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ABSTRACT This paper deals with the problem on stochastic exponential robust stability for a class of
complex-valued interval neural networks with Markova jumping parameters and mixed delays, including
both time-varying delays and continuously distributed delays. By applying theM-matrix theory and coupling
with the vector Lyapunov function method, some sufficient conditions are derived to guarantee the existence,
uniqueness, and stochastic exponential robust stability of the equilibrium point of the addressed system. The
obtained results not only are easy to judge the dynamical behavior of the addressed system, but also are with
lower level conservatism in comparison with some existing results. Finally, two numerical examples with
simulation results are given to illustrate the effectiveness of the proposed results.

INDEX TERMS Interval neural networks, complex value, Markova jumping parameters, mixed delays,
stochastic exponential robust stability, vector Lyapunov function.

I. INTRODUCTION
As an extension of real-valued neural networks, complex-
valued neural networks with complex-valued state, input,
connection weight and activation function become strongly
desired because of their practical applications in a variety
of areas dealing with electromagnetic, light, ultrasonic and
quantum waves [1], [2]. Therefore, there has been an increas-
ing interest in the research of complex-valued neural net-
works, and some significant results were obtained in both
theory and applications, see [2]–[20].

In the aspect of model for describing complex-valued neu-
ral networks, Hu and Wang [9] firstly studied a class of
complex-valued neural networks with constant delays and
proposed some sufficient conditions for guaranteeing the
stability of the equilibrium point of the addressed system.

Considering that the time delay is variable and unbounded
in the most situations, it is necessary to introduce mixed time
delays including both time-varying delay and continuously
distributed delay into the model of complex-valued neural
networks [16]. Xu et al. [16], [21] and Song et al. [22]
introduced mixed delays into models of complex-valued neu-
ral networks and proposed some sufficient conditions for
judging the exponential stability of the equilibrium point
of the addressed systems. Besides, impulsive disturbances
also widely exist in physical dynamical systems [21]–[24].
Therefore, some significant results have been obtained for
analyzing the dynamical behavior of complex-valued neu-
ral networks with both impulsive effects and time delays.
Xu et al. [21] investigated the stability problem for a class
of impulsive complex-valued neural networks with both
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time-varying and continuously distributed delays. In [23],
some sufficient conditions were obtained for guaranteeing
the global asymptotic stability of a class of fractional-order
complex-valued neural networks with impulsive effect and
time delay by employing contraction mapping principle,
comparison theorem and inequality scaling skills. Other sig-
nificant results concerning delayed complex-valued neural
networks with impulsive effect can be referred in [4], [22],
and [24].

In the aspect of assumption conditions given for complex-
valued neural networks, it is well known that the main chal-
lenge is the choice of activation function in complex number
domain. By separating and explicitly expressing complex-
valued activation functions into their real and imaginary parts,
some results on stability and synchronization were given for
various complex-valued neural networks. It can be referred
in [2], [3], [16], [21], and [23]. As pointed by Xu et al. [24]
and Pan et al. [25], this separation is not always expressible
in an analytical form. When the activation functions are not
separated into their real parts and imaginary parts, some
stability criteria of complex-valued neural networks were also
obtained under activation functions satisfying the Lipschitz
continuity condition in the complex number domain, see
references [22], [24], [25]. The existence, continuity and
boundedness of partial derivatives of complex-valued activa-
tion function with respect to its real part and imaginary were
removed in the mentioned references. The obtained results
in [22], [24], and [25] are with lower level of conservatism.
Reducing the restriction on the activation functions in both
real number domain and complex number domain is a topic
of continuous improvement.

In the aspect of results for judging dynamic behavior of
complex-valued neural networks, there are two acceptable
categories. When a neural network is designed to function as
an associative memory, it is desired that the neural network
should have multiple equilibrium points. The corresponding
subject is to discuss Lagrange stability or Multistability of
the system. The related research can be referred in [2]–[5],
[19], [26], and [27]. On the other hand, for the problem
of optimal computation, the neural network is designed to
have a unique equilibrium point with global stability. That
is, the existence and uniqueness of the equilibrium point
should be discussed, which is the stability in Lyapunov sense.
There are main three methods for proving the existence
and uniqueness of the equilibrium point of neural networks,
which are respectively homeomorphism mapping principle
[16], contracting mapping principle [23] and Brouwer’s fixed
point theorem [25]. In [15], [16], [21], and [23]–[25], scholars
established some sufficient conditions for assuring the exis-
tence, uniqueness and stability of the equilibrium point of
various complex-valued neural networks.

To the best of our knowledge, in the published litera-
tures concerning complex-valued neural networks scholars
did not considerMarkov jumping parameters in models of the
complex-valued systems. The phenomenon of information
latching sometimes happens in the physical system. A widely

used approach to deal with the information latching problem
is to extract finite state representations. In other words, the
system may have finite modes which switch from one to
another at different times. The switching among different
system modes can be governed by a Markov chain. In past
two decades, although various complex systems including
neural networks with Markov jumping parameters have been
studied and some significant results concerning dynamical
behaviors analysis and controller design for systems were
obtained in [28]–[41] and references therein, there are few
literatures concerning the research for complex-valued neu-
ral networks with Markov jumping parameters and interval
interconnected matrices. From the view of both theory and
application, it is necessary to analyze the stochastic stability
of the equilibrium point of complex-valued neural networks
with Markov jumping parameters.

Based on the above discussion, in this paper we will inves-
tigate the dynamical behavior for a class of complex-valued
neural networks with mixed delays and Markov jumping
parameters. In this paper, advantages and contributions are
listed as follows: (1) Both Markov jumping parameters and
mixed delays including time-varying delays and continu-
ously distributed delays are introduced in the model of the
addressed system, which have not been considered in existing
literatures. (2) The complex-valued activation functions are
supposed to satisfy the Lipschitz conditionwithout separating
into real parts and imaginary parts, which remove the restric-
tion for the choice of complex-valued activation functions.
(3) The existence and uniqueness of the equilibrium point
of the system are analyzed by using theory of the homeo-
morphism mapping instead of contracting mapping principle
and Brouwer’s fixed point theorem. (4) Some sufficient con-
ditions for assuring stochastic exponential robust stability in
Lyapunov sense are established in terms of simple forms of
matrix, which are easy to be checked in application. (5) Two
numerical examples with simulation results and remarks con-
cerning the choice of the complex-valued activations are
given to illustrate the obtained results.

The rest of this paper is organized as follows. In Section 2,
model description and preliminaries including assumption
and lemmas are given. In Section 3, a theorem and several
corollaries are proposed for the stability of unique equilib-
rium of complex-valued neural networks with mixed delays
andMarkov jumping parameters. In Section 4, two numerical
examples with simulation results are given to illustrate the
effectiveness of the main results. Finally, in Section 5, the
conclusion and future work are drawn.

II. MODEL DESCRIPTION AND PRELIMINARIES
The following notations are used throughout this paper. Let
C denote complex number set, N denote natural number set
andR denote real number set. Let |z| =

√
(Re(z))2 + (Im(z))2

be the module of complex number z, where Re(z) and Im(z)
are the real part and the imaginary part of complex num-
ber z. For complex number vector z ∈ Cn, let |z| =
(|z1|, |z2|, . . . , |zn|)T be the module of the vector z, here (.)T
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denotes the transpose of vector. Let ||z||∞ = max1≤i≤n{|zi|}

and ||z||1 =
n∑
i=1
|zi| be the∞-norm and 1-norm of the vector

z respectively. Let (F,P) be a complete probability space with
a filtration {Ft }t≥0 satisfying the usual conditions, i.e. the
filtration contains all P-null sets and is right continuous.

Let r(t), t ≥ 0 be a continuous-time Markova chain taking
values in a finite space S = {1, 2, . . . ,N } with transition
probability parameters given by

P{r(t +1t) = m|r(t) = k}

=

{
πkm1t + O(1t), k 6= m
1+ πkk1t + O(1t), k = m

(1)

where 1t > 0, lim1t→0 O(1t)/1t = 0. In (1), denote
πkm > 0 the transition rate from k to m if k 6= m while

πkk = −
N∑

m=1,m 6=k
πkm. Let E{·} stand for the mathematical

expectation operator with respect to the given probability
measure P.

In this paper, considering a class of complex-valued inter-
val neural networks with time-varying delays, continuously
distributed delays and Markov jumping parameters, which
can be described as follows:

dzi(t)
dt
= −di(r(t))zi(t)+

n∑
j=1

[aij(r(t))fj(zj(t))

+ bij(r(t))fj(zj(t − τij(t)))

+ pij(r(t))
∫ t

−∞

θij(t − s)fj(zj(s))ds]+ Ji(t) (2)

where zi ∈ C represents the neuron state; n is the
number of neurons; A(r(t)) = (aij(r(t)))n×n, B(r(t)) =
(bij(r(t)))n×n and P(r(t)) = (pij(r(t)))n×n are the connec-
tion weight matrices defined in complex number domain;
J(t) = (J1(t), J2(t), . . . , Jn(t))T ∈ Cn is external input
vector; di(r(t)) > 0 denotes the self-feedback coefficient;
fj(zj(t)) represents the activation function, j = 1, 2, . . . , n;
τij(t) (i, j = 1, 2, . . . , n) are bounded functions with τ =
max1≤i,j≤n supt≥0 τij(t). Let θij: [0,+∞) → [0,+∞) be
piecewise continuous functions and satisfy∫

+∞

0
exp(βs)θij(s)ds = µij(β), i, j = 1, 2, . . . , n (3)

where µij(β) is continuous on [0, δ), and µij(0) = 1.
For convenience, for arbitrary mode k (k ∈ S), we define

the following notions:

A(k) = A(r(t) = k) = [aij(r(t) = k)]n×n = (akij)n×n

B(k) = B(r(t) = k) = [bij(r(t) = k)]n×n = (bkij)n×n

P(k) = P(r(t) = k) = [pij(r(t) = k)]n×n = (pkij)n×n

D(k) = D(r(t)=k) = diag[di(r(t) = k)]n×n = diag(dki )n×n.

Let |A| denote the module of matrix A = (aij)n×n ∈ Cn×n,
which is given by |A| = (|aij|)n×n ∈ Rn×n, where |aij| =√
[Re(aij)]2 + [Im(aij)]2.

In (2), the interval weight matrices in complex number
domain are defined as follows:

AI (k) = {|A(k)| = (|akij|)n×n : |A
˜

(k)| ≤ |A(k)| ≤ |Ã(k)|,

i.e. a
˜

k
ij | ≤ |a

k
ij| ≤ |ã

k
ij|, i, j = 1, 2, . . . , n}

BI (k) = {|B(k)| = (|bkij|)n×n : |B
˜

(k)| ≤ |B(k)| ≤ |B̃(k)|,

i.e. |b
˜

k
ij | ≤ |b

k
ij| ≤ |b̃

k
ij|, i, j = 1, 2, . . . , n}

PI (k) = {|P(k)| = (|pkij|)n×n : |P
˜

(k)| ≤ |P(k)| ≤ |P̃(k)|,

i.e. p
˜

k
ij | ≤ |p

k
ij| ≤ |p̃

k
ij|, i, j = 1, 2, . . . , n}.

For every fixed mode of complex-valued neural networks,
AI (k), BI (k) and PI (k) are known constant matrices sets with
appropriate dimensions.

It is assumed that initial conditions of (2) are zi(s) = ϕi(s),
here ϕi(s) are bounded and continuous on (−∞, 0], i =
1, 2, . . . , n.
Denote z# = (z#1, z

#
2, . . . , z

#
n)

T
∈ Cn the equilibrium point

of (2).
Definition 1: The equilibrium point z# of (2) is defined to

be stochastically exponentially robustly stable, if for every
system mode k , there exist constants M (k) > 0 and λ > 0
such that for all A(k) ∈ AI (k), B(k) ∈ BI (k), P(k) ∈ PI (k),
t ≥ 0 and k ∈ S, the inequality E{||z(t) − z#, r(t) = k||} ≤
M (k)E{sups∈(−∞,0] ||ϕ(s)− z

#
||} exp(−λt) holds.

Remark 1: It is well known how to choose activation
functions is the main challenge for complex-valued neural
networks. The activation functions in neural networks defined
in real number domain are usually chosen to be with smooth-
ness and boundedness. However, it follows from Liouville’s
Theorem [2], [9] that every function with boundedness and
analyticity in the entire complex domain must be reduced to
a constant. That is to say, the activation functions in complex-
valued neural networks cannot be bounded and analytic. In
order to remove the restriction conditions for complex-valued
activation functions, the following assumption is given.
Assumption 1:Each function fi(.) is globally Lipschitz with

Lipschitz constant li > 0, i.e. the inequality |fi(ui(t)) −
fi(vi(t))| ≤ li|ui(t) − vi(t)| holds for all ui(t), vi(t) ∈ C,
i = 1, 2, . . . , n. Let L = diag(l1, l2, . . . , ln).
Remark 2: The complex-valued activation functions were

supposed to need an explicit separation into their real parts
and imaginary parts in references [3], [9], [16], and [21].
However, the separation is not always expressible in an
analytical form. Activation functions in complex number
domain satisfying Assumption 1 are actually the extension of
the real-valued functions satisfying the Lipschitz continuity
condition.

The following lemmas will be used to obtain results in this
paper.
Lemma 1 [16]: Let A = (aij)n×n ∈ Rn×n be a matrix with

aij ≤ 0, (i, j = 1, 2, · · · , n, i 6= j). The following statements
are equivalent.

VOLUME 6, 2018 841



X. Xu et al.: Stochastic Exponential Robust Stability of Delayed Complex-Valued Neural Networks

(i) A = (aij)n×n is a M-matrix.
(ii) The real parts of all eigenvalues of A are positive.
(iii) There exists a positive vector ξ ∈ Rn such thatHξ > 0.

In this paper, we will use homeomorphismmapping princi-
ple to analyze the existence and uniqueness of the equilibrium
point of neural networks. An important lemma concerning
homeomorphism mapping principle is given as follows.
Lemma 2 [16]: IfH(z) is a continuous function on Cn, and

satisfies the following conditions:

(i) H(z) is univalent injective on Cn;
(ii) lim||z||→∞ ||H(z)|| → ∞.

Then H(z) is a homeomorphism of Cn into itself.

III. MAIN RESULTS
In this section, we will give some sufficient conditions for
judging the dynamical behavior of the equilibrium point
of (2).
Theorem 1: Suppose that Assumption 1 is satisfied for

arbitrary input J ∈ Cn, then the equilibrium point z# of (2)
is with existence and uniqueness if there exists a positive
number T ≥ 1 such that every matrix Q(k) = (qkij)n×n is a
M-matrix, where

qkii = 2dki −

 N∑
m=1,m 6=k

πkmT + πkk


qkij = −2

n∑
j=1

√
T lj

(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
where k ∈ S, i, j = 1, 2, . . . , n. Besides, the equilibrium
point z# of (2) is stochastically exponentially robustly stable.

Proof: Let

Vi(t, zi(t)− z#i , r(t) = k) = ωki exp(λt)|zi(t)− z
#
i |
2

whereωki are a sequence of positive numbers, i = 1, 2, . . . , n,
k ∈ S. Assume that wk ≤ ωki ≤ W k , i = 1, 2, . . . , n. Define
wmin = min1≤k≤N {wk} andWmax = max1≤k≤N {W k

}, choose
T = Wmax/wmin ≥ 1.
Firstly, the existence and uniqueness of the equilibrium

point z# of (2) will be proved for every fixed mode by
using the corresponding properties of homeomorphism and
M-matrix.

Defining a map Hk (z) = [H k
1 (z), H k

2 (z), . . . ,H
k
n (z)]

T

associated with (2) with the following forms:

H k
i (z) = −d

k
i zi +

n∑
j=1

(
akij + b

k
ij + p

k
ij

)
fj(zj)+ Ji (4)

where i = 1, 2, . . . , n, k ∈ S.
It is well known that if Hk (z) is a homeomorphism on Cn,

then (2) has a unique equilibrium point z# obviously.
(i)We prove that the mapHk (z) is univalent injective onCn

under the Assumption 1.

Because the matrix Q(k) is a M-matrix, it is obvious that
the matrix Q(k) = (qk

ij
)n×n is a M-matrix, where

qk
ii
= dki ; qk

ij
= −

n∑
j=1

lj
(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
,

i = 1, 2, . . . , n.

From Lemma 1 it can be concluded that there exists a
positive vector ξ (k) such that the following inequalities hold
for i = 1, 2, . . . , n, k ∈ S:

−dki ξ
k
i +

n∑
j=1

ξ kj · lj
(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
< 0. (5)

Moreover, it follows from (5) that there exists a sufficient
small positive number ε > 0 such that the following inequal-
ities hold for all i = 1, 2, . . . , n, k ∈ S:

dki ξ
k
i −

n∑
j=1

ξ kj · lj
(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
≥ ε > 0. (6)

It is assumed that there exist u, v ∈ Cn with u 6= v, such
that H k

i (u) = H k
i (v), i = 1, 2, . . . , n, k ∈ S, i.e.,

−dki ui +
n∑
j=1

(
akij + b

k
ij + p

k
ij

)
fj(uj)

= −dki vi +
n∑
j=1

(
akij + b

k
ij + p

k
ij

)
fj(vj). (7)

Considering Assumption 1, for i = 1, 2, . . . , n and k ∈ S,
we get that

dki |ui − vi| ≤
n∑
j=1

lj
(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
|uj − vj|. (8)

Furthermore, (8) can be rewritten as Q(k)|u − v| ≤ 0.
Because Q(k) is a M-matrix, we know that detQ(k) > 0
holds and Q(k)−1 exists. Furthermore, it can be concluded
that |u − v| = 0, i.e. u = v. It is a contradiction with the
assumption u 6= v. Hence themapHk (z) is univalent injective
on Cn, k ∈ S, i = 1, 2, . . . , n.
(ii) Next we will prove that lim||z||→∞ ||Hk (z)|| → ∞.
Let H̃ k

i (z) = H k
i (z)− H

k
i (0), k ∈ S, i = 1, 2, . . . , n, i.e.,

H̃ k
i (z) = −d

k
i zi +

n∑
j=1

(akij + b
k
ij + p

k
ij)[fj(zj)− fj(0)]. (9)

Multiplying by the conjugate complex number z̄i of zi on
the both sides of (9), for all k ∈ S, i = 1, 2, . . . , n, we get

H̃ k
i (z)z̄i = −d

k
i ziz̄i + z̄i

n∑
j=1

(akij + b
k
ij + p

k
ij)[fj(zj)− fj(0)].

(10)

Taking the conjugate operation on the both sides of (10),
for all k ∈ S, i = 1, 2, . . . , n, we have

¯̃H k
i (z)zi = −d

k
i z̄izi + zi

n∑
j=1

(ākij ++b̄
k
ij + p̄

k
ij)[f̄j(zj)− f̄j(0)].

(11)
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Combining (10) and (11), and considering the Assump-
tion 1, we obtain

Re[H̃ k
i (z)z̄i]

= −dki |zi|
2
+ Re{z̄i

n∑
j=1

(akij + b
k
ij + p

k
ij)[fj(zj)− fj(0)]}

≤ −dki |zi|
2
+ |z̄i|

n∑
j=1

lj(|ãkij| + |b̃
k
ij| + |p̃

k
ij|)|zj| (12)

where i = 1, 2, . . . , n, k ∈ S.
Multiplying by ξ ki (i = 1, 2, . . . , n, k ∈ S) on the both

sides of (12) and taking the summation operation, we get
n∑
i=1

ξ ki Re[H̃
k
i (z)z̄i]

≤

n∑
i=1

ξ ki |zi|[−d
k
i |zi| +

n∑
j=1

lj(|ãkij| + |b̃
k
ij| + |p̃

k
ij|)]|zj|.

Considering (6), we have
n∑
i=1

ξ ki Re[H̃
k
i (z)z̄i] ≤ −ε

n∑
i=1

|zi| ·
n∑
j=1

|zj|, k ∈ S.

Furthermore, it can be concluded that

ε

n∑
i=1

|zi| ·
n∑
j=1

|zj| < −
n∑
i=1

ξ ki Re[H̃
k
i (z)z̄i]

≤ max1≤i≤n{ξ ki }
n∑
i=1

|H̃ k
i (z)|

n∑
i=1

|zi|.

Namely, ε||z||1 ≤ max1≤i≤n{ξ ki }||H̃
k
(z)||1. That is to

say ||z||1 ≤ ε−1max1≤i≤n{ξ ki }||H̃
k
(z)||1 holds. Obviously,

according to the equivalent principle of norm, we have that
||H̃

k
(z)|| → ∞ as ||z|| → ∞. It means that ||Hk (z)|| → ∞

as ||z|| → ∞.
Combining part (i) and part (ii) above, it follows from

Lemma 2 that Hk (z) is a homeomorphism on Cn, k ∈ S.
Therefore (2) has a unique equilibrium point z#.
In what follows, the stochastic exponential robust stability

of the equilibrium point z# will be proved by applying the
vector Lyapunov function method.
For analysis convenience, we translate the coordinate of

(2). Let z̃(t) = z(t) − z#. By translation, the system (2) is
changed into the following forms:

dz̃i(t)
dt
= −di(r(t))z̃i(t)+

n∑
j=1

[aij(r(t))gj(z̃j(t))

+ bij(r(t))gj(z̃j(t − τij(t)))

+ pij(r(t))
∫ t

−∞

θij(t − s)gj(z̃j(s))ds] (13)

where gj(z̃j(t)) = fj(z̃j(t)+ z#j )− fj(z
#
j ), i, j = 1, 2, . . . , n.

Let the initial conditions of (13) be with forms ψi(s) =
ϕi(s)− z#i , i = 1, 2, . . . , n, −∞ < s ≤ 0.

Obviously, if the zero solution of (13) is stochastically
exponentially robustly stable, the equilibrium point z# of (2)
is also stochastically exponentially robustly stable.

As Q(k) = (qkij)n×n is a M-matrix, it follows from Lemma
1 that there exists a positive vector ζ (k) = (ζ k1 , ζ

k
2 , . . . , ζ

k
n )
T

such that for all k ∈ S, i = 1, 2, . . . , n, we have−2dki +
 N∑
m=1,m 6=k

πkmT + πkk

 ζ ki
+ 2

n∑
j=1

√
T ljζ kj

(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
< 0.

Constructing functions Fi(α, k) as follows:

Fi(α, k)

=

−2dki + α +
 N∑
m=1,m 6=k

πkmT + πkk

 ζ ki
+ 2

n∑
j=1

√
T ljζ kj

[
|ãkij| + exp(0.5ατ )|b̃kij| + µij(0.5α)|p̃

k
ij|

]
.

Since for all k ∈ S, i = 1, 2, . . . , n,

Fi(0, k) =

−2dki +
 N∑
m=1,m 6=k

πkmT + πkk

 ζ ki
+2

n∑
j=1

√
T ljζ kj

(
|ãkij| + |b̃

k
ij| + |p̃

k
ij|

)
< 0.

It is obvious that there exists λ > 0 such that

Fi(λ, k)

=

−2dki + λ+
 N∑
m=1,m6=k

πkmT + πkk

 ζ ki
+2

n∑
j=1

√
T ljζ kj

[
|ãkij| + exp(0.5λτ )|b̃kij| + µij(0.5λ)|p̃

k
ij|

]
< 0, i = 1, 2, . . . , n, k ∈ S. (14)

For writing simplification, and considering that z̃i(t) =
zi(t) − z#i , let Vi(t, z̃i(t), r(t) = k) = ωki exp(λt)|z̃i(t)|

2 be
Vi(t, k) if there is no confusion, here i = 1, 2, . . . , n, k ∈ S.
Let L(13)Vi(t, k) be the weak infinitesimal operator along

the solution of Eq. (13). Defining L(13)Vi(t, k), i =
1, 2, . . . , n, k ∈ S, as follows:

L(13)Vi(t, k)

= lim
1→0+

1
1
{E{Vi( t +1, r(t +1)) |t, r(t) = k }

−E{Vi( t, r(t) = k) }} . (15)

With the properties of Markov stochastic process and
transition probability defined by (1), (15) can be described

VOLUME 6, 2018 843



X. Xu et al.: Stochastic Exponential Robust Stability of Delayed Complex-Valued Neural Networks

as

L(13)Vi(t, k) =
N∑
m=1

πkmVi( t,m)+ D+Vi(t, k),

i = 1, 2, . . . , n, k ∈ S.

Calculating the right upper derivationD+Vi(t, k) along the
zero solution of (13), we have that

L(13)Vi(t, k)

=

N∑
m=1

πkmVi( t,m)+ D+Vi(t, k)

= exp(λt)

{
N∑
m=1

ωmi (ω
k
i )
−1πkmω

k
i |z̃i(t)|

2

+ ωki

[
λ|z̃i(t)|2 + 2¯̃zi(t)˙̃zi(t)

]}
≤ exp(λt)

{
N∑
m=1

Tπkmωki |z̃i(t)|
2
+ λωki |z̃i(t)|

2

+ 2|¯̃zi(t)|{−dki ω
k
i |z̃i(t)|

+

n∑
j=1

ωki lj[|ã
k
ij|z̃j(t)| + |b̃

k
ij||z̃j(t − τij(t))|

+ |p̃kij|
∫ t

−∞

θij(t − s)|z̃j(s)|ds]}
}

≤

√
ωki exp(λt)|z̃i(t)|

{
N∑
m=1

Tπkm
√
ωki |z̃i(t)|

+ λ

√
ωki |z̃i(t)| + {−2d

k
i

√
ωki |z̃i(t)|

+ 2
n∑
j=1

√
T
√
ωkj lj[|ã

k
ij|z̃j(t)| + | b̃

k
ij||z̃j(t − τij(t))|

+ |p̃kij|
∫ t

−∞

θij(t − s)|z̃j(s)|ds]}
}

≤

√
Vi(t)

{
[−2dki +

N∑
m=1

Tπkm + λ]
√
Vi(t)

+ 2
n∑
j=1

lj
√
T [|ãkij|

√
Vj(t)+b̃kij| exp(0.5λτ )

√
Vj(t − τij(t))

+ |p̃kij|
∫ t

−∞

θij(t − s) exp(0.5λ(t − s))
√
Vj(s)ds]

}
. (16)

Computing the expectation on both sides of (16), we have

E
{
L(13)Vi(t, k)

}
≤ E{

√
Vi(t)}{[−2dki +

N∑
m=1

Tπkm + λ]E{
√
Vi(t)}

+ 2
n∑
j=1

lj
√
T [|ãkij|E{

√
Vj(t)}

+ |b̃kij| exp(0.5λτ )E{
√
Vj(t − τij(t))}

+ |p̃kij|
∫ t

−∞

θij(t − s) exp(0.5λ(t − s))E{
√
Vj(s)}ds]}.

(17)

Defining the curve

ζ (k) = {γ (χ, k) : γi = (ζ ki )
2χ,

χ > 0, k ∈ S, i = 1, 2, . . . , n}

and the set

�(γ ) = {y : 0 ≤ y ≤ γ, γ ∈ ζ (k), k ∈ S}.

When χ > χ ′, it is obvious that �(γ (χ )) ⊃ �(γ (χ
′

)).
Let

ζ kmax = max1≤i≤n{ζ ki }

ζ kmin = min1≤i≤n{ζ ki }

χ0(k) =
W kE{||ψ(s)||2}(

ζ kmin

)2 .

Then

{E{V (k)} : E{Vi(s, k) }

= eλsωki E{|ϕi(s)|
2
},

−∞ < s ≤ 0, 1 ≤ i ≤ n, k ∈ S} ⊂ �(γ (χ0(k), k)).

Namely, the inequality eλsωki E{|ϕi(s)|
2
} < (ζ ki )

2χ0(k)
hold for all −∞ < s ≤ 0, i = 1, 2, . . . , n, k ∈ S.
Furthermore, we can claim that E{Vi(t, k)} ≤ (ζ ki )

2χ0(k),
i = 1, 2, . . . , n, k ∈ S, t ≥ 0. If it is not true, then there exist
some i′ ∈ {1, 2, . . . , n} and t∗(t∗ > 0) such that

E{Vi′ (t
∗, k)} = (ζ ki )

2χ0(k), E
{
L(13)Vi′ (t

∗, k)
}
≥ 0

and

E{Vj(t, k)} ≤
(
ζ kj

)2
χ0(k), −∞ < t ≤ t∗,

j = 1, 2, . . . , n, k ∈ S.

Substituting them into (17), and considering (14), we get

E
{
L(13)Vi′ (t

∗, k)
}

≤ ζ ki χ0(k){[−2d
k
i +

N∑
m=1

Tπkm + λ]ζ ki + 2
n∑
j=1

ljζ kj
√
T [|ãkij|

+ |b̃kij| exp(0.5λτ )+ µij(0.5λ)|p̃
k
ij|]}

< 0, k ∈ S, i = 1, 2, . . . , n.

This is a contradiction with the above assumption
E
{
L(13)Vi′ (t∗, k)

}
≥ 0. So we have E{Vi(t∗, k)} <

(ζ ki )
2χ0(k), i = 1, 2, . . . , n, k ∈ S. That is to say

|z̃i(t)| < exp(−0.5λt)
ζ ki√
ωki

√
χ0(k)

= exp(−0.5λt)

√
W kζ ki

√
E{||ψ(s)||2}

ζ kmin

√
ωki

.

Let M (k) =
√
W kζ ki

ζ kmin

√
ωki

, k ∈ S. Obviously, M (k) ≥ 1, k ∈ S.

According to the Definition 1, we know that the zero
solution of (13) is stochastically exponentially robustly
stable. That is to say the equilibrium point z# of (2) is
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also stochastically exponentially robustly stable. The proof is
completed. �
From the Theorem 1, it can be directly obtained corre-

sponding conditions for guaranteeing the existence, unique-
ness and stochastic exponential robust stability of the
equilibrium point of (2) with only time-varying delays or
continuously distributed delays.

When there is only time-varying delay in (2), we obtain the
following Corollary.
Corollary 1: Suppose that Assumption 1 is satisfied for

arbitrary input J ∈ Cn, then the equilibrium point z# of (2)
is with existence and uniqueness if there exists a positive
number T ≥ 1 such that every matrix Q(k) = (qkij)n×n is a
M-matrix for all k ∈ S and i, j = 1, 2, . . . , n, where

qkii = 2dki −

 N∑
m=1,m 6=k

πkmT + πkk


qkij = −2

n∑
j=1

√
T lj

(
|ãkij| + |b̃

k
ij|

)
.

Besides, the equilibrium point z# of (2) is stochastically expo-
nentially robustly stable.

When there is only continuously distributed delay in (2),
we obtain the following Corollary.
Corollary 2: Suppose that Assumption 1 satisfies for arbi-

trary input J ∈ Cn, then the equilibrium point z# of (2) is with
existence and uniqueness if there exists a positive number
T ≥ 1 such that every matrix Q(k) = (qkij)n×n is a M-matrix
for all k ∈ S, i, j = 1, 2, . . . , n, where

qkii = 2dki −

 N∑
m=1,m 6=k

πkmT + πkk


qkij = −2

n∑
j=1

√
T lj

(
|ãkij| + |p̃

k
ij|

)
.

Besides, the equilibrium point z# of (2) is stochastically expo-
nentially robustly stable.

The complex-valued weight matrices in (2) are supposed
to be in interval. If they are constants in complex number
domain, we can establish the following corollary.
Corollary 3: Suppose that Assumption 1 is satisfied for

arbitrary input J ∈ Cn, then the equilibrium point z# of (2)
is with existence and uniqueness if there exists a positive
number T ≥ 1 such that every matrix Q(k) = (qkij)n×n is a
M-matrix for all k ∈ S and i, j = 1, 2, . . . , n, where

qkii = 2dki −

 N∑
m=1,m 6=k

πkmT + πkk


qkij = −2

n∑
j=1

√
T lj

(
|akij| + |b

k
ij| + |p

k
ij|

)
.

Besides, the equilibrium point z# of (2) is stochastically expo-
nentially stable.

When there is no Markova jumping parameters in (2)
with constant connected matrices, the corresponding suffi-
cient conditions for judging the dynamical behavior of the
equilibrium point are as follows.
Corollary 4: Suppose that Assumption 1 is satisfied for

arbitrary input J ∈ Cn, then the equilibrium point z# of (2) is
with existence and uniqueness if the matrix Q = (qij)n×n is a
M-matrix, where

qii = di; qij = −
n∑
j=1

lj
(
|aij| + |bij| + |pij|

)
,

i, j = 1, 2, . . . , n.

Besides, the equilibrium point z# of (2) is exponentially
stable.
Remark 3: It is worth noting that conditions in [35] and [38]

for stochastic exponential stability of neural networks with
Markov jumping parameters are implicit because the positive
scalars ωki ( i = 1, 2, . . . , n, k ∈ S) in the stability conditions
are difficult to choose for application. The stability conditions
of the Theorem 1 established in this paper are with simple
form and easy to apply to judge the dynamical behavior of
neural networks.
Remark 4: It is well known that the synchronization

problem of chaotic neural networks can be translated into
the stability problem of the corresponding error system of
driving system and driven system. Zhou et al. [11] con-
cerned the problem of synchronization control for a class
of mixed delays complex-valued neural networks with exter-
nal uncertain perturbations. The complex-valued activation
functions given in [11] needed to be with the existence,
boundedness and continuity assumption for the partial deriva-
tives with two variables of the activation functions. Besides,
Markova jumping parameters were not considered in the
addressed system. In future works, we will investigate the
problem of synchronization control for chaotic complex-
valued neural networks with mixed delays and uncertain
perturbations including Markova jumping parameters and
stochastic disturbances by giving lower level of conser-
vatism of assumption conditions. We expect the approach
used in this paper will play an important role in our future
research
Remark 5:The obtained conditions in this paper are used to

guarantee the module stability of states of neural networks in
complex number domain. The Assumption I in [40] proposed
a generalized assumption condition for activation function of
neural networks in real number domain. It only required that
activation functions be with lower and upper bounds, which
was considered to reduce the possible conservatism than
usual sigmoid functions and Lipschitz continuous functions.
If we adopt the method of separating the complex-valued
system into their real parts and imaginary parts and analyze
the stability of their real part system and imaginary part,
the Assumption I in [40] could be used to establish some
results with less level of conservatism than the existing ones.
In future works, we will try to do the corresponding research.
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Remark 6: In [41]–[43], authors proposed several discrete-
time complex systems defined in real number domain and
analyzed the dynamical behavior of the addressed systems
including stability, passivity and problem of synchronization
control. The model considered in this paper is continuous-
time system defined in complex number domain. The method
adopted in this paper could be extended to study the discrete-
time neural networks with complex number variables.

IV. EXAMPLES
In this section, an example with simulation results is given to
illustrate the effectiveness of the sufficient conditions estab-
lished in the preceding section.
Remark 7: We claim that the activation functions defined

in complex domain in this paper means the considered model
includes CVNNs whose are not explicitly expressed by sep-
arating real and imaginary parts. It can be proved by the
following examples. Assume that the activation function is
f (z(t)) = 1

1+exp(−z̄(t)) . By computation, it satisfies Lipschitz
condition with Lpschitz constant l = 0.25 under the con-
dition f (z(t))|z(t)=0. However, the function f (z(t)) is unable
to separate into its real and imaginary part explicitly. That
is to say the conditions proposed on the activation functions
are not only easy to calculate, but also weaker than those
in [9], [16], and [21].

In order to verify the above analysis, we will give a numer-
ical example as follows.
Example 1: Considering the two order complex-valued

neural networks model with three modes described by (2) in
section 2.

It is assumed that the interval weight matrices defined
in the complex number domain are same in every mode.
Assuming the weight matrices are as follows:

AI (r(t))

=

[
[−0.5, 0.7]+ [0.6, 0.9]i [−1, 1]+ [0.7, 1]i

[0.5, 0.8]+ [−0.4, 1]i [−0.4, 0.5]+ [0.9, 1.2]i

]
BI (r(t))

=

[
[0.4, 0.8]+ [0.8, 1]i [−0.3, 0.6]+ [0, 0.8]i

[−0.3, 0]+ [0.1, 0.6]i [0.7, 0.9]+ [−1,−0.2]i

]
PI (r(t))

=

[
[0, 0.5]+ [0.1, 0.6]i [0.2, 0.4]+ [−0.1, 0.5]i

[−1, 1]+ [−0.3, 0.9]i [0, 0.7]+ [−0.1,
√
2]i

]
.

Let T = 2, d1(1) = 10, d2(1) = 9, d1(2) = 5, d2(2) = 6,
d1(3) = 4, d2(3) = 4. Let jumping transfer parameters be
π11 = −1/2, π12 = 1/6, π13 = 1/3, π21 = 1/8, π22 =

−1/2, π23 = 3/8, π31 = 1/5, π32 = 3/10, π33 = −1/2.
It is assumed that activation functions are

f1(z1(t)) = 0.5
1− exp(−z̄1(t))
1+ exp(−z̄1(t))

f2(z2(t)) =
1.5

1+ exp(−z̄2(t))
.

FIGURE 1. State curves of the system with the mode 1.

By calculation, we obtain that

l1 = 0.25, l2 = 0.375,
∣∣∣Ã∣∣∣ = [ 1.140 1.414

1.281 1.300

]
,∣∣∣B̃∣∣∣ = [ 1.281 1.000

0.671 1.345

]
,

∣∣∣P̃∣∣∣ = [ 0.781 0.640
1.345 1.578

]
.

Furthermore, we get

Q(1) =
[
19.500 −5.504
−6.810 17.500

]
Q(2) =

[
9.500 −5.504
−6.810 11.500

]
Q(3) =

[
7.500 −5.504
−6.810 7.500

]
.

It follows from the Lemma 1 that matrices Q(1), Q(2) and
Q(3) are all M-matrix. Obviously, assumption conditions in
Theorem 1 are satisfied. According to Theorem 1, the equi-
librium point of (2) with above assumptions is with existence,
uniqueness and stochastic exponential robust stability.

In order to finish the numerical simulations of (2), it is
supposed that initial conditions of (2) are z1(s) = 1.2− 1.5i,
z2(s) = −0.8+ 2i, s ∈ (−∞, 0]. Assume that external inputs
are J1(t) = 1 + 0.5i, J2(t) = 1.4 + 2i. Let time-varying
delays be τ1j = 0.7| sin t|, τ2j = 0.6| cos t|, j = 1, 2, t ≥ 0.
Let θij(t − s) = exp(−(t − s)), i, j = 1, 2.
The state curves of system for three modes are respec-

tively given as representative in Fig.1∼Fig.3. From simula-
tion results, we can conclude that the equilibrium point of (2)
is existent, unique and stable, which verifies the correctness
of Theorem 1.
Remark 8: It should be pointed out the established results

in this paper can also be used to study complex-valued neural
networks whose activation functions need to be expressed
by separating their real and imaginary parts. For example,
it is assumed the activation function is f (z(t)) = l(|x| +
i|y|), where l > 0 is Lipschitz constant. However, only
the Lipschitz condition on the activation functions needs to
be satisfied. The existence, continuity and boundedness of
partial derivatives f (.) with respect to its real part x and
imaginary part y are removed, here let z = x + yi.
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FIGURE 2. State curves of the system with the mode 2.

FIGURE 3. State curves of the system with the mode 3.

In order to verify the above analysis, we will give
another numerical example as follows. For simplification,
the Markova jumping parameters are not considered in the
Example 2.
Example 2: Considering the two order complex-valued

neural networks model described by

dzi(t)
dt
= −dizi(t)+

2∑
j=1

[aijfj(zj(t))+ bijfj(zj(t − τij(t)))

+ pij

∫ t

−∞

θij(t − s)fj(zj(s))ds]+ Ji(t), i = 1, 2.

(18)

Let d1 = 5 and d2 = 4. Assuming that the activation
functions are f1(z1(t)) = 0.8|x1| + |0.6y1|i and f2(z2(t)) =
0.6|x2| + 0.5|y2|i. It is easy to get l1 = 0.8, l2 = 0.6.
Assuming that the interconnected matrices are as follows:

A =
[
−1+ 0.6i 0.8− 0.1i
−0.3i −0.1i

]
B =

[
−0.5+ 0.6i −1+ 0.7i
0.5− 0.4i −0.4+ 0.9i

]
P =

[
0.5+ 0.3i −0.8+ 0.5i
0.4+ 0.6i 0.7

]
.

By calculation, we getQ =
[

5.000 −3.806
−2.400 4.000

]
. It follows

from the Lemma 1 that matrices is M-matrix. Obviously,

FIGURE 4. State curves of the system (18).

assumption conditions in Corollary 4 are satisfied. According
to Corollary 4, the equilibrium point of (18) with above
assumptions is with existence, uniqueness and exponential
stability.

In order to do the numerical simulations of (18), it is
supposed that initial conditions of (18) are z1(s) = 2 + 3i,
z2(s) = −1− 2i, s ∈ (−∞, 0]. Assuming that external inputs
are J1(t) = 3i, J2(t) = −2 + 1.5i. Let time-varying delays
be τ1j = 0.9| sin t|, τ2j = 0.8| cos t|, j = 1, 2, t ≥ 0. Let
θij(t − s) = exp(−(t − s)), i, j = 1, 2.
The state curve of (18) is given in Fig.4. From simulation

results, we can conclude that the equilibrium point of (18) is
existent, unique and stable, which verifies the correctness of
Corollary 4.

V. CONCLUSION AND FUTURE WORK
Existence, uniqueness and stochastic exponential robust sta-
bility of the equilibrium point of a class of complex-valued
neural networks with mixed delays and Markova jumping
parameters are investigated in this paper. By employing
homeomorphismmapping principle andM-matrix theory, the
existence and uniqueness of the equilibrium point for the
considered neural networks are guaranteed. Some suffi-
cient conditions for stochastic exponential robust stability
of delayed complex-valued neural networks with Markova
jumping parameters are established by constructing the
appropriate vector Lyapunov function. Finally, two numerical
examples with simulation results illustrate the validity and
feasibility of the obtained results. We expect the method
applied in this paper will play a significant role in the future
research. Based on the work in this paper, we will attempt
to study the stability analysis and synchronization control
for delayed complex-valued neural networks with multiple
uncertain factors, such as impulsive effect, Markova jumping
parameters and stochastic disturbance, etc.
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