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ABSTRACT In this paper, a passivity and fault alarm-based hybrid controller is designed for a Markovian
jump delayed system with actuator failures. First, a passive condition is given, and a type of hybrid controller
that combines with robust and fault-tolerant controllers is presented to ensure that both the normal system
and the fault system are robustly stochastically passive. Next, a fault alarm signal is proposed by choosing the
alarm threshold, and this signal is used to invoke the fault-tolerant controller. Finally, a numerical example
is provided to show the effectiveness of the method.

INDEX TERMS Fault alarm, Markovian jump system, passivity, linear matrix inequality (LMI),
fault-tolerant control, actuator fault.

I. INTRODUCTION
Markovian jump systems are used to describe the systems that
experience abrupt changes in their structure and parameters
caused by component failures or repairs, changing subsystem
interconnections, abrupt environmental disturbances and so
on [1]. There are two components in the hybrid systems. The
first component is a Markovian process, which is defined in
the finite space as a mode of the system. The second compo-
nent is the state of the systems, inwhich the state in eachmode
is described by a stochastic differential equation. In recent
decades, numerous relevant research results have been
reported. For example, the relationships among the second
moment stability properties of jump linear systems have been
discussed in [2]. For Markovian jump systems with an uncer-
tain model and an external disturbance, robust control theory
plays an important role. The problems of robust H2-control
and robust stabilization of Markovian jump linear systems
have been investigated in [3] and [4], respectively. The net-
work induced problems of networked Markovian jump sys-
tems have been discussed in [5]–[8]. However, the transition
probabilities may not be measurable exactly or may be only
partly known in most practical systems. Under this assump-
tion, a number of relevant results have been reported [9]–[14].

Passivity, a concept that originated from electrical net-
works, has a deep physical meaning. In addition, the close
relation of passivity with the Lyapunov function indicates

that it plays an important role in analysing the stability of
nonlinear systems. With the development of passivity theory,
many results have been produced. For example, in [15], the
definition of stochastic passivity forMarkovian jump systems
is given, and the passive controllers are designed. A robust
passivity controller is designed for 2-D uncertain Markovian
jump linear systems in [16]. In [17], the problem of feedback
passivity for the networked control systems with packet drops
has been analysed. Moreover, it is an unavoidable fact that
time-delays occur frequently in many practical systems, thus
causing instability and poor performance. Reference [18] has
studied the problem of control for discrete time delay linear
Markovian jump systems. The fault-tolerant control problem
was discussed for a class of uncertain networked control
systems with induced delays and actuator saturation in [19].
Wu provided some excellent results in [20]–[27]. In [28],
the problem of observer-based passive control of a class of
uncertain linear systems with delayed state and parameter
uncertainties was investigated. To the best of the authors’
knowledge, the research for passivity and fault alarm-based
hybrid controller designing algorithm is rare, thus, we provide
a kind of designing algorithm in this work.

In practice, using the fault-tolerant controllers directly is
much more conservative because of the invariance of the
controller’s gain. Thus, to increase the performance of the
closed-loop systems, we must design a switching method,
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namely, the robust controllers are chosen to operate when the
systems run without fault and the fault-tolerant controllers
will replace the robust ones if the fault occurs. First, a
Markovian jump systems model is given. Next, the sufficient
passive condition is established. Moreover, based on this
condition and inspired by [19], we can obtain the controller
gains of robust controllers and fault-tolerant controllers by
LMI technology. Next, we design a switching method by
selecting a suitable threshold to achieve the aim above, which
is the most difficult problem we have to solve. Finally,
a numerical example is given to demonstrate the availability
of the proposed methods.
Notation: In this paper, Rn and Rn×m denote the

n−dimensional Euclidean space and the set of all n× m real
matrices, respectively. X > 0 ( or X < 0 ) indicates that
matrix X is a real symmetric positive definite (or negative
definite). The superscript T and + denote thematrix transposi-
tion and the pseudo inverse, respectively. ‖·‖ is the Euclidean
norm in Rn. ε{·} denotes the mathematical expectation.

II. PROBLEM FORMULATION
In this paper, consider Markovian jump systems with time-
varying delays on a probability space (�,F ,P) as follows:


ẋ(t) = A(r(t))x(t)+ Ad (r(t))x(t − d1(t))+W (r(t))ω(t)

+B(r(t))uA(t)+ Bd (r(t))uB(t − d2(t)),
y(t) = C(r(t))x(t),
x(t) = ϕ(t), ∀t ∈ [−d̄, 0],

(1)

where x(t) ∈ Rn is the system state vector; uA(t) and uB(t) ∈
Rm are the control input vectors from the actuator to the plant;
ω(t) ∈ Rq is the exogenous disturbance input that belongs
to L2[0,∞); y(t) ∈ Rp is the control output; ϕ(t) is the
initial condition defined on [−d̄, 0]; d1(t) and d2(t) are the
time-varying state delay and the time-varying control delay
of systems, respectively, and satisfy

0 ≤ d1(t) ≤ d̄1 <∞, ḋ1(t) ≤ hx < 1,
0 ≤ d2(t) ≤ d̄2 <∞, ḋ2(t) ≤ hu < 1,
d̄ = max[d̄1, d̄2].

(2)

{r(t)} is a continuous-time Markov process with continu-
ous trajectories and takes values in a finite set S = {1, 2,
3, . . . , s}. Moreover, the mode transition probabilities of
{r(t)} satisfies

Pr{r(t +1)} =

{
πij1+ o(1), i 6= j,
1+ πij1+ o(1), i = j,

where 1 > 0, lim1→0
o(1)
1
= 0, and πij is the transition rate

from mode i to mode j at time t +1, which satisfies

πij ≥ 0, ∀i, j, i 6= j,
s∑
j=1

πij = 0, ∀i ∈ S.

A(r(t)) ∈ Rn×n, Ad (r(t)) ∈ Rn×n, B(r(t)) ∈ Rn×m,
Bd (r(t)) ∈ Rn×m, W (r(t)) ∈ Rn×q and C(r(t)) ∈ Rp×n

are known real constant matrices for each r(t) ∈ S.
For notational simplicity, Ai, Adi, Bi, Bdi, Wi and Ci are
used to define A(r(t)),Ad (r(t)),B(r(t)),Bd (r(t)),W (r(t))
and C(r(t)), respectively. Thus, the system (1) can be rewrit-
ten as 

ẋ(t) = Aix(t)+ Adix(t − d1(t))+Wiω(t)
+BiuA(t)+ BdiuB(t − d2(t)),

y(t) = Cix(t),
x(t) = ϕ(t), ∀t ∈ [−d̄, 0].

(3)

The controllers considered in this paper are described by:

uA(t) = K̄1x(t), uB(t) = K̄2x(t), (4)

where K̄1, K̄2 ∈ Rm×n are controller gain matrices.
Substituting (4) into (3), system (3) can be rewritten as:
ẋ(t) = (Ai + BiK̄1)x(t)+ Adix(t − d1(t))+Wiω(t)

+BdiK̄2x(t − d2(t)),
y(t) = Cix(t),
x(t) = ϕ(t), ∀t ∈ [−d̄, 0].

(5)

For deriving the main results of this paper, the following
definition and lemmas are required.
Definition: System (5) is said to be robustly stochastically

passive if there exists a positive scalar γ > 0 under zero initial
condition for any ω ∈ L2[0,∞), all solutions of (5) with
ϕ(t) = 0, t ∈ [d̄, 0] and any K̄1, K̄2, such that

ε{2
∫ t

0
yT (s)ω(s) ds} ≥ −γ

∫ t

0
ωT (s)ω(s)ds, ∀t > 0.

(6)

Lemma 1 (Schur Complement): For a given symmetric

matrix S =
[
S11 S12
S21 S22

]
, the following statements are equiva-

lent:

(i) S < 0;

(ii) S11 < 0, S22 − ST12S
−1
11 S12 < 0;

(iii) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

Lemma 2 [19]: Given matrices 0 , 3 and symmetric
matrix ϒ with appropriate dimensions,

ϒ + 0F(k)3+3TFT (k)0T < 0

holds for any FT (k)F(k) ≤ I , if and only if there exists a
scale α > 0 such that

ϒ + α00T + α−13T3 < 0.

Lemma 3 [24]: For any constant symmetric matrix
X ∈ Rn×n, X = XT > 0, scalar γ > 0, vector function
ω : [0, γ ]→ Rn, the integrations are satisfied as follows:

[
∫ γ

0
ω(s) ds]

T

X [
∫ γ

0
ω(s) ds] ≤ γ [

∫ γ

0
ωT (s)Xω(s) ds].
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III. STOCHASTIC PASSIVITY ANALYSIS
In this section, a sufficient condition for stochastic passivity
of system (5) is given as follows:
Theorem 1: For given positive scalars δ1, δ2 and δ3,

system (5) is stochasticlly passive if there exist matrices
Pi > 0, Qx > 0, Qu > 0, Rx > 0, Ru > 0, invertible matrix
N with appropriate dimension, and a scalar γ > 0, such that
for all i ∈ S

4 =


81,1 81,2 81,3 81,4 81,5
∗ 82,2 82,3 82,4 82,5
∗ ∗ 83,3 83,4 83,5
∗ ∗ ∗ 84,4 84,5
∗ ∗ ∗ ∗ 85,5

 < 0 (7)

where

81,1 =

s∑
j=1

πijPj + Qx + Qu − Rx − Ru + δ1NAi

+ δ1ATi N
T
+ δ1NBiK̄1 + δ1K̄T

1 B
T
i N

T ,

81,2 = Pi − δ1N + ATi N
T
+ K̄T

1 B
T
i N

T ,

81,3 = Rx + δ1NAdi + δ2ATi N
T
+ δ2K̄T

1 B
T
i N

T ,

81,4 = Ru + δ1NBdiK̄2 + δ3ATi N
T
+ δ3K̄T

1 B
T
i N

T ,

81,5 = δ1NWi − Ci,

82,2 = d̄21Rx + d̄
2
2Ru − N − N

T ,

82,3 = NAdi − δ2NT ,

82,4 = NBdiK̄2 − δ3NT ,

82,5 = NWi,

83,3 = −(1− hx)Qx − Rx + δ2NAdi + δ2ATdiN
T ,

83,4 = δ2NBdiK̄2 + δ3ATdiN
T ,

83,5 = δ2NWi,

84,4 = −(1− hu)Qu − Ru + δ3NBdiK̄2 + δ3K̄T
2 B

T
diN

T ,

84,5 = δ3NWi,

85,5 = −γ I .

Proof:We define a Lyapunov-Krasovskii functional for
system (5) as follows:

V (r(t), t) =
5∑

m=1

Vm(r(t), t), r(t) = i ∈ S (8)

where

V1(r(t), t) = xT (t)Pix(t),

V2(r(t, t)) =
∫ t

t−d1(t)
xT (s)Qxx(s) ds,

V3(r(t), t) = d̄1

∫ 0

−d̄1

∫ t

t+θ
ẋT (s)Rx ẋ(s) ds dθ,

V4(r(t), t) =
∫ t

t−d2(t)
xT (s)Qux(s) ds,

V5(r(t), t) = d̄2

∫ 0

−d̄2

∫ t

t+θ
ẋT (s)Ruẋ(s) ds dθ,

where Pi > 0, Qu > 0,Qx > 0, Ru > 0 and Rx > 0, we can
find out that V (r(t), t) > 0. Then, for any i ∈ S, we have

AV (r(t), t) =
5∑

m=1

AVm(r(t), t), (9)

AV1(r(t), t) = xT (t)Piẋ(t)+ ẋT (t)Pix(t)

+ xT (t)[
s∑
j=1

πijPj]x(t),

AV2(r(t), t) = xT (t)Qxx(t)
− (1− ḋ1(t))xT (t − d1(t))Qxx(t − d1(t))

≤ xT (t)Qxx(t)
− (1− hx)xT (t − d1(t))Qxx(t − d1(t)),

AV3(r(t), t) = d̄21 ẋ
T (t)Rx ẋ(t)− d̄1

∫ t

t−d̄1
ẋT (s)Rx ẋ(s) ds

≤ d̄21 ẋ
T (t)Rx ẋ(t)

− d1(t)
∫ t

t−d1(t)
ẋT (s)Rx ẋ(s) ds,

AV4(r(t), t) = xT (t)Qux(t)
− (1− ḋ2(t))xT (t − d2(t))Qux(t − d2(t))

≤ xT (t)Qux(t)
− (1− hu)xT (t − d2(t))Qux(t − d2(t)),

AV5(r(t), t) = d̄22 ẋ
T (t)Ruẋ(t)− d̄2

∫ t

t−d̄2
ẋT (s)Ruẋ(s) ds

≤ d̄22 ẋ
T (t)Ruẋ(t)

− d2(t)
∫ t

t−d2(t)
ẋT (s)Ruẋ(s) ds, (10)

where A is the weak infinitesimal operator of the random
process {x(t), r(t), t ≥ 0}.
Accoding to Lemama 3, we can obtain

AV3(r(t), t) ≤ d̄21 ẋ
T (t)Rx ẋ(t)

− [
∫ t

t−d1(t)
ẋT (s) ds]Rx[

∫ t

t−d1(t)
ẋ(s) ds]

= d̄21 ẋ
T (t)Rx ẋ(t)− [xT (t) xT (t − d1(t))]

·

[
Rx −Rx
∗ Rx

] [
x(t)

x(t − d1(t))

]
,

AV5(r(t), t) ≤ d̄22 ẋ
T (t)Ruẋ(t)

− [
∫ t

t−d2(t)
ẋT (s) ds]Ru[

∫ t

t−d2(t)
ẋ(s) ds]

= d̄22 ẋ
T (t)Ruẋ(t)− [xT (t) xT (t − d2(t))]

·

[
Ru −Ru
∗ Ru

] [
x(t)

x(t − d2(t))

]
.

Simultaneously, for invertible matrix N with appropriate
dimension, positive scalars δ1, δ2 and δ3, we employ the free-
weighting matrix approach to get the following equation

0 = 2[−xT (t)δ1N − ẋT (t)N − xT (t − d1(t))δ2N

− xT (t − d2(t))δ3N ] · [ẋ(t)− Aix(t)− BiK̄1x(t)

−Adix(t − d1(t))− BdiK̄2x(t − d2(t))−Wiω(t)]

(11)
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Denote ξ (t) = [xT (t) ẋT (t) xT (t − d1(t)) xT (t −
d2(t)) ωT (t)], thus, we can obtain the following result from
above analysis

AV (r(t), t) ≤ ξ (t)4̄ξT (t), (12)

where

4̄ =


81,1 81,2 81,3 81,4 δ1NWi
∗ 82,2 82,3 82,4 82,5
∗ ∗ 83,3 83,4 83,5
∗ ∗ ∗ 84,4 84,5
∗ ∗ ∗ ∗ 0


We denote that

H (r(t), t) = AV (r(t), t)− 2yT (t)ω(t)− γωT (t)ω(t),

the following inequation is ture

H (r(t), t) ≤ ξ (t)4ξT (t) < 0.

Obviously, when ω(t) = 0, system (5) is robustly stable.
Moreover, under the zero initial condition for any t > 0 ,

ε{2
∫ t

0
yT (s)ω(s) ds}

= ε{

∫ t

0
[AV (r(s), s)− γωT (s)ω(s)

−H (r(s), s)] ds}

≥ ε{

∫ t

0
[AV (r(s), s)− γωT (s)ω(s)] ds}

= ε{V (r(t), t)} − ε{V (r(0), 0)}

− γ

∫ t

0
ωT (s)ω(s) ds

≥ −γ

∫ t

0
ωT (s)ω(s) ds (13)

According toDefinition, system (5) is stochastically passive.

IV. HYBRID CONTROLLER DESIGN
In this section, the controller gain matrices of the robust
controllers and the fault-tolerant controllers can be obtained
by LMI technology.
• Case 1: For systems (5) without actuator faults, the

controller gain matrices are designed as K̄1 = Ki1 and
K̄2 = Ki2 , thus, the systems (5) can be rewritten as

ẋ(t) = (Ai + BiKi1)x(t)+ Adix(t − d1(t))+Wiω(t)
+BdiKi2x(t − d2(t)),

y(t) = Cix(t),
x(t) = ϕ(t), ∀t ∈ [−d̄, 0].

(14)

Theorem 2: For given positive scalars δ1, δ2 and δ3,
systems (14) are stochasticlly passive if there exist matrices
P̂i > 0, Q̂x > 0, Q̂u > 0, R̂x > 0, R̂u > 0, invertible matrix
N̂ with appropriate dimension, and a scalar γ > 0, such that

for all i ∈ S

4̄ =


8̄1,1 8̄1,2 8̄1,3 8̄1,4 8̄1,5
∗ 8̄2,2 8̄2,3 8̄2,4 8̄2,5
∗ ∗ 8̄3,3 8̄3,4 8̄3,5
∗ ∗ ∗ 8̄4,4 8̄4,5
∗ ∗ ∗ ∗ 85,5

 < 0 (15)

where

8̄1,1 =

s∑
j=1

πijP̂j + Q̂x + Q̂u − R̂x − R̂u + δ1AiN̂T

+ δ1N̂ATi + δ1BiYi1 + δ1Y
T
i1B

T
i ,

8̄1,2 = P̂i − δ1N̂T
+ N̂ATi + Y

T
i1B

T
i ,

8̄1,3 = R̂x + δ1AdiN̂T
+ δ2N̂ATi + δ2Y

T
i1B

T
i ,

8̄1,4 = R̂u + δ1BdiYi2 + δ3N̂ATi + δ3Y
T
i1B

T
i ,

8̄1,5 = δ1Wi − N̂Ci,

8̄2,2 = d̄21 R̂x + d̄
2
2 R̂u − N̂ − N̂

T ,

8̄2,3 = AdiN̂T
− δ2N̂ ,

8̄2,4 = BdiYi2 − δ3N̂ ,

8̄2,5 = Wi,

8̄3,3 = −(1− hx)Q̂x − R̂x + δ2AdiN̂T
+ δ2N̂ATdi,

8̄3,4 = δ2BdiYi2 + δ3N̂ATdi,

8̄3,5 = δ2Wi,

8̄4,4 = −(1− hu)Q̂u − R̂u + δ3BdiYi2 + δ3Y Ti2B
T
di,

8̄4,5 = δ3Wi,

with robust controller gain matrices are Ki1 = Yi1N̂−T and
Ki2 = Yi2N̂−T .

Proof: substituting K̄1 = Ki1 and K̄2 = Ki2
into ineuqation (7), then, pre- and post-multiplying by
diag{N̂ , N̂ , N̂ , N̂ , I } and diag{N̂T , N̂T , N̂T , N̂T , I }, respec-
tively. Denote

N̂ = N−1, N̂PiN̂T
= P̂i, N̂QxN̂T

= Q̂x ,

N̂QuN̂T
= Q̂u, N̂RxN̂T

= R̂x , N̂RuN̂T
= R̂u,

we can obtain (15), easily. According to Theorem 1,
system (14) is stochastically passive, the proof is complete.
• Case 2: For systems (5) with actuator faults, the

controller gain matrices are designed as K̄1 = M1Ki3 and
K̄2 = M2Ki4 , where M1 = diag{m1,1,m1,2, . . . ,m1,m},
M2 = diag{m2,1,m2,2, . . . ,m2,m} are actuator failure matri-
ces and satify

0 ≤ mminji ≤ mji ≤ m
max
ji ≤ 1, j = 1, 2, i = 1, 2, . . . ,m

(16)

when mji = 1, the ith actuator of jth controller is running
under normal conditions, mji = 0 represents that the ith

actuator of jth controller is completely disabled, 0 < mji < 1
means the ith actuator of jth controller has partial fail-
ure. Because M1 and M2 are unknown matrices, we define
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Mj = M0j(I+Gj)and |Gj| ≤ Hj ≤ I to relax the conservatism,
where

m0ji =
mmaxji + m

min
ji

2
, hji =

mmaxji + m
min
ji

mmaxji − m
min
ji

,

gji =
mji − m0ji

m0ji
, j = 1, 2, i = 1, 2, . . . ,m,

M0j = diag{m0j1,m0j2, . . . ,m0jm},

Hj = diag{hj1, hj2, . . . , hjm},

Gj = diag{gj1, gj2, . . . , gjm},

|Gj| = diag{|gj1|, |gj2|, . . . , |gjm|}, (17)

then the systems (5) can be rewritten as
ẋ(t) = (Ai + BiM1Ki3)x(t)+ Adix(t − d1(t))

+BdiM2Ki4x(t − d2(t))+Wiω(t),
y(t) = Cix(t),
x(t) = ϕ(t), ∀t ∈ [−d̄, 0].

(18)

Theorem 3: For given postive scalars δ1,δ2 and δ3,
systems (18) are stochastically passive if there exist matrices
P̂′i > 0, Q̂′x > 0, Q̂′u > 0, R̂′x > 0, R̂′u > 0, invertible
matrix N̂ ′ with appropriate dimension, scalars γ > 0 and
εm > 0, m = 1, 2, . . . , 10, such that for all i ∈ S

¯̄4 =

21,1 21,2 21,3
∗ −22,2 05×5

∗ ∗ −23,3

 < 0 (19)

where

21,1 =


8̃1,1 8̃1,2 8̃1,3 8̃1,4 8̃1,5

∗ 8̃2,2 8̃2,3 8̃2,4 8̄2,5

∗ ∗ 8̃3,3 8̃3,4 8̄3,5

∗ ∗ ∗ 8̃4,4 8̄4,5

∗ ∗ ∗ ∗ 8̃5,5

,

21,2 =


8̃1,6 8̃1,7 8̃1,8 8̃1,9 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

21,3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

8̃4,11 8̃4,12 8̃4,13 8̃4,14 0
0 0 0 0 0

,
22,2 = diag{ε1, ε2, ε3, ε4, ε5},

23,3 = diag{ε6, ε7, ε8, ε9, ε10},

8̃1,1 =

s∑
j=1

πijP̂′j + Q̂
′
x + Q̂

′
u − R̂

′
x − R̂

′
u + δ1AiN̂

′T

+ δ1N̂ ′ATi + δ1BiM01Yi3 + δ1Y Ti3M
T
01B

T
i

+ ε1BiH1HT
1 B

T
i + ε6BdiH2HT

2 B
T
di,

8̃1,2 = P̂′i − δ1N̂
′T
+ N̂ ′ATi + Y

T
i3M

T
01B

T
i ,

8̃1,3 = R̂′x + δ1AdiN̂
′T
+ δ2N̂ ′ATi + δ2Y

T
i3M

T
01B

T
i ,

8̃1,4 = R̂′u + δ1BdiM02Yi4 + δ3N̂ ′ATi + δ3Y
T
i3M

T
01B

T
i ,

8̃1,5 = δ1Wi − N̂ ′Ci,

8̃2,2 = d̄21 R̂
′
x + d̄

2
2 R̂
′
u − N̂

′
− N̂

′T

+ ε2BiH1HT
1 B

T
i + ε7BdiH2HT

2 B
T
di,

8̃2,3 = AdiN̂
′T
− δ2N̂ ′,

8̃2,4 = BdiM02Yi4 − δ3N̂ ′,

8̃3,3 = −(1− hx)Q̂′x − R̂
′
x + δ2AdiN̂

′T
+ δ2N̂ ′ATdi

+ ε3BiH1HT
1 B

T
i + ε8BdiH2HT

2 B
T
di,

8̃3,4 = δ2BdiM02Yi4 + δ3N̂ ′ATdi,

8̃4,4 = −(1− hu)Q̂′u + δ3BdiM02Yi4 + δ3Y Ti4M
T
02B

T
di

+ ε4BiH1HT
1 B

T
i + ε9BdiH2HT

2 B
T
di − R̂

′
u,

8̃5,5 = −γ I + ε5BiH1HT
1 B

T
i + ε10BdiH2HT

2 B
T
di,

8̃1,6 = δ1Y Ti3M
T
01, 8̃1,7 = Y Ti3M

T
01,

8̃1,8 = δ2Y Ti3M
T
01, 8̃1,9 = δ3Y Ti3M

T
01,

8̃4,11 = δ1Y Ti4M
T
02, 8̃4,12 = Y Ti4M

T
02,

8̃4,13 = δ2Y Ti4M
T
02, 8̃4,14 = δ3Y Ti4M

T
02,

with the fault-tolerant controller gain matrices are Ki3 =
Yi3N̂ ′−T and Ki4 = Yi4N̂ ′−T .

Proof:We substitute K̄1 = M1Ki3 and K̄2 = M2Ki4 into
ineuqation (7). In order to avoid confusion, replace N by N ′,
then, pre- and post-multiply by diag{N̂ ′, N̂ ′, N̂ ′, N̂ ′, I } and
diag{N̂ ′T , N̂ ′T , N̂ ′T , N̂ ′T , I }, respectively. Denote

N̂ ′ = N ′−1, N̂ ′PiN̂ ′T = P̂′i, N̂ ′QxN̂ ′T = Q̂′x ,

N̂ ′QuN̂ ′T = Q̂′u, N̂ ′RxN̂ ′T = R̂′x , N̂ ′RuN̂ ′T = R̂′u,

we obtain

4̌ =


8̌1,1 8̌1,2 8̌1,3 8̌1,4 8̌1,5

∗ 8̌2,2 8̌2,3 8̌2,4 8̄2,5

∗ ∗ 8̌3,3 8̌3,4 8̄3,5

∗ ∗ ∗ 8̌4,4 8̄4,5
∗ ∗ ∗ ∗ 85,5

 < 0 (20)

where

8̌1,1 =

s∑
j=1

πijP̂′j + Q̂
′
x + Q̂

′
u − R̂

′
x − R̂

′
u + δ1AiN̂

′T

+ δ1N̂ ′ATi + δ1BiM1Yi3 + δ1Y Ti3M
T
1 B

T
i ,

8̌1,2 = P̂′i − δ1N̂
′T
+ N̂ ′ATi + Y

T
i3M

T
1 B

T
i ,

8̌1,3 = R̂′x + δ1AdiN̂
′T
+ δ2N̂ ′ATi + δ2Y

T
i3M

T
1 B

T
i ,

8̌1,4 = R̂′u + δ1BdiM2Yi4 + δ3N̂ ′ATi + δ3Y
T
i3M

T
1 B

T
i ,

8̌1,5 = δ1Wi − N̂ ′Ci,

8̌2,2 = d̄21 R̂
′
x + d̄

2
2 R̂
′
u − N̂

′
− N̂ ′T ,

8̌2,3 = AdiN̂ ′T − δ2N̂ ′,

8̌2,4 = BdiM2Yi4 − δ3N̂ ′,

8̌3,3 = −(1− hx)Q̂′x − R̂
′
x + δ2AdiN̂

′T
+ δ2N̂ ′ATdi,

8̌3,4 = δ2BdiM2Yi4 + δ3N̂ ′ATdi,

8̌4,4 = −(1− hu)Q̂′u − R̂
′
u + δ3BdiM2Yi4 + δ3Y Ti4M

T
2 B

T
di.
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Because M1 = M01(I + G1), M2 = M02(I + G2),
|G1| ≤ H1 ≤ I and |G2| ≤ H2 ≤ I , we obtain the following
inequation

4̌ ≤ 21,1 + 01F(k)31 +3
T
1 F

T (k)0T1
+02F(k)32 +3

T
2 F

T (k)0T2 (21)

where

0T1 = diag{HT
1 B

T
i ,H

T
1 B

T
i ,H

T
1 B

T
i ,H

T
1 B

T
i ,H

T
1 B

T
i },

0T2 = diag{HT
2 B

T
di,H

T
2 B

T
di,H

T
2 B

T
di,H

T
2 B

T
di,H

T
2 B

T
di},

3T
1 = 21,2,3

T
2 = 21,3,F(k) = I .

According to Lemma 2, for FT (k)F(k) ≤ I , if and only
if there exist scalar matrices 22,2 > 0 and 23,3 > 0,
such that 21,1 + 22,2010

T
1 + 2

−1
2,23

T
131 + 23,3020

T
2 +

2−13,33
T
232 < 0, 4̌ ≤ 01F(k)31 + 3T

1 F
T (k)0T1 +

02F(k)32 +3
T
2 F

T (k)0T2 < 0 holds.
Thus, based onLemma 1, inequation (19) can be obtained.

The proof is complete.

V. DESIGN OF A SWITCHING SYSTEM WITH
A FAULT ALARM
To invoke the fault-tolerant controller timely and accurately,
we design a residual observer to obtain the real-time esti-
mated value of y(t) under normal condition in this section as
follows:

˙̂x(t) = Aix̂(t)+ Adix̂(t − d̄1)+ Biua(t)
+Bdiub(t − d2(t))+ Li(y(t)− Cix̂(t)),

ŷ(t) = Cix̂(t),
x̂(t) = 0, ∀t ∈ [−d̄, 0].

(22)

where x̂(t) ∈ Rn is the observer state, ua(t) and ub(t) ∈ Rm,
which can be measured, are inputs from the controller to the
actuator, Li ∈ Rn×p is the gain matrix of the observer and
ŷ(t) ∈ Rp is the observer output.

Thus, we define the state residual value of the observer as

x̃(t) = x(t)− x̂(t), (23)

and from system (5) and system (22), we obtain

˙̃x(t) = (Ai − LiCi)x̃(t)+ Adi(x(t − d1(t))− x̂(t − d̄1))

+Bi(uA(t)− ua(t))+Wiω(t)

+Bdi(uB(t − d2(t))− ub(t − d2(t))). (24)

When the actuators run normally, i.e., uA(t) = ua(t) and
uB(t) = ub(t), equation (24) can be rewritten as follows:

˙̃x(t) = (Ai − LiCi)x̃(t)+ Adi(x(t − d1(t))− x̂(t − d̄1))

+Wiω(t). (25)

Under the normal condition, the system state converges
to a small interval around zero; thus, we can consider
Adi(x(t − d1(t)) as a type of disturbance input. The design
algorithm that we employ to obtain the value of Li, is similar
to Theorem 2. Thus, the passive observer can be established.

By contrast, if the actuator fault occurs, in other words,
uA(t) = M1ua(t) and uB(t) = M2ub(t), then the state residual
value of observer will be described by

˙̃x(t) = (Ai − LiCi)x̃(t)+ Adi(x(t − d1(t))− x̂(t − d̄1))

+Bi(M1 − I )ua(t)+ Bdi(M2 − I )ub(t − d2(t))

+Wiω(t). (26)

When partial failure of actuators become sufficiently prob-
lematic, the value of x̃(t) will diverge, namely, the system
state will not be under control, which leads to damage to
the system. Therefore, it is necessary to select a threshold to
detect fault.

Considering equation (25), when the system state con-
verges to a small interval around zero, Adi(x(t − d1(t)) −
x̂(t − d̄1)) can be replaced by Adix̃(t). Thus, we can obtain
the critical relationship between x̃(t) and ω(t) as follows:

(LiCi − Ai − Adi)x̃(t) = Wiω̄, (27)

where ω̄ is the upper bound of ω(t). Premultiplying by
(LiCi − Ai − Adi)+, we obtain

‖e(t)‖ ≤ ‖γthi ω̄‖ ≤ ‖γthi‖‖ω̄‖, (28)

where γthi = Ci(LiCi − Ai − Adi)+Wi, e(t) = y(t) − ŷ(t).
Define Jth = sup

i∈S
‖γthi‖‖ω̄‖ as the so-called threshold, and

use the following logical algorithm for fault detection:

Sw(t) =

{
0, ‖e(t)‖ ≤ Jth, normal,
1, ‖e(t)‖ > Jth, switch.

Therefore, based on Sw(t) ïĳŇthe switching signal, the
switching system can be given by

ua(t) = (1− Sw(t))Ki1x(t)+ Sw(t)Ki3x(t),

ub(t) = (1− Sw(t))Ki2x(t)+ Sw(t)Ki4x(t). (29)

Obviously, between robust controllers and fault-tolerant con-
trollers, only one type of controllers could function at one
moment.

In addition, we can design an alarm signal to increase
the reliability of the system. Employing the Chapman-
Kolmogorov equation, we can obtain the probability distribu-
tion of all systemmodes. Using theweighted averagemethod,
we can obtain a suitable alarm signal as follows:

Ath = (
s∑
i=1

Pri‖γthi‖)‖ω̄‖, (30)

where Pri is the weighting of ith mode, and the working
principle can be given as follows:

Al(t) =

{
normal, ‖e(t)‖ ≤ Ath,
alarm, ‖e(t)‖ > Ath.

When we receive the alarm signal, it is probable that the
system (3) is undergoing an actuator fault. Thus, we will pay
more attention to the system and distinguish whether it is just
a false alarm or not.
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VI. NUMERICAL EXAMPLE
In this section, a numerical example will be described to
demonstrate the effectiveness of the methods described in the
previous sections. Consider the following systems:

A1 =
[
−0.6 1.6
0 1.5

]
, B1 =

[
−0.05 −1.2
−1 0.21

]
,

W1 =

[
0.13 0.13
0.25 0.2

]
, Ad1 =

[
−0.6 1.3
0 −0.9

]
,

Bd1 =
[
−0.04 −0.6
−0.4 0

]
, A2 =

[
−0.8 1.7
0 1.5

]
,

B2 =
[
−0.03 −1.2
−1 0.2

]
, W2 =

[
0.17 0.13
0.21 0.23

]
,

Ad2 =
[
−0.4 1.5
0 −0.8

]
, Bd2 =

[
−0.01 −0.8
−0.6 0

]
,

A3 =
[
−0.7 2
0 1.5

]
, B3 =

[
−0.03 −1
−1 0.1

]
,

W3 =

[
0.17 0.1
0.1 0.23

]
, Ad3 =

[
−0.5 1.5
0 −0.7

]
,

Bd3 =
[
−0.02 −0.8
−0.6 0

]
, C1 = C2 = C3 = I ,

The transition rate matrix of the stochastic process r(t) is
given as

Tr =

−0.2 0.1 0.1
0.3 −0.5 0.2
0.4 0.2 −0.6

.
The output response of open-loop system is shown in

FIGURE 1; we find that the open-loop system is unstable.

FIGURE 1. Out response of an open-loop system.

By Theorem 2, we can obtain the following robust con-
troller gains:

K11 =

[
−0.553 4.613
1.080 1.873

]
, K12 =

[
0.097 0.122
0.207 0.053

]
,

K21 =

[
−0.468 4.711
0.863 2.073

]
, K22 =

[
0.052 0.081
0.176 0.047

]
,

K31 =

[
−0.868 4.485
0.989 2.244

]
, K32 =

[
−0.016 0.285
0.220 −0.038

]
.

Given M01 = diag{0.1, 0.1}, M02 = diag{0.3, 0.3},
H1 = diag{0.25, 0.25}, and H2 = diag{0.33, 0.33}, accord-
ing to Theorem 3, the fault-tolerant controller gains for the
system with an actuator fault can be obtained as follows:

K13 =

[
−1.547 29.600
2.870 0.519

]
, K14 =

[
0.059 −0.373
0.019 0.363

]
,

K23 =

[
−1.613 32.226
2.388 2.072

]
, K24 =

[
0.041 −0.254
0.226 0.461

]
,

K33 =

[
−1.584 34.976
2.707 4.950

]
, K34 =

[
0.035 −0.158
0.299 0.627

]
.

With the robust controllers, the output response of the
closed-loop system is shown in FIGURE 2. Moreover, when
an actuator fault occurs, the closed-loop system becomes
unstable.

FIGURE 2. Output response of a closed-loop system.

When an actuator fault occurs, with the robust controllers,
fault-tolerant controllers and switching signal, the output
response of the closed-loop system is exhibited in FIGURE 3.

FIGURE 3. Output response of a closed-loop system.

Remark 1: Comparing FIGURE 3 with FIGURE 2, the
hybrid control method can effect even if the actuator fault
occurs, however, in the same situation, the robust one can not
stable the systems. The advantage of hybrid control method
is prominented.
Remark 2: To make the switching process more conspicu-

ous, the threshold is increased appropriately. In fact, this pro-
cess can be completed in very short time after the occurance
of the actuator fault and can not be found by vision easily.
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VII. CONCLUSION
This paper has investigated passivity and fault-alarm based
hybrid control problem for a Markovian jump system with
actuator failures. The key to this problem is to design appro-
priate state feedback controllers that can guarantee that
the closed-loop system is robustly stochastically passive.
According to the sufficient passive condition, which is estab-
lished by constructing time-dependent Lyapunov-Krasovskii
functional, the controller gains of robust controllers and fault-
tolerant controllers can be obtained by employing LMI tech-
nology. In addition, a fault alarm-based switching method
was designed to switch the controller when an actuator fault
occurs, thus maintaining the level of system performance and
advoiding the issues of fault-tolerant controllers. Finally, a
numerical example was presented to demonstrate the effec-
tiveness of the obtained results.
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