 100  (13)
hw_cost s

TABLE 3. Average improvement over ALG-NEW3 IN 6 CASES

CCR R HEUR NODERANK  HPGA
casel 0.1 low 52 7.9 8.6
case2 0.1 high 53 11.3 15.3
case3 1 low 7.3 11.5 11.6
cased 1 high 24.4 26.6 30
case5 10 low 39 6.2 7.2
case6 10 high 9.7 11.1 11.7

In the table, the highest improvements are bolded. It can be
seen that the improvements of our method are the highest in
the six cases.

In our method, the individual number is fixed at 48 even
in large task graphs such as random1 to random 9. The main
reason is the hardware specifications of multi-core CPU and
GPU are considered. Also, the run-time of our method is
considered. In order to further testify the effect of individual
number, we concentrate on solution quality in large task
graphs by doubling the inidivdual number step by step. Let
the solution quality of HPGA with 48 inidivduals be baseline,
Figure 11 shows the improvements of different inidivdual
number on radom1~ random 9 in the 6 cases.

As the results show, increasing the individual number does
not improve the solution quality significantly.

In our method, both multi-core CPU and GPU are utilized.
To illustrate the efficiency more clearly, we need to test the
speedups separately.

Firstly, for computing each individual’s costs, two kernels
are launched on GPU. Figure 12 shows their speedups
between the two kernels and their corresponding sequen-
tial implementations. Kernell is computing each individual’s
hardware cost, software cost and the saved hardware cost
and kernel2 is computing each individual’s communication
cost. On the whole, the efficiency is very high. When the
task graph becomes large, the speedup becomes large as well.
Especially, the speed up of kernel2 is more significant. The
reason is kernell needs to compute three costs and involves
much more global memory accesses to store these costs. It is
noteworthy that in task graph 11, 13 and 14, the speedups of
kernel2 grows no more. The reason is when the number of
edge in the task graph is more than 4000, GPU is saturated.
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FIGURE 12. Speed-ups between two kernels on GPU and the
corresponding sequential implementations.

Secondly, to improve the efficiency of dispersion cor-
rection strategy, each individual is parallelized on multi-
core CPU. In our platform, the Hyper-Threading is utilized
which means one physical core consist of two logical cores.
The total number of logical core and that of physical core
are 8 and 4, respectively. To analyze the parallel scalability
of OpenMP implementation, let the runtime of dispersion
correction strategy running on single logical core be baseline,
the speedups are recorded by increasing the number of logical
core till 8. In OpenMP, this is realized by setting the thread
number from 1 to 8. Figure 13 shows the results by changing
the number of logical core.
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FIGURE 13. The parallel efficiency of OpenMP implementation of
dispersion correction strategy.

As the figure shows, for the same task graph, increasing
the number of threads leads to the increment of speedup.
Meanwhile, when the number of threads is fixed, the larger
the size of task graph, the higher the speedup.

After testing the efficency of GPU implementation and
multi-core implementation seperately, the overall efficiency
will be tested. In our method, the most time-consuming part is
the process of genetic search for optimum solution. We divide
the running time of sequential implementation into three
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FIGURE 14. Runtime of proposed method between serial implementation and hybrid-parallel implementation. (a) CCR = 0.1,
R = low. (b) CCR = 0.1, R = high. (c) CCR = 1.0, R = Jow. (d) CCR = 1.0, R = high. (e) CCR = 10.0, R = Jow. (f) CCR = 10.0,

R= high.

parts, namely computing costs, dispersion correction of infea-
sible solutions and other procedure. Other procedure includes
genetic operations, population update, roulette wheel array
update, etc. TABLE 4 shows the percentage of each part. The
table shows that dispersion correction of infeasible individu-
als improves the solution quality at the cost of taking up a
large amount of time. Besides, when the number of nodes
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in the task graph remains unchanged, and the ratio of node
to edge is 1:2:3, the proportion of dispersion correction of
infeasible individuals increases accordingly. It reflects that
when the task graph becomes complex, it is more difficult
to generate an feasible offspring only by genetic operation.
Table 5 further shows the reduction of running time step
by step through CPU-GPU parallel strategy. The contents of
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TABLE 4. Percentage of time cost (%).

No Compute costs dispersion correction other
6 27% 65% 8%
7 24% 69% 7%
8 18% 73% 9%

TABLE 5. Reduction of time after step-by-step parallelization (million
second).

No | Serial Multi-core Many-core Asynchronous
implementation  CPU GPU transfer

6 4060 2413 1803 1550

7 4970 2915 2130 1710

8 6732 3155 2415 2065

table include the time of sequential implementation, imple-
mentation of mutli-core CPU, implementation of many-core
GPU and asynchronous transfer pattern. Since in our method,
we configure one individual to one thread blcok, means
the number of total thread block is 48. For each individ-
ual, the size of thread block is 512. At the stage of stream
concurent, the number of stream is given as 4, namely 12
individuals per stream.

Finally, figure 14 shows the run-time of our method
between sequential implementation and CPU-GPU parallel
implementation in the 6 cases.

From the above analysis, we can see that the solution
quality of our method is competitive with existing heuristic
methods in reasonable time. After combining with multi-core
CPU and many-core GPU, the run-time is greatly reduced.

V. CONCLUSION AND FUTURE WORK

This paper presents a CPU-GPU parallel genetic algorithm
with dispersion correction for HW/SW partitioning. The con-
tributions of this work are as follows. Firstly, an enhanced
genetic algorithm with dispersion correction is presented. The
under-constraint individuals are marched to feasible region
with dispersion correction step by step. Secondly, the individ-
uals processing including costs computation and dispersion
correction are run in parallel. For a given problem size,
the overall running time can be reduced while keeping the
diversity of genetic algorithm. Thirdly, we present a novel
parallel strategy by leveraging the parallel power of multi-
core CPU and that of many-core GPU. The proposed strategy
computes the costs of each individual in parallel on GPU and
corrects the under-constraint individuals in parallel on multi-
core CPU. Fourthly, in order to further improve the efficiency
of proposed algorithm, we propose an asynchronous transfer
pattern for CPU-GPU, in which the transfer process and com-
putation process are overlapped and eventually the overall
run-time is reduced further.

The above technique details and strategies have two bene-
fits. The intensification of exploitation is enhanced while the
diversity of exploration is maintained. An efficient parallel
approach is constructed to match well the architecture of
CPU/GPU hardware to greatly reduce the run-time when
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considering the computation workload for improving the
solution quality. Numerous experiments demonstrate the
effectiveness of the proposed approach.

It is also very interesting that the proposed ideas have a
general significance to guide how to accelerate other types of
HW/SW co-design [40], [41], as well as other applications in
CAD and graphics [42]-[46], Computer-Supported Coopera-
tion Work [47], [48], image and video processing [49]-[54].
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