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ABSTRACT Fog and mobile-edge computing (FMEC) is a sustainable and innovative mobile networking
framework that enables the offloading of cloud services and resources at the edge of mobile cellular
networks to provide high bandwidth and ultra-low latency. Nonetheless, how to handle several dynamically
varying security services with the mobile user’s requirements efficiently is a critical problem that hinders
the development of FMEC. To address this problem, we sought to introduce an approach to selecting an
appropriate security service as per the mobile user requirements in FMEC. The problem of appropriate
security service selection with hesitant fuzzy information is a multi-criteria decision making problem. In this
paper, we introduce a soft hesitant fuzzy rough set (SHFRS) to solvemulti-criteria decisionmaking problems.
SHFRS is introduced as an innovative extension of the hesitant fuzzy rough set theory by fusing it with the
hesitant fuzzy soft set. We describe the inverse hesitant fuzzy soft set that defines the inverse hesitant fuzzy
relation to determine the SHFRS upper and lower approximation operators of any hesitant fuzzy subset in the
given set of parameters. We also present different special cases of SHFRS upper and lower approximation
operators and discuss some fundamental theorems based on approximation operators. In addition, we propose
a novel solution to multi-criteria decisionmaking problems based on SHFRS. Finally, we assess the proposed
solution by applying it to a real-time multi-criteria decision making problem of appropriate security service
selection for FMEC in the existence of multi-observer hesitant fuzzy information.

INDEX TERMS Fog and mobile-edge computing, hesitant fuzzy set, hesitant fuzzy soft set, rough set,
decision making.

I. INTRODUCTION
With the increasing number of mobile terminals, an explosive
growth in global mobile traffic has been observed. Accord-
ing to a report from Cisco, a 74% growth in mobile traffic
was recorded in 2015; this is expected to increase further
by approximately eight times from 2016 to 2020 [1]. Nev-
ertheless, the greater demands of mobile network services
due to the increasing amount of mobile traffic cannot be
accommodated by the conventional infrastructure of mobile
networking due to lack of energy efficiency. To overcome this
problem, the concept of Fog and Mobile-Edge Computing
(FMEC) has been introduced as a sustainable and innovative
mobile networking framework [2]. FMEC puts cloud com-
puting capabilities such as resources and services within the
access network, i.e., near the users of mobile. Thanks to its

proximity to mobile users, it provides direct access to the
available resources and services with high bandwidth and
ultra-low latency. Moreover, FMEC increases the response of
services, content, and application from the network edge and
enriches the experience of the mobile user.

With the increasing expansion of mobile network such
as FMEC, the need for security of mobile traffic is becom-
ing critical. Note, however, that few research works focus-
ing on real-time and dynamic varying security services to
identify the different security needs in FMEC have been
done. Lee et al. [3] discussed various privacy and security
issues in FMEC in the context of a cloud-based Internet
of Things (IoT) environment. The discussion provides the
categorization of various security technologies to secure
various network components such as IoT node, Fog node
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(i.e., FMEC server), and communication between fog nodes.
Stojmenovic et al. [4] studied the various security challenges
of FMEC in the context of other technologies such as wire-
less sensor network, smart traffic, smart grid, and so on.
Similarly, other researches such as [5] discussed the secu-
rity needs and challenges in mobile-edge computing. These
researches mainly provide the privacy and security implica-
tions of FMEC and do not offer adequate solutions to alle-
viate all the security issues and challenges specifically while
considering the collaboration of mobile-edge computing with
other technologies, such as software-defined networking.

Therefore, our research sought to introduce an innova-
tive approach to security service selection to select opti-
mal security services as per the mobile user requirements
in the FMEC environment. In the security service selection
approach, the selection of optimal security service among
several available security services with overlapping func-
tionalities is carried out based on various Quality of Ser-
vice (QoS) parameters such as processing delay and CPU
usage. This is because optimal security service selection is
a decision making problem that depends on multiple QoS
criteria to satisfy the mobile user requirements. Therefore, to
choose the optimal security service, it comes up with multi-
criteria decision making based on Fuzzy logic that ranks
the security services according to their functionalities based
on multiple QoS criteria. Recently, a Fuzzy based security
service chaining approach to find the optimal order of the
necessary security services in FMEC. The approach estab-
lished a Fuzzy Inference System (FIS) based scheme to obtain
the goal of multi-criteria decision making [5]. However, in
fuzzy-based multi-criteria decision making problems, it is
challenging for decision making experts to come up with
a final decision because there are always uncertainties in
their choice of objects. We can consider a case wherein the
degree of membership for a given object in a set is defined
by two experts. The degree of membership defined by the
first expert is 0.5, but the other expert defines it as 0.7. Here,
the trouble in defining a collective degree of membership for
the object does not arise due to some possibility distribution
values [6] or a margin of error [7], [8]. Rather, it occurs due
to the hesitation of experts among a set of possible values.
Recently, Torra and Narukawa [9] and Torra [10] proposed
the idea of a hesitant fuzzy set in order to handle the issue of
hesitation. A Hesitant Fuzzy Set (HFS) is an extension of a
fuzzy set that supports assigning the degree of membership to
an object in a set as multiple values between 0 and 1. Hesitant
information can be expressedmore comprehensively by using
HFS instead of other forms of fuzzy sets. To tackle the prob-
lem of hesitant information, many researchers [11]–[13] have
introduced the idea and its application in decisionmaking (for
example, in multi-criteria decision making problems [13],
where an optimal alternative is evaluated from several avail-
able alternatives according to multiple criteria).

In a different vein, Molodtsov [14] introduced a new math-
ematical model called a soft set, which handles uncertainties
that are open to the inadequacies of parameterization tools.

It has applications in several different areas, including the
probabilistic model, Perron integration, Riemann integration,
operations research, game theory, smoothness of functions,
and forecasting method [15], [16]. Maji et al. [16] first used
the concept of a soft set to solve the problem of decision
making. In the past few years, many researchers have estab-
lished a new extension of a soft set called fuzzy soft set
by applying the theory of soft set in the fuzzy environ-
ment. Maji et al. [17] first introduced the fuzzy soft set the-
ory by merging the fuzzy concept with the soft set theory.
Cagman et al. [18] described the aggregation operator for a
fuzzy soft set. Deli and Çaǧman [19] defined a intuitionistic
fuzzy parameterized soft sets and provided the application of
this set to the decision making problem. Roy and Maji [20]
and Feng et al. [21] also applied a fuzzy soft set to the prob-
lems of decision making. Alcantud [22] solved the decision-
making problem in the existence of sets of input parameters
from multi-observers using a novel method of fuzzy soft
set. The research of Wang et al. [23] presented a hesitant
fuzzy soft set theory by applying a soft set concept in the
hesitant fuzzy environment. They also defined intersection,
union, ‘‘OR,’’ ‘‘AND,’’ and complement operations in this
set. Zhang and Shu [24] combined the soft set theory and dual
hesitant fuzzy set theory and defined the dual hesitant fuzzy
soft set.

To handle uncertainty, vagueness, and imprecision in data
analysis, Pawlak [25], [26] first introduced a new mathemat-
ical model that works on the key notion of an equivalence
relation and is called a rough set. Nevertheless, in numerous
real-world problems, the frequent utilization of the equiva-
lence relation is too restrictive. Hence, many researchers have
used non-equivalence relations in rough sets and expanded
rough set models, which have been used in numerous areas
(for example, in expert systems, intelligent decision-making
systems, and machine learning). Many researchers [27]–[29]
applied the notion of a rough set in the fuzzy environment
and developed several extended rough set models. Moreover,
the theory of rough set has also been combined with the
theory of interval-valued fuzzy set, intuitionistic fuzzy set,
and hesitant fuzzy set and several new rough set models have
been developed.

Recently, Yang et al. [30] combined the rough set theory
with the hesitant fuzzy set and proposed a hesitant fuzzy
rough set. They also defined various monotonic properties
for their proposed set. Zhang et al. [31] and Zhang et al. [32]
recommended different types of extensions for the hesitant
fuzzy rough set and applied them to various problems of
decision making, such as medical diagnosis and the fault
diagnosis of steam turbines.

In this paper, we propose a novel extension of the hesitant
fuzzy rough set theory [30] by fusing it with the hesitant fuzzy
soft set – called the Soft Hesitant FuzzyRough Set (SHFRS) –
to support multi-criteria decision making for security service
selection in the FMEC environment. To define SHFRS, we
first describe the inverse hesitant fuzzy soft set by inversing
the mapping (from the set of parameters Q to the universe of
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objects X ) defined in the hesitant fuzzy soft set. Actually, a
hesitant fuzzy soft set over universe set X is described as a
mapping from parameters (Q) to the set of all hesitant fuzzy
sets in X . On the other hand, an inverse hesitant fuzzy soft set
is defined as a mapping from the universe of objects X to the
set of all hesitant fuzzy sets in Q. According to the definitions
of both sets (hesitant fuzzy soft set and inverse hesitant fuzzy
soft set), we can easily determine that they define a hesitant
fuzzy relation between the set of parameters (Q) and set of
objects (X ). Subsequently, it is already known that the tra-
ditional hesitant fuzzy rough set describes the hesitant fuzzy
relation of universe X [30]. Therefore, we can use the hesitant
fuzzy relation described by the inverse hesitant fuzzy soft set
in the traditional hesitant fuzzy rough set and define a new
SHFRS with upper and lower approximations of any hesitant
fuzzy set K ∈ HFS(Q) with respect to triple (X ,Q, D̃−1),
where HFS(Q) represents a set of all hesitant fuzzy sets in
Q, and D̃−1 is a hesitant fuzzy relation defined by an inverse
hesitant fuzzy soft set. Similarly, the traditional hesitant fuzzy
rough set, SHFRS, can be used for solving decision making
problems. As such, we also introduce a novel decisionmaking
method based on the SHFRS theory.

The rest of this paper is organized as follows: Section II
describes the hesitant fuzzy set theory and its fusion with the
soft set and rough set theories; Section III introduces SHFRS
and discusses some of its fundamental properties & theorems
in detail; Section IV presents a novel solution for the multi-
criteria decision making problem based on our proposed
SHFRS theory, gives the stepwise procedure of the provided
solution, and presents a security service selection approach
for FMEC; Finally, Section V presents our conclusion.

II. PRELIMINARIES
In this Section, we briefly discuss the hesitant fuzzy set theory
and its properties. The fundamental notion of soft and rough
sets is also described, and some existing concepts related to
the fusion of the hesitant fuzzy set theory with the soft set and
rough set theories are defined.

A. HESITANT FUZZY SET
The research of Torra and Narukawa [9] and Torra [10] first
presented the idea of the hesitant fuzzy set, which is defined
below.
Definition 1 (See [9], [10]): For a given universe of dis-

course X , hesitant fuzzy set F on X is defined in the form
of function hF (v) that takes input from X and returns a set
of values between 0 and 1. The mathematical definition of
hesitant fuzzy set is provided below.

F =
{
〈v, hF (v)〉 | v ∈ X

}
Where hF (v) is a hesitant fuzzy element (HFE) containing a
set of values between 0 and 1, which indicates the probable
degrees of membership for element v ∈ X to F . We can
describe all possible hesitant fuzzy sets in X by using a set
represented by HFS(X ). Moreover, Torra [10] described the
null and full hesitant fuzzy sets as explained below.

Definition 2 (See [6]): Hesitant fuzzy set F is defined as
a null hesitant fuzzy set if F (v) = {0} for every v in X. This
type of set is denoted by ∅. In contrast, F is defined as a full
hesitant fuzzy set, if hF (v) = {1} for every v in X. This type
of set is denoted by L.

Torra andNarukawa [9] and Torra [10] introduced the basic
operations below to deal with HFEs. Let three HFEs be �h�, �h�1,
and �h�2. Then:
(1) ∼ �h� =

⋃
β∈�h� {1− β},

(2) �h�1∨�h�2 =
⋃
β1∈�h�1,β2∈�h�2 max{β1, β2},

(3) �h�1∧�h�2 =
⋃
β1∈�h�1,β2∈�h�2 min {β1, β2}.

Here, operations ∨,∧, and ∼ are referred to as the Supre-
mum, Infimum, and complement operations onHFEs, respec-
tively.

Xia and Xu [33] introduced a score function in order
to carry out the comparison of HFEs under the following
assumption:

(a) The values in all the HFEs selected for comparison
should be in increasing order.

(b) The length of all HFEs for comparison should be the
same. Thus, if the length of any two HFEs is different, the
HFE with shorter length is expanded with the addition of
maximum values until the lengths of two HFEs are equal.
Definition 3 (See [33]): If ε is a given HFE, then the score

of ε is computed using the following function:

scr (ε) = (1/l(ε))
∑

β∈ε
β

Where l(ε) is the number of values in ε
For two HFEs ε1 and ε2

if scr (ε1) > scr (ε2) , then ε1 > ε2,

if scr (ε1) = scr (ε2) , then ε1 = ε2.

B. SOFT SET AND ITS FUSION WITH A
HESITANT FUZZY SET
In this subsection, we discuss the fundamental theory of a
soft set and its fusion with a hesitant fuzzy set. Let us assume
two sets X and Q, where X describes the set of objects in the
universe and Q denotes the set of parameters. The power set
of X is denoted as P(X ). According to Molodtsov [14], a soft
set over X is defined as follows:
Definition 4 (See [14]): A soft set over X is defined as pair

(D,K), where K ⊆ Q and D describes the mapping from K

to X , which is given by D : K→ P(X ).
In other form, a soft set (D,K) over universe X is defined

as a parametric group of subsets of universe X . For each q ∈
K,D(q) is examined as a subset of X approximated by q or
the collection of q− approximated elements of the soft set
(D,K). We present a real-time example of soft set as follows:
Example 1: Let X = {v1, v2, v3, v4} be a universe of com-

puters, and K holds the parameters {q1, q2, q3} that define
the characteristics of computers. Parameter q1 stands for
‘‘high speed,’’ q2 describes ‘‘high storage,’’ and q3 stands for
‘‘low power consumption.’’ Therefore, D (q1) = {v1, v2, v3}
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means that computers with high speed are v1, v2, v3. Simi-
larly, D (q2) = {v2, v4} and D (q3) = {v1, v3,v4} define the
computers with high storage and low power consumption as
v2, v4 and v1, v3, v4, respectively.
Many researchers have studied the soft set and its

related concept. Maji et al. [34] defined various operations
on soft set (for example, union, intersection) and the
concept of soft supersets and subsets. Danjuma et al. [35]
recommended normal parameter reduction algorithm for
soft set. Moreover, Feng and Li [36] investigated several
forms of soft subsets and explored the relationship among
them. Feng and Zhou [37], Çağman and Enginoğlu [38],
and Maji et al. [16] described various methods of solv-
ing decision making problems using a soft set. Recently,
Wang et al. [23] described the combination of the traditional
soft set with a hesitant fuzzy set. The resultant set is called
a hesitant fuzzy soft set and is defined using the definition
below.
Definition 5 (See [23]): A hesitant fuzzy soft set over X is

defined as pair (D̃,K), where K ⊆ Q, and D̃ describes the
mapping from K to X , which is given by D̃ : K→ HFS(X ).
Here,HFS(X) represents the set of all hesitant fuzzy sets inX.
Ideally, a hesitant fuzzy soft set on X is defined as a

mapping from parameters to the set of all hesitant sets in
X . In other words, it is a parametric group of hesitant fuzzy
subsets of X . For each q ∈ K, D̃(q) is examined as a hesitant
fuzzy subset of X , which is approximated by q. In general,
D̃(q) = {(v, D̃ (q) (v))|v ∈ X}.

As already defined in [14] and [23], when both universal
set X and parameter set K ⊆ Q are finite, then soft sets and
hesitant fuzzy soft sets can be represented in table format,
where each row describes an object in X and each column
describes a parameter in K. Each cell of the table that rep-
resents a soft set contains either 0 or 1, whereas each cell of
the table that represents a hesitant fuzzy soft set contains a set
of values between 0 and 1, indicating the probable degrees of
membership for an object.

Wang et al. [23] described the AND (∧) operation on a
hesitant fuzzy soft set as follows:
Definition 6 (See [23]): Consider (Ã,K) and (B̃,L)

as two hesitant fuzzy soft set; then the AND opera-
tion of these two sets is represented as (Ã,K) ∧ (B̃,L)
and can be defined using the following mathematical
expression: (

Ã,K
)
∧
(
B̃,L

)
= (R̃,K× L)

Where R̃ (a, b) = Ã (a) ∩ B̃ (b) , for all (a, b) ∈ K× L.

C. ROUGH SET AND ITS FUSION WITH HESITANT
FUZZY SET
In this subsection, we discuss the fundamental theory of a
rough set and its fusion with a hesitant fuzzy set. Let us
assume two sets X andQ,where X describes the set of objects
in the universe and Q denotes the set of parameters. The
power set of X is denoted as P(X ). According to Yao [39]

and Wu and Zhang[40], a rough set over X is defined as
stated below.
Definition 7 (See [39], [40]): If G is an arbitrary crisp

relation from X to Q, then, Gs : X → P(Q) is a set-valued
function and is described using the following mathematical
expression:

Gs (v) = {w ∈ Q | (v,w) ∈ G} , v ∈ X

Gs(v) is identified as a successor neighborhood of v for
crisp relation G. The triple (X ,Q,G) is called a generalized
crisp approximation space. Upper approximation G(K) and
lower approximation G(K) of any set K ⊆ Q with respect to
triple (X ,Q,G) are computed using the following expression:

G (K) = {v ∈ X |Gs(v) ∩K 6= ∅},

G (K) = {v ∈ X |Gs(v) ⊆ K}.

Finally, a generalized crisp rough set of any setK ⊆ Qwith
respect to triple (X ,Q,G) is defined as pair (G (K) ,G (K)),
where G and G are called upper and lower generalized crisp
approximation operators, respectively.

Zhang et al. [31] described the fusion of a traditional rough
set with a hesitant fuzzy set. The resultant set is called a
hesitant fuzzy rough set and is defined using the following
notion:
Definition 8 (See [31]): Let G be a hesitant fuzzy relation

from X to Q; then, a hesitant fuzzy approximation space over
X and Q is defined as triple (X ,Q,G). Upper approximation
G (K) and lower approximationG(K) of any setK ∈ HFS(Q)
with respect to triple (X ,Q,G) are computed using the fol-
lowing expression:

G (K) = {〈v, hḠ(K)(v)〉|v,∈ X},

G (K) = {〈v, hG(K)(v)〉|v,∈ X},

Where

hG(K) (v) = ∨w∈Q
{
hG (v,w)∧ hK (w)

}
, v ∈ X

hG(K) (v) = ∧w∈Q(1− hG (v,w))∨hK(w)}, v ∈ X

Finally, a hesitant fuzzy rough set of any set K ∈

HFS(Q) with respect to triple (X ,Q,G) is defined as pair
(G (K) ,G (K)), where G and G are called upper and lower
hesitant fuzzy rough approximation operators, respectively.
If we assume that X = Q, then the resultant set is called a
hesitant fuzzy rough set over the same universe as defined by
Yang et al. [30].

III. SOFT HESITANT FUZZY ROUGH SET: A NOVEL
PROPOSED SET
After describing the fundamental definition and concept of
hesitant fuzzy soft set and hesitant fuzzy rough set, in this
section, we combine the concepts of these two sets and intro-
duce an innovative notion of hesitant fuzzy rough set based
on a hesitant fuzzy soft set called SHFRS.

As we have already discussed, the soft set describes each
object vi in universe X by defining it in object set D(q)
corresponding to any parameter q ⊆ K. This is illustrated
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in example 1, where we define object set D (q2) = {v2, v4}
that describes computers v2 and v4, which hold parameter q2
(‘‘high storage’’). Contrary to the soft set, we can consider a
general problem wherein one wants to know that what are the
characteristics or parameters that computer vi ∈ X has. To
describe this problem, we first present the following notion
of an inverse soft set:
Definition 9: An inverse soft set over X is defined as pair

(D−1,K), where K ⊆ Q and D−1 describes the mapping
from X toK given by D−1 : X → P(K). Here, P(K) denotes
the power set of parameter set K.
From the definition above, an inverse soft set over X maps

each object v ∈ X with the group of parameters p ∈ P(K)
held by object v. To illustrate this, we present a real-time
decision making problem as follows:
Example 2: Assume that a person wants to purchase a

computer from a shop. Let X = {	p�C1, 	p�C2, 	p�C3, 	p�C4, 	p�C5,

which is a set of five computers with various characteristics.
Suppose that the characteristics of all computers in set X is
defined by a set of K = {�q

1
, �q

2
, �q

3
, �q

4
, �q

5
, �q

6
, �q

7
} parameters,

where �q
1
, �q

2
, �q

3
, �q

4
, �q

5
, �q

6
, and �q

7
stand for high capacity, high

storage, high versatility, high diligence, high accuracy, high
speed, and low power consumption, respectively. For the
evaluation of an optional computer under the consideration
of the given parameter, we define soft set (D,K) that depicts
the ‘‘efficiency of the computer’’ that the person wants to
purchase. The defined soft set (D,K) for this example is
shown in Table 1.

Contrary to the soft set (D,K), if the person wants to
knowwhat are the characteristics or parameters of an optional
computer that he/she is going to purchase, then we define an
inverse soft set (D−1,K) that depicts the following results:

D−1
(

	p�C1
)
= {�q

1
, �q

4
, �q

7
}, D−1

(
	p�C2

)
= {�q

1
, �q

4
, �q

5
},

D−1
(

	p�C3
)
= {�q

2
}, D−1

(
	p�C4

)
= {�q

3
, �q

4
, �q

6
},

D−1
(

	p�C5
)
= {�q

1
, �q

5
, �q

6
}

The expression D−1
(

	p�C1
)
= {�q

1
, �q

4
, �q

7
} denotes that

computer 	p�C1 definewith three characteristics: high capacity,
high storage, and low power consumption. Similarly, other
expression can be described.

As clearly shown in Example 2 and Definition 9, an inverse
soft set describes another way of representing the relationship
between parameter setK and universe X of objects. With the
notion of an inverse soft set, the basic characteristics of a
given object vi ∈ X can be described by determining each
parameter qi ∈ K that belongs to the given object.

Similar to the inverse soft set, the inverse hesitant fuzzy soft
set can be defined by applying the concept of an inverse soft
set with the hesitant fuzzy set. We define an inverse hesitant
fuzzy soft set as described below.
Definition 10: An inverse hesitant fuzzy soft set over X is

defined as pair
(
D̃−1,K

)
, where K ⊆ Q and D̃−1 : X →

HFS(K), with HFS(K) as the set of all hesitant fuzzy sets
in parameter set K. In general, we can denote D̃−1(v) (q) ∈
[0, 1] ,∀v ∈ X , q ∈ K.

TABLE 1. Representation of soft set (D,K) in table format (in Example 2).

As per this definition, it is clear that the mapping D̃−1 :
X → HFS(K) describes a hesitant fuzzy relation from the
universe of objects X to a set of parametersK. In other words,
we can define this hesitant fuzzy relation as follows:

For any vi ∈ X , qj ∈ K, D̃−1(vi)(qj) ∈ HFS(X ×K).
In general, D̃−1(vi)(qj) is referred to as an arbitrary hesitant

fuzzy binary relation because it does not hold the condition of
an equivalence relation (reflexive, symmetric, and transitive).

Now, we describe the following definition of SHFRS by
using the notion of inverse hesitant fuzzy soft set:
Definition 11: Suppose (D̃−1,Q) is an inverse hesitant

fuzzy soft set on X. Then, a soft hesitant fuzzy approximation
space over X and Q is defined as triple (X ,Q, D̃−1). The
upper approximation D (K) and lower approximation D(K)
of any setK ∈ HFS(Q) with respect to triple (X ,Q, D̃−1) are
computed using the following mathematical expression:

D (K) = {〈v, hD̄(K)(v)〉|v,∈ X},

D (K) = {〈v, hD(K)(v)〉|v,∈ X},

Where

hD(K) (v) = ∨w∈Q
{
hD̃−1 (v,w)∧ hK (w)

}
, v ∈ X

hD(K) (v) = ∧w∈Q{(1− hD̃−1 (v,w))∨hK(w)}, v ∈ X .

Finally, the SHFRS of any setK ∈ HFS(Q) with respect to
triple (X ,Q, D̃−1) is defined as pair (D (K) ,D (K)), where
D and D are called upper and lower soft hesitant fuzzy rough
approximation operators, respectively.

Since D̃−1 is an arbitrary hesitant fuzzy binary relation, it
is clear that, for any set K ∈ HFS(Q), D(K) v D(K) does
not hold. Here, v denotes the proper subset operation on a
hesitant fuzzy set.

We can describe the following four different cases of Def-
inition 11:
Remark 1: Let (D̃−1,Q) be an inverse soft set on X .

In this case, upper approximation D (K) and lower approx-
imation D(K) of any set K ∈ HFS(Q) with respect to triple
(X ,Q, D̃−1) are computed using the following expression:

D (K) = {(v, hD(K) (v))|v ∈ X ,

D (K) = {(v, hD(K) (v))|v ∈ X ,

where

hD(K) (v) = ∨w∈D̃−1(v) {hK (w)} , v ∈ X

hD(K) (v) = ∧w∈D̃−1(v){hK(w)}, v ∈ X .
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Here, triple (X ,Q, D̃−1) is called a soft approximation space,
and the resultant set is called a soft rough hesitant fuzzy set
defined by pair (D (K) ,D (K)).
Remark 2: Let the given set K ∈ P(Q) be the crisp set

of Q. In this case, upper approximation D (K) and lower
approximation D(K ) of set K ∈ P(Q) with respect to triple
(X ,Q, D̃−1) are computed using the following expression:

D (K) = {(v, hD(K) (v))|v ∈ X ,

D (K) = {(v, hD(K) (v))|v ∈ X ,

Where

hD(K) (v) = ∨w∈K
{
hD̃−1 (v,w)

}
, v ∈ X

hD(K) (v) = ∧w/∈K1− hD̃−1 (v,w) , v ∈ X .

Here, triple (X ,Q, D̃−1) is called a soft hesitant fuzzy approx-
imation space, and a soft hesitant fuzzy rough set of any
crisp set K ∈ P(Q) with respect to triple (X ,Q, D̃−1) is
defined as pair (D (K) ,D (K)), where D and D are called
upper and lower soft hesitant fuzzy approximation operators,
respectively.
Remark 3: Let (D̃−1,Q) be an inverse soft set on X and the

given set K ∈ P(Q) be the crisp set of Q. In this case, upper
approximation D (K) and lower approximation D(K ) of set
K ∈ P(Q) with respect to triple (X ,Q, D̃−1) are computed
using the following expression:

D (K) (v) = {w ∈ Q|∃v ∈ X , ∃w ∈ D̃−1(v) ∩K 6= φ}
D (K) (v) = {w ∈ Q|∃v ∈ X , ∃w ∈ D̃−1(v) ⊆ K}

Here, triple (X ,Q, D̃−1) is called a soft approximation space,
and the resultant set is called a soft rough set defined by pair
(D (K) ,D (K)).
Remark 4: With regard to Definition 11, suppose the hes-

itant fuzzy elements hD̃−1 (v,w) and hK (w) have only one
element each; then hesitant fuzzy relation D̃−1 is reduced to a
fuzzy relation from X toQ and hesitant fuzzy setK is reduced
to a fuzzy set, with SHFRS over X and Q reduced to a soft
fuzzy rough set defined by Meng et al. [41].
Let us now consider the example below to clarify the results

presented above:
Example 3: With regard to Example 2, assume that a

person is evaluating an optional computer considering various
characteristics with hesitant fuzzy element. Then, all com-
puters in X with their characteristics under the hesitant fuzzy
information are illuminated by using the hesitant fuzzy soft
set (D̃,K) as presented in Table 2.
If a hesitant fuzzy set

K =
{0.3, 0.4, 0.6}

q1
+
{0.6, 0.8}

q2
+
{0.3, 0.5, 0.9}

q3

+
{0.5, 0.7}

q4
+
{0.6, 0.7}

q5
+
{0.4, 0.6}

q6
+
{0.5, 0.7, 0.9}

q7

Then, by Definition 11, we get the hesitant fuzzy upper and
lower approximation of K as follows:

hD(K)
(

	p�C1
)
= ∨q∈K

{
hD−1

(
	p�C1, q

)
∧ hK (q)

}

=
(
{0.3, 0.4, 0.5} ∧ {0.3, 0.4, 0.6}

)
∨
(
{0.3, 0.5, 0.6} ∧ {0.6, 0.8}

)
∨
(
{0.2, 0.4} ∧ {0.3, 0.5, 0.9}

)
∨
(
{0.2, 0.4, 0.7} ∧ {0.5, 0.7}

)
∨
(
{0.3, 0.5, 0.7} ∧ {0.6, 0.7}

)
∨
(
{0.3, 0.4} ∧ {0.4, 0.6}

)
∨ ({0.2, 0.3, 0.4}∧0.5, 0.7, 0.9})

= {0.3, 0.4, 0.5} ∨ {0.3, 0.5, 0.6}

∨ {0.2, 0.3, 0.4}

∨ {0.2, 0.4, 0.5, 0.7} ∨ {0.3, 0.5, 0.6, 0.7}

∨ {0.3, 0.4} ∨0.2, 0.3, 0.4}

= {0.3, 0.4, 0.5, 0.6, 0.7}.

hD(K)
(

	p�C1
)
= ∧q∈K{(1− hD̃−1

(
	p�C1, q

)
)∨hK(q)}

=
(
{0.5, 0.6, 0.7} ∨ {0.3, 0.4, 0.6}

)
∧
(
{0.4, 0.5, 0.7} ∨ {0.6, 0.7, 0.8}

)
∧
(
{0.6, 0.8} ∨ {0.3, 0.5, 0.9}

)
∧
(
{0.3, 0.6, 0.8} ∨ {0.5, 0.7}

)
∧
(
{0.3, 0.5, 0.7} ∨ {0.6, 0.7}

)
∧({0.6, 0.7}

∨ {0.4, 0.6})

∧ ({0.6, 0.7, 0.8}∨0.5, 0.7, 0.9})

= {0.5, 0.6, 0.7} ∧ {0.6, 0.8} ∧ {0.6, 0.8, 0.9}

∧ {0.5, 0.6, 0.7, 0.8}

∧ {0.6, 0.7} ∧0.6, 0.7}∧0.6, 0.7, 0.8, 0.9}

= {0.5, 0.6, 0.7}.

Similarly, we have
hD(K)

(
	p�C2

)
= {0.3, 0.4, 0.5, 0.6},

hD(K)
(

	p�C2
)
= {0.4, 0.5, 0.6, 0.7},

hD(K)
(

	p�C3
)
= {0.5, 0.6, 0.7},

hD(K)
(

	p�C3
)
= {0.5, 0.6},

hD(K)
(

	p�C4
)
= {0.5, 0.6, 0.7},

hD(K)
(

	p�C4
)
= {0.4, 0.5, 0.6},

hD(K)
(

	p�C5
)
= {0.4, 0.5},

hD(K)
(

	p�C5
)
= {0.5, 0.6, 0.7}.

We can represent upper approximation D (K) and lower
approximation D(K ) of K with respect to (X ,Q,D−1) as
follows:
D (K) = {〈PC1,{0.3, 0.5, 0.6, 0.7}〉,〈PC2,{0.3, 0.4, 0.5, 0.6}〉,

〈PC3, {0.5, 0.6, 0.7}〉, 〈PC4, {0.5, 0.6, 0.7}〉,
〈PC5, {0.4, 0.5}〉}

D (K) = {〈PC1, {0.5, 0.6, 0.7}〉, 〈PC2, {0.4, 0.5, 0.6, 0.7}〉,
〈PC3, {0.5, 0.6}〉, 〈PC4, {0.4, 0.5, 0.6}〉,
〈PC5, {0.5, 0.6, 0.7}〉}

It can be easily verified that D (K) 6⊆ D (K). Similarly, the
four cases described in Remarks 1, 2, 3, and 4 can also be
proven.
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TABLE 2. Illustration of hesitant fuzzy soft set (D̃, K ) in table format.

Similar to the hesitant fuzzy rough approximation opera-
tors, soft hesitant fuzzy rough approximation operators have
various properties. We describe some properties as follows:
Proposition 1: Suppose that a soft hesitant fuzzy approxi-

mation space is defined as triple (X ,Q, D̃−1); then for a given
set H ∈ HFS(Q), we can describe the following:
(1) h+

D(H) (v) = max{min{h+
D̃−1

(v,w) , h+H (w)} : w ∈ Q},

v ∈ X
(2) h−

D(H) (v) = max{min{h−
D̃−1

(v,w) , h−H (w)} : w ∈ Q},

v ∈ X
(3) h+D(H) (v) = min{max{(1 − h+

D̃−1
(v,w)), h+H(w)} : w ∈

Q}, v ∈ X
(4) h−D(H) (v) = min{max{(1 − h−

D̃−1
(v,w)), h−H(w)} : w ∈

Q}, v ∈ X .
Where h+

D̃−1
(v,w) and h+H (w) are the upper bound of

HFEs hD̃−1 (v,w) and hH (w) , respectively.h
−

D̃−1
(v,w) and

h−H (w) are the lower bound of HFEs hD̃−1 (v,w) and hH (w) ,
respectively.

Proof: The above results can be directly derived from
the definitions of ∨ and ∧ operations and Definition 11.
Proposition 2: Suppose that a soft hesitant fuzzy approxi-

mation space is defined as triple (X ,Q, D̃−1); then for a given
set H ∈ HFS(Q), we can describe the following:
(1) ∼D (∼ H) = D (H) ,
(2) ∼D (∼ H) = D (H).

Proof (1): ∀v ∈ X , from Definition 11, we have

h∼D(∼H) (v) = ∼
{
∨w∈Q

{
hD̃−1 (v,w)∧ h(∼H) (w)

}}
, v ∈ X

= ∼
{
∨w∈Q

{
hD̃−1 (v,w)∧∼ hH (w)

}}
= ∧w∈Q

{
∼hD̃−1 (v,w)∨hH (w)

}
= ∧w∈Q

{
(1− hD̃−1 (v,w))∨hH (w)

}
= hD(H) (v)

This implies that ∼D (∼ H) = D (H).
Proof (2): It can be proven similar to proof of (1).

Theorem 1: Suppose that a soft hesitant fuzzy approxima-
tion space is defined as triple (X ,Q, D̃−1); then for two given
sets H,∈ HFS(Q), we can describe the following properties:
(1) D (H d I) = D(H) d D(I),
(2) D (H e I) v D(H) e D(I),
(3) D (H e I) = D(H) e D(I),
(4) D (H d I) w D(H) d D(I),
(5) H v I⇒ D(H) v D(I),
(6) H v I⇒ D(H) v D(I),

(7) D (Q) = X ,
(8) D (∅) = ∅

Here, it should be noted that operations d,e,v, and w
denote union, intersection, proper subset, and proper superset
operations on hesitant fuzzy sets, respectively, whereas oper-
ations ∪,∩,⊆, and ⊇ are the ordinary union, intersection,
proper subset, and proper superset operations, respectively.

Proof (1): ∀v ∈ X , from Definition 11, we have

hD(HdI) (v)

= ∨w∈Q
{
hD̃−1 (v,w)∧ hHdI (w)

}
, v ∈ X

= ∨w∈Q
{
hD̃−1 (v,w)∧ (hH (w)∨hI(w))

}
= ∨w∈Q

{
(hD̃−1 (v,w)∧ (hH (w))∨(hD̃−1 (v,w)∧ (hI (w))

}
= {∨w∈Q(hD̃−1 (v,w)∧ hH (w))}

∨{∨w∈Q(hD̃−1 (v,w)∧ hI (w))}

= hD(H) (v)∨ hD(I) (v)

= hD(H)dD(I) (v) .

This implies that D (H d I) = D(H) d D(I),
Proof (2), (3), (4): These three properties can be proven

to be similar to the proof of (1).
Proof (5): ∀v ∈ X , from proposition 1, we get

h+
D(H) (v) = max{min{h+

D̃−1
(v,w) , h+H (w)}}, and

h−
D(H) (v) = max{min{h−

D̃−1
(v,w) , h−H (w)}}, similarly for

h+
D(I) (v) = max{min{h+

D̃−1
(v,w) , h+I (w)}} and h

−

D(I) (v) =

max{min{h−
D̃−1

(v,w) , h−I (w)}}. Since H v I, then we
have h+H (v) ≤ h+I (v) and h−H (v) ≤ h−I (v) for each
v ∈ X , which implies that min{h−

D̃−1
(v,w) , h−H (w)} ≤

min{h−
D̃−1

(v,w) , h−I (w)} for eachw ∈ Q, it can be concluded
that h−

D(H) (v) ≤ h−
D(I) (v). In the same way, we can conclude

that h+
D(H) (v) ≤ h+

D(I) (v). From the two conclusions above,
we hold hD(H) (v) ≤ hD(I) (v), which implies that D(H) v
D(I).

Proof (6): It can be proven to be similar to the proof of
(5).

Proof (7): ∀w ∈ Q, we have hQ (w) = {1}. Then from
Definition 11,

hD(Q) (v) = ∧w∈Q{(1− hD̃−1 (v,w))∨hQ(w)}, v ∈ X

= ∧w∈Q{(1− hD̃−1 (v,w))∨{1}} = {1}

This implies that D (Q) = X .
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Proof (8): ∀w ∈ Q, we have h∅ (w) = {0}. Then from
Definition 11,

hD(∅) (v) = ∨w∈Q
{
hD̃−1 (v,w)∧ h∅(w)

}
, v ∈ X

= ∨w∈Q
{
hD̃−1 (v,w)∧ {0}

}
= {0} .

This implies that D (∅) = ∅.
In general, the results described in theorem 1 are similar

to the results presented by Yang et al. [30] for traditional
hesitant fuzzy rough set.
Theorem 2: Suppose (D̃−11 ,Q ) and (Q −12 ,Q) are two

inverse hesitant fuzzy soft sets on X . Then, two soft hesitant
fuzzy approximation spaces over X and Q can be defined as
triples (X ,Q , D̃−11 ) and (X ,Q, D̃−12 ). If D̃−11 v D̃−12 , then we
can describe the following properties:

(1) D1 (H) v D2 (H) , ∀H ∈ HFS (Q).
(2) D1 (H) w D2 (H) , ∀H ∈ HFS (Q) ,
Where D1 and D1 denote upper and lower soft hes-

itant fuzzy rough approximation operators, respectively
with respect to triple (X ,Q, D̃−11 ) and D2 and D2 are
upper and lower soft hesitant fuzzy rough approx-
imation operators, respectively with respect to triple
(X ,Q, D̃−12 ).

Proof (1): ∀v ∈ X , from proposition 1, we get
h+

D1(H)
(v) = max{min{h+

D̃−11
(v,w) , h+H (w)} : w ∈ Q} and

h−
D1(H)

(v) = max{min{h−
D̃−11

(v,w) , h−H (w)}}, similarly for

h+
D2(H)

(v) = max{min{h+
D̃−12

(v,w) , h+H (w)} : w ∈ Q} and

h−
D2(H)

(v) = max{min{h−
D̃−12

(v,w) , h−H (w)}}.

Since D̃−11 v D̃−12 , then we have h+
D̃−11

(v,w) ≤

h+
D̃−12

(v,w) and h−
D̃−11

(v,w) ≤ h−
D̃−12

(v,w) for all (v,w) ∈

X × Q, which implies that min{h−
D̃−11

(v,w) , h−H (w)} ≤

min{h−
D̃−12

(v,w) , h−H (w)} for eachw ∈ Q, it can be concluded

that h−
D1(H)

(v) ≤ h−
D2(H)

(v). In the same way, we can con-

clude that h+
D1(H)

(v) ≤ h+D2(H)
(v). From the two conclusions

above, we hold hD1(H) (v) ≤ hD2(H) (v) , which implies that
D1(H) v D2(H).

Proof (2): It can be proven to be similar to the proof of
(1).
Theorem 3: Suppose D̃−1 is a hesitant fuzzy relation

defined by an inverse hesitant fuzzy soft set on X and Q.
The upper approximation and lower approximation of any set
H ∈ HFS(Q) with respect to triple (X ,Q, D̃−1) are D (H) and
D(H), respectively; then D̃−1 is serial if one of the following
conditions holds:
(1) D (∅) = ∅,
(2) D (Q) = X ,
(3) D (H) v D (H) ,∀H ∈ HFS (Q) .

Proof: These three conditions can be validated similar to
theorem 1 and by using Definition 11.
Definition 12: Let two soft hesitant fuzzy approximation

spaces over universal set X and Q be (X ,Q, D̃−11 ) and
(X ,Q, D̃−12 ); then:

(1) The intersection of (X ,Q, D̃−11 ) and (X ,Q, D̃−12 ) can
be defined by using soft hesitant fuzzy approximation
space (X ,Q, D̃−11 e D̃−12 ).

(2) The union of (X ,Q, D̃−11 ) and (X ,Q, D̃−12 ) can be
defined by using soft hesitant fuzzy approximation
space (X ,Q, D̃−11 d D̃−12 ).

Theorem 4: Let two soft hesitant fuzzy approximation
spaces over universal set X and Q are (X ,Q, D̃−11 ) and
(X ,Q, D̃−12 ). If D̃−1 = D̃−11 D̃−12 , then for any set H ∈

HFS(Q), the following conditions hold:
(1) D (H) = D1 (H) d D2 (H) ,
(2) D (H) = D1 (H) e D2 (H) .

Proof (1): ∀v ∈ X , from Definition 11, we have

hD(H) (v) = ∨w∈Q
{
hD̃−1 (v,w)∧ hH (w)

}
, v ∈ X

= ∨w∈Q

{
hD̃−11 dD̃−12

(v,w)∧ hH (w)
}

= ∨w∈Q

{
(hD̃−11

(v,w)∨hD̃−12
(v,w))∧ hH (w)

}
= {∨w∈Q(hD̃−11

(v,w)∧ hH (w))}

∨ {∨w∈Q(hD̃−12
(v,w)∧ hH (w))}

= hD1(H) (v)∨hD2(H) (v)

= hD1(H)dD2(H) (v) .

D (H) = D1 (H) d D2 (H).
Proof (2): It is dual of condition (1); therefore, it follows

the proof and conclusion of (1).
Theorem 5: Let two soft hesitant fuzzy approximation

spaces over universal set X and Q be (X ,Q, D̃−11 ) and
(X ,Q, D̃−12 ). If D̃−1 = D̃−11 e D̃−12 , then for any set H ∈
HFS(Q), the following conditions hold:
(1) D (H) v D1 (H) e D2 (H) ,
(2) D (H) w D1 (H) d D2 (H) .

Proof (1): ∀v ∈ X , from Definition 11, we have

hD(H) (v) = ∨w∈Q
{
hD̃−1 (v,w)∧ hH (w)

}
, v ∈ X

= ∨w∈Q

{
hD̃−11 eD̃−12

(v,w)∧∧ hH (w)
}

= ∨w∈Q

{
(hD̃−11

(v,w)∧ hD̃−12
(v,w))∧ hH (w)

}
= {∨w∈Q(hD̃−11

(v,w)∧ hH (w))}

∧{∨w∈Q(hD̃−12
(v,w)∧ hH (w))}

= hD1(H) (v)∧ hD2(H) (v) = hD1(H)eD2(H) (v)

This implies that D (H) v D1 (H) e D2 (H).
Proof (2): It is dual of condition (1); therefore, it follows

the proof and conclusion of (1).
Remark 5: In this paper, we have described SHFRS, which

is a combination of two concepts. One is hesitant fuzzy rough
set over two universes (X and Q), and the other is an inverse
hesitant fuzzy binary relation D̃−1 or an inverse hesitant fuzzy
mapping between X and Q. Since these two universes Xand
Qare completely dissimilar with different sense, the reflexive,
symmetric, and transitive properties cannot be defined for
the inverse hesitant fuzzy binary relation D̃−1 because we
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can describe all these properties on the identical universe.
As such, all of the results that have been described for a
traditional hesitant fuzzy rough set [30] cannot be defined for
SHFRS; thus showing that our proposed set differs from a
traditional hesitant fuzzy rough set.

IV. MULTI-CRITERIA DECISION MAKING
BASED ON SHFRS
In this Section, we present a novel solution for multi-criteria
decision making problems based on our proposed SHFRS.

The research of Roy andMaji [20] first presented a method
of solving the decision making problem based on the fuzzy
soft theory. Feng et al. [21] cited the shortcomings of this
method [20] and introduced a new level soft set technique for
providing a solution to the decision making problem based
on a fuzzy soft set. Wang et al. [23] applied this level soft set
technique to hesitant fuzzy soft set-based decision making.
Nonetheless, we found that, in the level soft set technique, a
threshold fuzzy set must be chosen in advance by the decision
maker. The final result of the decision is dependent on the
threshold fuzzy set to a certain extent. Therefore, the concept
of choosing a threshold fuzzy set is not appropriate for solv-
ing the decision making problem based on a fuzzy soft set.
In the next subsection, a novel method that uses the concept
of SHFRS for solving the decision making problem is pro-
posed. Our proposed method does not require supplementary
information (for example, threshold fuzzy set) to be delivered
by decision makers or in another manner. It only uses the
data information delivered by the given problem. Thus, the
final decision results obtained by our proposed method are
free from the influence of subjective information. Moreover,
our method avoids ambiguity in the decision results for the
same decision problem because it is not influenced by any
information delivered by different decision experts.

A. PROCEDURAL STEPS FOR MULTI-CRITERIA DECISION
MAKING BASED ON SHFRS
Here, we will describe the procedural steps for our proposed
method in detail.

Let X = {v1, v2, . . . vn} and (D̃−1,Q) be an inverse
hesitant fuzzy soft set over X , where Q = {q1, q2 . . . qm}.
According to Definition 5, for each qi ∈ Q, D̃ (qi) ={(
v1, D̃ (qi) (v1)

)
,
(
v2, D̃ (qi) (v2)

)
, . . . ..,

(
vn, D̃ (qi) (vn)

)}
.

We can compute the score of each hesitant fuzzy element by
Definition 3 That is,

scr(D̃ (qi)) =
{(
v1, scr

(
D̃ (qi) (v1)

))
,
(
v2, scr(D̃ (qi) (v2))

)
,

. . . ,
(
vn, scr(D̃ (qi) (vn))

)}
.

Step 1: Since, for a certain decision making problem, a
decision maker is willing to choose an optional object in
universe X with the parameter value qi ∈ Q as high as at
each parameter index i, an optimal normal decision object
on parameter set Q is first computed using the following

mathematical expression:

K =
|Q|∑
i=1

max{(D̃(qi)}
qi

, qi ∈ Q,

i.e., K(qi) = max{D̃(qi)(vj)|vj ∈ X}

Where |Q| is the number of parameters in set Q.
We can compute max{(D(qi)} by calculating the score

function of each hesitant fuzzy element by using Definition 3.

max{(D(qi))} = {hij|maxhij∈D̃(qi)(vj){scr(hij)}}, vj ∈ X

Step 2: According to Definition 11, soft hesitant fuzzy
upper approximation D (K) and soft hesitant fuzzy lower
approximation D (K) of optimal normal decision object K
with respect to

(
X ,Q, D̃−1

)
are calculated. Thus, for each

object vi ∈ X in X , we get the two closest values D (K) (vi)
and D (K) (vi) by using the soft hesitant fuzzy upper and
lower approximations of hesitant fuzzy subset K.
Step 3: To calculate choice value σi for each object vi ∈ X ,

the score functions scr(D(K)(vi)) and scr(D(K)(vi)) of values
D (K) (vi) and D (K) (vi), respectively, are calculated using
Definition 3. Finally, we define choice value σi as follows:

σi = scr
(
D (K) (vi)

)
+ scr

(
D (K) (vi)

)
, vi ∈ X

Choice value σi for each object vi ∈ X is then calculated.
For the given decision problem, the object with the highest
choice value σi is selected as the optimal decision object.
In the case of similar highest choice value σifor two or more
objects, any one of them can be randomly selected as the
optimal decision object.

B. SHFRS BASED SECURITY SERVICE SELECTION
APPROACH FOR FMEC
In FMEC, several security services with overlapping
functions are presented for the composite security service.
Therefore, the composite service maker requires some key
criteria to differentiate the efficiency and user satisfaction
level offered by every presented security service on a cer-
tain QoS parameter. A number of non-functional, context-
dependent, and domain-specific properties of services and
several influential factors such as CPU usage, processing
delay, overhead, and many more are included in the QoS.
For the security service composition, a multi-criteria decision
making process is required to select optimal services from
several available security services based on QoS. Therefore,
in this subsection, we present a novel method for selecting
the optimal services based on SHFRS in the existence of
multi-observer hesitant fuzzy information. Here, we describe
the multi-observer hesitant fuzzy information as multiple
hesitant fuzzy soft sets containing multi-observer hesitant
fuzzy information in terms of different sets of QoS parameters
defined by the FMEC security service. The method mainly
consists of two phases for solving the given problem of
service composition. In the first phase, the method performs
an aggregation procedure with respect to input parameter
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FIGURE 1. Illustration of hesitant fuzzy soft set (Ã,K), (B̃,L), (C̃, M ) in table format (Example 4).

TABLE 3. Illustration of hesitant fuzzy soft set (D̃, R) in table format.

set R to compute the resultant hesitant fuzzy soft set from
the multiple hesitant fuzzy soft sets. Here, we use the AND
operation as an aggregation procedure given in Definition 6.
In the second phase, the algorithm finds the optimal decision
from the resultant hesitant fuzzy soft set by using the concept
of SHFRS, which is described in the earlier subsection.

To understand better how the presented method works,
we take the following example of optimal security service
selection problem in the FMEC environment and solve it by
using the concept of SHFRS-based decision making:
Example 4: Considering the most common security ser-

vices in FMEC, we choose Firewall (v1), Network address
translator (v2), Deep packet inspection (DPI) (v3), Load bal-
ancer (v4), and Virtual private network (v5) as an example
represented by security service set X = {v1, v2, v3, v4, v5}.
Each service in this set is differentiated by three types of
QoS parameters: processing delay, CPU usage, and memory
overhead. The processing delay parameter is represented by
set K = {low(k1), high(k2), very low(k3), very high(k4)}.
The CPU usage parameter is represented by set L =

{low (l1) , high (l2) , very low (l3) , very high (l4) , idle(l5)}.
The memory overhead is defined by set M = {low(m1),
high(m2), very low(m3), very high(m4)}. The universal set of
parameters is defined by Q = K ∪ L ∪M.
Let the hesitant fuzzy soft set (Ã,K) describes the map-

ping of security services with the processing delay param-
eter. The hesitant fuzzy soft set (B̃,L) describes the map-
ping of security services with the CPU usage parameter and
the hesitant fuzzy soft set (C̃ ,M ) describes the mapping of
security services with the memory overhead parameter. The
tabular representation of all three fuzzy soft sets is shown
in Fig. 1.

The problem here is selecting an optimal security service
from the set of given security services with respect to input
parameter set R by an observer.

Let the input parameter set beR = {r1 = k1∧l1∧m1, r2 =
k1 ∧ l3 ∧ m4, r3 = k2 ∧ l2 ∧ m2, r4 = k2 ∧ l4 ∧ m4, r5 =
k3 ∧ l3 ∧ m3, r6 = k3 ∧ l4 ∧ m2, r7 = k4 ∧ l4 ∧ m2}.
Step 1: The resultant hesitant fuzzy soft set (D̃,R) is com-

puted by applying the AND operation (in accordance with
Definition 6) to hesitant fuzzy sets (Ã,K), (B̃,L), (C̃ ,M ) as
shown in Table 3.
Step 2: Calculate the optimal normal decision object.

K =
|R|∑
i=1

max{D(ri)}
ri

, ri ∈ R

Where

max{D̃(ri)}

= {hij|maxhij∈D̃(ri)(vj){scr(hij)}}, vj ∈ X

max{D̃(r1)}

= {h1j|maxh1j∈D̃(r1)(vj){scr(D̃(r1)(v1)), scr(D̃(r1)(v2)),

scr(D̃(r1)(v3)), scr(D̃(r1)(v4)), scr(D̃(r1)(v5))}}

= {h1j|maxh1j∈D̃(r1)(vj){scr({0.3, 0.4}), scr({0.2, 0.4}),

scr({0.4}), scr({0.2, 0.3}), scr({0.3, 0.4})}}

Since, according to the assumption of Xia and Xu [33]
and Definition 3, the lengths of all HFEs should be
the same for computing score function, in Table 3,
we make the lengths of all HFEs equal to 3 through
the addition of the maximum value in each HFE,
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TABLE 4. The results of the decision algorithm (Example 4).

e.g., D̃(r1)(v1) = {0.3, 0.4}= {0.3, 0.4, 0.4}. Now, we have

max{D̃(r1)}

= {h1j|maxh1j∈D̃(r1)(vj){scr ({0.3, 0.4, 0.4}) ,

scr ({0.2, 0.4, 0.4}) , {scr ({0.4, 0.4, 0.4}) ,

scr ({0.2, 0.3, 0.3}) , scr ({0.3, 0.4, 0.4})}}

= {h1j|maxh1j∈D̃(r1)(vj)0.37, 0.33, 0.40, 0.27, 0.37}}

Since, in the expression above, the maximum score is 0.40,
which corresponds to D̃ (r1) (v3) , we have

i = 1,j = 3,h1j = h13, and max{D̃(r1)} = h13.

Hence, max{D̃(r1)} = h13 =D̃(r1)(v3) = {0.4}
Similarly, we have

max{(D̃(r2))} = {0.4, 0.5, 0.6},

max{(D̃(r3))} = {0.5, 0.6},

max{(D̃(r4))} = {0.4, 0.6, 0.8},

max{(D̃(r5))} = {0.5, 0.6, 0.7},

max{(D̃(r6))} = {0.5, 0.6},

max{(D̃(r7))} = {0.4, 0.5}.

Thus, we obtain the following optimal normal decision
object:

K =
{0.4}
r1
+
{0.4, 0.5, 0.6}

r2
+
{0.5, 0.6}

r3
+
{0.4, 0.6, 0.8}

r4

+
{0.5, 0.6, 0.7}

r5
+
{0.5, 0.6}

r6
+
{0.4, 0.5}

r7

Step 3: In this step, soft hesitant fuzzy upper approximation
D (K) and soft hesitant fuzzy lower approximation D (K) of
optimal normal decision objectKwith respect to

(
X ,Q, D̃−1

)
are computed, as shown in Table 4.
Step 4: Score functions scr(D(K)(vi)) and scr(D(K)(vi)) of

values D (K) (vi) and D (K) (vi) are then calculated, respec-
tively, in accordance with Definition 3. For calculation, we
make the lengths of all HFEs the same in Table 3. Then
choice value σi is defined by adding scr(D(K)(vi)) and
scr(D(K)(vi)), as shown in Table 4.

As shown in Table 4, service v2 has the highest choice
value. Therefore, the composite service maker will select it
as the optimal service. It can also be observed since D−1 is
an arbitrary relation; therefore, according to Theorem 3 and
Definition 11, the condition D(K) ⊆ D(K) does not hold
in Table 4.

TABLE 5. Illustration of induced fuzzy soft set 1D̃ = (T̃,R) in table
format (Example 4).

TABLE 6. Illustration of mid-level soft set M(1D̃ : md́1D̃
) in table format

(Example 4).

TABLE 7. Illustration of top-level soft set T (1D̃ : t ṕ1D̃
) in table format

(Example 4).

C. COMPARISON WITH THE EXISTING SOLUTION FOR
MULTI-CRITERIA DECISION MAKING BASED ON HESITANT
FUZZY
In this section, we validate the effectiveness of SHFRS
in multi-criteria decision making. For this, we compare
our method of decision making with the other existing
solution.

For comparison, Example 4 is solved with the help of
the hesitant fuzzy soft set-based algorithm proposed by
Wang et al. [23]. The Procedural steps of solution of Exam-
ple 4 by using the hesitant fuzzy soft set-based algorithm are
as follows:
Step 1: Since Wang et al. [23] did not discuss the problem

of multi-observer hesitant fuzzy information, we consider the
hesitant fuzzy soft set (D̃,R) shown in Table 3 to be an input
hesitant fuzzy soft set.
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TABLE 8. A Comparative study of solutions for multi-criteria decision making based on hesitant fuzzy.

Step 2: The induced fuzzy soft set 1D̃ = (T̃,R) is com-
puted as shown in Table 5.
Step 3: Input a threshold fuzzy set. Here, the threshold

fuzzy set is chosen by applying the middle-level decision rule
to 1D̃ =

(
T̃,R

)
. That is,

md́1D̃
= {(r1, 0.35) , (r2, 0.394) , (r3, 0.416) ,

(r4, 0.406) , (r5, 0.472) , (r6, 0.40) , (r7, 0.386)}.

Step 4: For ḿd1D̃
, the mid-level soft set M (1D̃ : md́1D̃

)
is computed as shown in Table 6.
Step 5: In Table 6, the choice value σi of each service vi ∈ X

is computed.
Step 6: The security service with the highest choice value

is chosen as optimal security service. Nonetheless, it can be
easily seen in Table 6 that there are multiple security services
(v2, v3, v4, v5) for which the choice value is 4. Therefore, it
is difficult to decide which security service is the optimal
security service in universeX . As described in algorithm [23],
however, in the case of similar highest choice value σi for two
or more objects, any one of them can be randomly selected as

the optimal decision object. Therefore, we select v2 as
optimal security service.

Let us consider Step 3 again and input another threshold
fuzzy set. This time, the threshold fuzzy set is chosen by
applying the top-level decision rule to 1D̃ =

(
T̃,R

)
. That

is,

t ṕ1D̃
= {(r1, 0.40) , (r2, 0.50) , (r3, 0.57) , (r4, 0.60) ,

(r5, 0.60) , (r6, 0.57) , (r7, 0.47)}.

For ṕ1D̃
, the top-level soft set T (1D̃ : t ṕ1D̃

) is computed
as shown in Table 7. It can be easily seen in Table 7 that only
one security service, v4, has highest choice value. Therefore,
it is selected as the optimal security service.

From the procedure above, two results are obtained: one
is v2 (in the case of mid-level soft set), and the other is

v4 (in the case of top-level soft set). It shows that there is
ambiguity in the decision results, and it cannot be decided
whether object v2 or object v4 is optimal. We can easily
conclude that the final result of the algorithm proposed by
Wang et al. [23] is not unique and dependent on the threshold
fuzzy set to a certain extent. Note, however, that our proposed
solution to the multi-criteria decision making problem does
not depend on any input threshold fuzzy set. Therefore, the
final result of our solution is unique or free from ambiguity.
A brief comparison of the proposed solution with the solution
proposed by Wang et al. [23] is shown in Table 8.

V. CONCLUSION
In this paper, we studied the hesitant fuzzy set to solve the
multi-criteria decision making problem of optimal security
service selection for FMEC. This study has made three new
contributions in the area of hesitant fuzzy theory and FMEC.
First, we proposed an innovative extension of the hesitant
fuzzy rough set theory by fusing it with the hesitant fuzzy
soft set, which is known as SHFRS. Second, we introduced
a novel solution to multi-criteria decision making problems
based on our proposed SHFRS. Finally, the problem of select-
ing optimal security services for FMEC is solved by using
SHFRS based multi-criteria decision making. A practical
example of optimal security service selection for FMEC was
given, showing the validity of the proposed SHFRS and
its application to multi-criteria decision making problems.
Our findings suggest that the proposed SHFRS-based multi-
criteria decision making solutions can be used in FMEC as
a selection module that selects the optimal security services
among several available security services, and it can effi-
ciently handle dynamically varying security services with the
mobile user’s requirements.
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