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ABSTRACT Themodel of a stochastic production/inventory system that is subject to deterioration failures is
developed and examined in this paper. Customer interarrival times are assumed to be random and backorders
are allowed. The system experiences a number of deterioration stages before it ultimately fails and is rendered
inoperable. Repair and maintenance activities restore the system to its initial and previous deterioration
state, respectively. The duration of both repair and maintenance is assumed to be stochastic. We address the
problem of minimizing the expected sum of two conflicting objective functions: the average inventory level
and the average number of backorders. The solution to this problem consists of finding the optimal tradeoff
between maintaining a high service level and carrying as low inventory as possible. The primary goal of
this research is to obtain optimal or near-optimal joint production/maintenance control policies, by means
of a novel reinforcement learning-based approach. Furthermore, we examine parametric production and
maintenance policies that are often used in practical situations, namely, Kanban, (s, S), threshold-type
condition based maintenance and periodic maintenance. The proposed approach is compared with the
parametric policies in an extensive series of simulation experiments and it is found to clearly outperform
them in all cases. Based on the numerical results obtained by the experiments, the behavior of the parametric
policies as well as the structure of the control policies derived by the Reinforcement Learning-based approach
is investigated.

INDEX TERMS Inventory control, preventive maintenance, reinforcement learning, intelligent
manufacturing systems.

I. INTRODUCTION
Over the past few years, advances in Information Technol-
ogy (IT) have transformed production operations in modern
plants. For example, the emergence of Radio Frequency Iden-
tification (RFID) technology, and the subsequent develop-
ment of Internet of Things, has enabled the accurate tracking
of inventory levels within a production system at any given
time. Moreover, the deterioration level of manufacturing
equipment can be effectively and continuously monitored by
means of computerized systems.

Nevertheless, in many practical situations, the produc-
tion and maintenance planning functions are still largely
ad hoc. Typically, a maintenance plan is devised and then
taken as granted, without taking into consideration possible

interactions with production scheduling decisions. On the
other hand, production operations are often controlled using
simple heuristics, based on the experience and know-how of
scheduling specialists and manufacturing engineers.

The primary goal of this research is to obtain optimal or
near-optimal, integrated maintenance and production con-
trol policies for deteriorating, stochastic production/inventory
systems. To this end, Reinforcement Learning (RL) meth-
ods are used, along with discrete-event simulation. More
specifically, the proposed approach consists of interfacing
RL-based, decision-making agents with simulation models
of the investigated production/inventory systems. A simula-
tion model generates sample paths of the system dynamic
evolution. The decision-making agent interacts with the
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simulation model by observing the current system state and
selecting some admissible control action. Subsequently, the
decision-making agent is presented with the outcome of its
action, i.e. the new state in which the system has transited
to and a numerical value that represents the relative merit of
making the aforementioned selection. This cycle is repeated
sufficiently many times and through this learning process,
the agent determines the best control action for each system
state, i.e. the optimal control policy.

The secondary goal of this research is to study promi-
nent parametric production and maintenance policies that are
often used in practice. We examine the most well known
pull type and push type production policies, namely Kanban
and (s, S). The origins of the Kanban policy can be found
in the Toyota automotive industries of the early 70’s and this
control mechanism is currently being used in modern plants
worldwide. The (s, S) policy has also received considerable
attention in the relevant scientific literature over the years.
In respect to parametric maintenance policies, condition-
based maintenance and periodic maintenance is investigated.
According to a periodic maintenance policy, the production
facility is maintained at fixed time intervals, whereas a con-
dition based maintenance policy makes maintain/no maintain
decisions based on the current deterioration level of the pro-
duction equipment. Both approaches are often used in many
practical situations.

The proposed joint maintenance and production con-
trol approach is compared to the parametric policies in an
extended series of meticulously conducted simulation exper-
iments. The most important aspects of this research can be
summarized in the following points:
• the model of a stochastic, production/inventory system
with deterioration failures and minimal mainte-
nance/repair actions is introduced and the relevant
production/maintenance optimization problem is formu-
lated. The proposed model extends previously published
work in this field and it has not been examined in the
relevant literature up to now, to the authors’ knowledge.

• a novel approach for deriving optimal or near-optimal,
joint maintenance and production control policies is
proposed. The proposed approach is based on Rein-
forcement Learning and the detailed description of its
development is provided in this paper.

• parametric production and maintenance policies, that
are often encountered in practical situations, are investi-
gated. The performance of the parametric control polices
is compared to that of the proposed approach in an
extensive series of simulation experiments.

The remainder of this paper is structured as follows. A syn-
opsis of relevant publications is presented in section II. The
system description and the related optimization problem are
given in section III. The parametric production and mainte-
nance policies that are examined in this research are described
in section IV. The detailed implementation of the proposed
RL-based approach is given in section V. The results from the
simulation experiments are presented and commented upon

in section VI. The paper is concluded with section VII, where
some directions for future research are also outlined.

II. RELATED WORK
In recent years, there has been a surge in the literature
regarding combined production and maintenance problems.
Published papers that fall within this category vary sig-
nificantly in numerous aspects, including: the descrip-
tion/assumptions of the investigated system, the optimization
problem formulation and the solution approach. In the follow-
ing paragraph, an overview of the most recent and prominent
papers is presented.

Single-machine systems are examined in [1]–[6], whereas
flow lines, i.e. systems which consist of several machines in
series that are separated by buffers, are studied in [7] and [8].
Hajej et al. [9] investigate a rather singular system, in the
sense that it comprises of a manufacturing facility coupled
with an output buffer and an additional inventory location.
Finished goods are stored in the output buffer and then
transported to the inventory location so as to be deliv-
ered to customers. The production systems examined in
the existing literature either manufacture multiple product
types ([2] and [6]) or a single product type ([5], [10], [11]).
Typically, the deterioration state of the production facility is
considered to be known at all times to the decision-maker.
Nevertheless, there are some publications (e.g. [1] and [5])
where the deterioration state is determined by means of
periodic inspections, whereas He et al. [12] consider peri-
odic as well as imperfect inspections. In the majority of
published works, the assumption is made that a deterio-
rated system has the ability to produce, normally at a lower
service rate, end-items of acceptable quality before it ulti-
mately fails. However, in [3], [4], [11], and [13] imperfect
production quality is considered, i.e. system deterioration
leads to a fraction of the manufactured items to be non-
conforming in terms of quality. Maintenance activities can
be either minor or major ([1], [14]). A major maintenance
restores the system to the good-as-new state whereas a minor
maintenance merely decreases the deterioration level of the
production system. Typically, time or monetary costs are
associated with maintenance activities but in [10] and [15]
the provisioning of the necessary spare parts is also taken
into consideration. Existing publications on joint production
and maintenance control can be categorized in respect to
whether the relevant decisions are made over an infinite or a
finite horizon ([3], [9], [10], [16]). In establishing the opti-
mal production/maintenance policy or program, production,
inventory, backorder, and maintenance costs, among others,
are typically considered. The modeling/solution approaches
are also quite disparate and span from mixed-integer ([6])
and linear-quadratic programming ([10]), to Reinforcement
Learning ([8]) and Dynamic Programming ([3]).

This paper primarily extends the work of [17]–[21].
Xanthopoulos et al. [17] develop the continuous time
Markov chain model of a single-machine Kanban system
that experiences a number of deterioration levels until it
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ultimately fails. The deterioration of the system is deter-
mined by periodic inspections and maintenance decisions are
based on a threshold type policy. Mathematical expressions
of several performance metrics are derived and two related
mixed integer optimization problems are solved, by means of
an augmented Langrangian genetic algorithm. Yao et al. [18]
study a discrete time production system in the presence of
time-dependent failures, corrective/preventive maintenance
and constant demand. Joint production and maintenance
policies are derived by means of Markov decision process
modeling and the structural properties of the optimal pol-
icy are investigated. Chen and Trivedi [19] study a con-
tinuous time Markovian model of a deteriorating machine
with stochastic processing, failure, inspection, maintenance
and repair times. Minimal and major maintenance decisions
are made on the basis of a double threshold policy. Closed
form analytical expressions of availability and mean-time-
to-fail metrics are derived. Das and Sarkar [20] examine an
unreliable, stochastic production/inventory system operating
under the (s, S) policy. They develop the relatedMarkov chain
model and derive expressions for the metrics of service level,
average inventory level and system productivity. Their goal
is to find the optimal maintenance policy in respect to an
objective function that consists of the following components:
additional revenue due to increased service level, savings
related to repair and maintenance costs per unit time. Iravani
and Duenyas [21] investigate a stochastic single machine
system that experiences a number of deterioration stages.
Preemption, as well as lost sales, is allowed. The problem
of obtaining joint production maintenance control policies
is modeled as a semi-Markov decision process. The optimal
policy, in respect to minimizing inventory, repair and lost
sales costs, is derived by means of Dynamic Programming.

III. SYSTEM DESCRIPTION
The definition of the symbols used in Section III and III-A
are given in Table 1. The system consists of a manufacturing
facility coupled with a finished goods buffer. The facility
can produce a single type of end-items. Raw materials are
assumed to be continuously available. The manufacturing
facility can process one item at a time, while no preemption
is allowed, i.e. once the processing of an item has started,
it cannot be interrupted prior to its completion. The process-
ing times are exponentially distributed with a mean value
of 1/λp. A completed item is stored in the finished goods
buffer, provided that there are no backorders at that time. The
capacity of the finished goods buffer is Imax . Consequently,
the manufacturing facility is idling if there are Imax items in
the buffer.

Customer demand is random and the time interval between
two successive demand arrivals is considered to be expo-
nentially distributed with a mean value of 1/λa. All demand
quantities are assumed to be constant and equal to one unit of
the produced end item. If there is available inventory at the
time of a demand arrival, then the demand is satisfied instan-
taneously. On the contrary, if there is no inventory available,

TABLE 1. Definition of symbols pertaining to system description and
problem formulation (section iii).

then the customer demand is backordered. The discipline
of the backorders queue is FCFS (first-come-first-served).
As soon as an end item is produced, the first customer in the
backorders queue receives the item and exits the system. The
maximum allowed length of the backorders queue is Bmax .
If there are Bmax pending demands and a new demand arrives
at the system, then this demand is discarded (lost sales).

The manufacturing facility is subjected to deterioration
failures (soft failures). A deterioration failure can take place
only when the facility is processing an item, i.e. not when it
is idling or under maintenance/repair. The state of the facility,
regarding its deterioration level, is described by d stages. The
facility is considered to be in deterioration stage 0 if it is in
an ‘‘as-good-as-new’’ state. The occurrence of a deterioration
failure in stage i (where i < d) causes the system to transit
to the next deterioration stage (i + 1). The manufacturing
facility has the ability to operate as long as it is in deterioration
stage 0, 1, . . . , d . If the manufacturing system experiences a
deterioration failure in stage d, it breaks down (hard failure)
and repair actions are initiated. Repair renders the facility
as-good-as-new (deterioration stage 0) and its duration is
considered to be an exponential random variable with a mean
value of 1/µr . The times between successive deterioration
failures are also exponentially distributed. The failure rate in
stage i is λf ,i, where i = 0, 1, . . . , d , and it is reasonable
to assume that λf ,0 < λf ,1 < . . . . < λf ,d , i.e. the more
deteriorated the facility is, the more frequently failures occur.

Hard failures can be prevented by carrying out mainte-
nance actions. In this paper, we consider minimal mainte-
nance actions, i.e. maintaining the facility in deterioration
state i (where 0 < i ≤ d) causes it to transit to stage i − 1
(as-bad-as-before). It is noted that, in the case of a hard
failure, repair is the only available option and no mainte-
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nance can be carried out. Maintenance times are exponen-
tially distributed and the mean time to maintain in stage i
is 1/µm,i, where i = 1, 2, . . . , d . The reasonable assumption
that µm,1 > µm,2 > . . . . > µm,d is made, that is, the
more deteriorated the system is, the more time is needed to
maintain it.

A. PROBLEM FORMULATION
In the context of the system described in section III, the fol-
lowing optimization problem is addressed in this paper, which
is both computationally challenging and also important from
a managerial point of view:

minE
{
I (x, ω)+ B (x, ω)

}
(1)

In equation (1), E {·} is the expected value operator, I is the
mean inventory level, B is the mean length of the backorders
queue, x is a vector of input parameters, e.g. arrival rate,
processing rate, failure rate etc., and ω is a realization of the
relevant random variables (i.e. inter-arrival times, processing
times etc.). The expected values of I and B, for a given set of
input parameters, are obtained by means of simulation exper-
iments. The mean inventory and mean number of backorders
computed in a single replication of the simulation model is:

I =
1
T

∫ T

0
I (t)dt (2)

B =
1
T

∫ T

0
B(t)dt (3)

where T is the length of the simulation replication, and
I (t)/B(t) is the inventory level/number of backorders at sim-
ulated time t .
The mean number of backorders reflects the customer

service level and excessive finished goods inventories are
typically regarded as a waste of resources, so these two
metrics should be minimized. Nevertheless, inventory offers
protection against unexpected fluctuations of the demand and
production process. Therefore, the objectives of minimizing
I and B are conflicting and, consequently, the aim is to find
a good trade-off between them. Ideally, the manufacturing
system should be controlled in a way that facilitates a high
service level, while carrying as low inventory as possible.

The purpose of this research is to study parametric joint
production – maintenance control policies as well as to derive
optimal or near – optimal policies, in respect to the problem
defined in equation (1).

IV. PARAMETRIC PRODUCTION AND
MAINTENANCE POLICIES
In sections IV.A – IV.D, a description of some important para-
metric production control and maintenance policies, which
were investigated in the context of this research, is given.
These policies do not come with optimality guarantees; nev-
ertheless, they are often used in practical situations. This is
because they are easy to implement and they are characterized
by a few parameters which can be fine-tuned, in order to yield
satisfactory results in complex environments.

TABLE 2. Definition of symbols pertaining to parametric production and
maintenance policies (section v).

Maintenance policies can be largely categorized as condi-
tion based or periodic. According to a periodic maintenance
policy, the production equipment is maintained at fixed time
intervals, regardless of its actual deterioration level. On the
other hand, a condition based maintenance policy makes the
relevant decisions solely on the basis of the current deteriora-
tion stage of the manufacturing facility.

Production control policies mostly fall within two broad
categories: push type and pull type. In amanufacturing system
that operates under a pull type control policy, production
decisions are driven by actual occurrences of demand. On the
contrary, according to a push type policy, the inventory is
replenished up to a target level, without having specific cus-
tomer requests.

A. CONDITION BASED MAINTENANCE
In condition based maintenance, only the deterioration state
of the manufacturing facility determines the action that will
be performed. Typically, a threshold deterioration level is
defined, and the manufacturing facility is maintained once
this threshold is reached. In this paper, a parametric main-
tenance policy is examined, that is completely characterized
by parameter b, i.e. the deterioration threshold:
IF current deterioration stage = i AND d ≥ i ≥ b

carry out minimal maintenance
ELSE

do nothing
END IF

B. PERIODIC MAINTENANCE
In the periodic maintenance framework, the time intervals
between successive maintenance epochs are of equal, fixed
length. The parameter, which characterizes a time-driven
maintenance policy, is the size TBM of these intervals (refer
to Table 2). If tm =

{
tm1 , t

m
2 , t

m
3 ....

}
is the sequence of time-

points whereminimal maintenance occurs, then this sequence
can be calculated according to:

tm1 = TBM

tmi+1 = tmi + TBM (4)
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In every maintenance cycle, the manufacturing facility is
restored to the as-bad-as-before state, regardless of its current
deterioration level.

C. KANBAN PRODUCTION CONTROL POLICY
Fig. 1 shows a Kanban system with a single manufacturing
facility; B is the backorders queue, I is the finished goods
inventory, MF symbolizes the manufacturing facility, D is a
queue that contains kanban cards (production authorizations)
and P is the raw materials buffer (assumed to be non-empty
at all times).

FIGURE 1. Kanban system with a single manufacturing facility and
backorders.

Initially, there areK > 0 end-items in the output buffer and
the manufacturing facility is idle. Each end-item has a kanban
card attached to it. Parameter K (the fixed number of kanban
cards) fully characterizes this control policy and corresponds
to the maximum number of end items allowed in the output
buffer. It follows that K = Imax (refer to section III).
When an end-item exits the output buffer, the associated

kanban card is detached from it and it is forwarded to the
manufacturing facility, in order to authorize the production of
a new item. Once the new item is manufactured, it is stored
in the output buffer, with its kanban card attached to it.

The information of a customer demand arrival is transmit-
ted to the manufacturing facility via the flow of the kanban
cards. This transmission is interrupted if the output buffer is
empty at the time when a customer demand arrives to the
system. Kanban cards are released to the manufacturing facil-
ity based solely on actual demand realizations, consequently
constituting the Kanban mechanism a pull type control
policy ([22]).

D. (s, S) PRODUCTION CONTROL POLICY
The (s, S) policy belongs to the family of push type methods,
as it controls production on the basis of a target inventory
level and not on actual customer demand arrivals ([23]). This
control policy is characterized by two parameters, namely s
and S (s < S), where S is the maximum allowed inventory of
finished goods, and thus Imax = S.
Themanufacturing facility is idling as long as the inventory

level is above s. At the time when the finished goods stock

FIGURE 2. Production cycle in a system operating under the (s, S) policy.

TABLE 3. Definition of symbols pertaining to reinforcement
learning-based approach (section v).

drops to s, the manufacturing facility is turned on and it is
authorized to produce until the inventory is replenished up
to S. At that time point, the state of the facility transits to idle
again and this production cycle is repeated perpetually (refer
to Fig. 2).

V. REINFORCEMENT LEARNING BASED JOINT
MAINTENANCE AND PRODUCTION CONTROL
In order to derive optimal or near-optimal integrated mainte-
nance and production control policies, Reinforcement Learn-
ing (RL) is employed. According to the RL paradigm,
a decision-making agent is placed within an environment
whose dynamics are initially unknown ([24], [25]).

The agent interacts at certain time points (decision epochs)
with its environment. The timing of the decision epochs is not
known beforehand and depends on the dynamic evolution of
the controlled system, i.e. the agent environment.

At a decision epoch, the agent receives a representation
of the environment’s current state and selects some action
from a set of admissible controls. At the next decision epoch,
the agent observes the result of its previous action selection,
i.e. the new state of the environment and a numerical reward
that quantifies the relative merit of making that decision.
This cycle is repeated and after a sufficient number of
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FIGURE 3. Interface between production system and decision-making
agent.

decision epochs, the agent identifies through the process of
trial-and-error the optimal control action in respect to some
performance metric for each state.

In this research, the agent environment is the produc-
tion/inventory system described in section III. The system
dynamic behavior is obtained by means of discrete-event
simulation ([26]). The goal of the agent is to mini-
mize the expected sum of the mean finished goods inventory
and the mean length of the backorders queue. In order to
obtain the optimal or near-optimal joint maintenance and pro-
duction control policies, the decision-making/learning agent
is interfaced with the production system simulation model.
The following elements need to be defined, in order to fully
describe the agent-environment interface:

1. the timing of the decision epochs
2. the state representation/state space of the controlled

system, as perceived by the agent
3. the agent admissible controls, i.e. a mapping from the

system state space to the agent’s action set
4. the rewards received by the agent and the associated

goal/objective function
5. the agent learning algorithm and Q– value table, where

the control policy computed by the agent is stored
6. the agent exploration strategy
The overall agent-environment interface is presented

graphically in fig. 3. In sections V.A-V.F, we elaborate on the
details of the implementation (the definition of the symbols
therein is given in Table 3).

A. DECISION EPOCHS
The agent selects the control actions only when the manu-
facturing facility is idling, that is, the agent does not inter-
fere with ongoing operations, e.g. it cannot interrupt the
processing of a part or some maintenance/repair activity.
Consequently, there are decision epochs at the following time
points:
• at a new customer demand arrival, provided that the
facility is idling at that time

• at the completion of an end-item. Note that, at that
time, the manufacturing facility’s state switches from
working to idle, and a produce/idle/maintain authoriza-
tion is expected by the controller

• at the completion of a minimal maintenance activity
• at the completion of a repair activity
There is only one exception to the above; the agent

does not make a decision at the time when produc-
tion/maintenance/repair is completed if the current inventory
level and the deterioration stage is Imax and 0, respectively.
In that case, the agent cannot authorize the production of
a new part or initiate minimal maintenance, thus a decision
epoch is redundant.

B. STATE REPRESENTATION AND STATE SPACE
In every decision epoch, the agent receives a representation of
the production system’s current state and selects an action on
that basis. The state of the system at time t , as it is perceived
by the agent, is defined to be the vector:

st =
(
s1,t , s2,t

)
= (I (t)− B(t), i(t)) (5)

where I (t) is the finished goods inventory, B(t) is the num-
ber of backorders, and i(t) is the deterioration state of the
facility at time t , respectively. The expression I (t) - B(t)
is often referred to as the inventory position of the system
and assumes integer values whereas the second component
of st takes on non-negative integer values. The complete state
space of the system can be written as:

S = {(s1, s2) | s1 = −Bmax,−Bmax + 1, ...., Imax,

s2 = 0, 1, ...., d} (6)

where Imax , Bmax , d is the maximum allowed inventory,
the maximum allowed number of backorders and the number
of deterioration stages, respectively (refer to section III for
details). Consequently, the number of alternative states that
the decision-making agent can find itself in is:

card(S) = (Imax + Bmax + 1)× (d + 1)− 1 (7)

since (s1, s2) = (Imax , 0) does not constitute a decision-
making state as explained in section V.A.

C. ADMISSIBLE ACTIONS
The agent can i) authorize the production of a new end-
item, ii) authorize a minimal maintenance of the manufac-
turing facility or, iii) authorize the facility to remain idle. The
admissible controls function A(s1, s2) defines a mapping from
system states to agent actions and determines which actions
are available to the agent for every state in S:

A (s1, s2) = {idle, produce},

s1 = −Bmax, ...., Imax − 1, s2 = 0 (8)

A (s1, s2) = {idle,maintain},

s1 = Imax, s2 = 1, 2, 3, ..., d (9)

A (s1, s2) = {idle, produce,maintain},

s1 = −Bmax, ...., Imax − 1, s2 = 1, 2, . . . , d (10)

Clearly, there is no point in maintaining the manufacturing
facility if it is as-good-as-new. Moreover, equation (9) shows
that the agent cannot authorize production if the maximum
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allowable inventory Imax has been reached. In all other cases,
the agent can select either one of the three available actions.

D. REWARDS AND GOAL OF THE
DECISION-MAKING AGENT
Let td =

{
td,1, td,2, td,3, ....

}
denote the sequence of time-

points, where the learning agent makes a decision. In decision
epoch td,i, the agent selects an action and in the next step
td,i+1, in part as a result of its selection, it receives a numerical
reward rtd,i+1 :

rtd,i+1 =
1

td,i+1 − td,i

td,i+1∫
td,i

(−I (t)− B(t)) dt (11)

where I (t) and B(t) is the inventory level and the number of
backorders at time t . Expression (9) is the negative of (mean
inventory level + mean number of backorders) in the time
interval [td,i, td,i+1] between two successive decision epochs.
The reward signal provides the agent with information regard-
ing the relative cost of selecting some action in a certain state.
Formally stated, the agent goal is to maximize the expected
average reward per decision epoch ρ:

ρ = lim
n→∞

1
n
E

{
n∑
i=1

rtd,i

}
(12)

Through this reward scheme, the objective of minimiz-
ing the expected sum of the mean inventory level, plus the
mean length of backorders (refer to section III), is conveyed
to the agent. The agent achieves this objective by learning
the gain-optimal policy π∗, i.e. a mapping from system
states to control actions that maximizes the average reward:
ρπ
∗

(s) > ρπ (s), ∀ policy π and ∀ state s.

E. LEARNING ALGORITHM AND Q-VALUE TABLE
The joint maintenance and production control policy com-
puted by the decision-making agent is stored in a Q-value
table. An entry Q(s, c) of this table is an estimate of Qπ (s, c)
which in turn is the ‘‘usefulness’’ of taking the control action
c while being in state s under policy π :

Qπ (s, c) =
∞∑
j=1

Eπ
{
rtd,i+j − ρ

π
|std,i = s, ctd,i = c

}
(13)

The informal term ‘‘usefulness’’ refers to the expected
sum of future rewards, adjusted by the average reward, when
following the policy π . In equation (11), rtd,i+j is the reward
received by the agent for its (i + j − 1) – th action selection
and ρπ is the average reward under policy π . Furthermore,
std,i and ctd,i denotes the state and the control action that is
selected by the agent at the i – th decision epoch.
The elements of the Q – value table are often referred

to as action values. Selecting the control action with the
highest action value (greedy action) in all states maximizes
the expected average reward, provided that the true action
values have been computed accurately.

Nonetheless, the true action values are not known ini-
tially, since the environment in which the agent is situated
is initially unknown. The agent interacts with its environ-
ment and updates the action value estimates so as to even-
tually obtain the actual values of the Q-value table elements.
In order to select the most appropriate learning algorithm for
the problem addressed in this paper, the authors conducted
pilot experiments using standardmodel-freemethods namely,
Schwartz’s R-learning ([27]), variants of R-learning ([28])
and R-smart ([29]). The R-learning algorithm exhibited the
best performance and was ultimately selected. According to
the R-learning algorithm, the action value and average reward
estimates are updated as follows (the subscripts that indicate
time have been dropped for simplicity):

Q (s, c) ← Q (s, c)+ a
(
r − ρ + Q

(
s′, c′

)
− Q (s, c)

)
(14)

ρ ← ρ + β
(
r − ρ + Q

(
s′, c′

)
− Q (s, c)

)
(15)

where← is the assignment operator, s and c is the state and
the selected action in the current decision epoch, s′ and r is
the state and the received reward in the next decision epoch,
ρ is the average reward, c′ is the greedy action for state s′

and finally, a and β are real-valued parameters. The average
reward update in R-learning takes place only when the agent
selects the action with the highest action value, whereas the
Q-value update occurs in all decision epochs.

F. EXPLORATION STRATEGY
In order to obtain accurate Q-value estimates, the agent must
try all admissible actions, in the system states that it ‘‘visits’’,
sufficiently many times. The e-greedy technique is used in
order to explore the state-action space effectively. According
to the e-greedy exploration strategy, in a decision epoch td,i:
• with probability 1 – e, the agent selects the greedy action

or
• with probability e, some action is selected randomly:
Pr
(
ctd,i = c

)
= 1/card

(
A
(
std,i

))
where e is a real-valued parameter in the range (0, 1).

Clearly, the higher the value of e is, the more often the agent
will make exploratory moves.

VI. COMPUTATIONAL EXPERIMENTS
The behavior of the alternative parametric maintenance and
production control policies, as well as that of the Reinforce-
ment Learning based approach, was studied in seven simula-
tion cases. All simulation cases share the following subset of
input parameters: maximum allowed inventory Imax = 10,
maximum allowed number of backorders Bmax = 10 and
number of deterioration stages d = 6. The remaining param-
eters that characterize the alternative simulation cases are
summarized in table 4.

In simulation cases 1 – 7, the effect of varying the lev-
els of the most important simulation parameters are exam-
ined, that is: i) the arrival rate, ii) the deterioration failure
rate, iii) the mean duration of minimal maintenance, and
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TABLE 4. Parameters of simulation cases. The definitions of the symbols
are given in section iii.

iv) the mean duration of repair. Case 1 is the base simulation
case. In cases 2 and 3, the arrival rate is varied, while keeping
all other parameters fixed, in order to investigate the effect of
alternative average workload levels imposed on the produc-
tion system. It should be noted that workload levels aremostly
defined by the relative difference between the arrival rate and
the service rate, so there is no need to vary explicitly λp.
Cases 4 and 5 differ from the base case in respect to the fre-
quency of the deterioration failures occurrences. Simulation
cases 6 and 7 correspond to lengthier repair and maintenance
activities, respectively, as compared to the base case.

A. CONFIGURATION OF PARAMETRIC CONTROL
POLICIES AND RL-BASED APPROACH
The proposed approach for integrated production and main-
tenance control was compared to:
• the Kanban system with condition based maintenance
(Kanban - CBM)

• the Kanban system with periodic maintenance (Kanban
- PM)

• the (s, S) system with condition based maintenance
((s, S) - CBM)

• the (s, S) systemwith periodic maintenance ((s, S) - PM)
In the four aforementioned parametric control policies,

the maintenance component overrides the production control
component, similarly to what happens in many practical sit-
uations. For example, in a Kanban – PM system, if there is
a pending production authorization for an end – item at the
time when a minimal maintenance has been scheduled, then
the maintenance activity is given higher priority and precedes
the production operation.

In order to compare the alternative approaches on the
same basis, the best parameters for each simulation case and
maintenance/production control method need to be obtained.
The parameter levels that were probed for the purposes of this
simulation study are summarized in table 5.

Note that in all simulation cases, the maximum allowed
inventory is Imax = 10 and consequently, by definition of
the Kanban and (s, S) control policies, K = 10 and S = 10,
respectively. All feasible values of parameter b for the control
policies with condition based maintenance are considered,
since the number of deterioration stages d = 6 for all
simulation cases.

TABLE 5. Parameter space of alternative maintenance/production control
methods.

The search space for the remaining parameters reported
in table 5 was set by conducting pilot experiments and by
adhering to guidelines suggested in the relevant literature.
In table 5, 1/λa refers to the mean time between arrivals of
the respective simulation case. For example, in simulation
case 2 the search space for parameter TBM is 10, 20, 30,
. . . , 100. Finally, it is reiterated that the RL parameters are
the exploration probability e, and the R-learning parameters
a and β. From table 5 it can be seen that the total num-
ber of experiments that were conducted is: [6 (Kanban -
CBM) + 10 (Kanban - PM) + 36 ((s, S) - CBM) + 60
((s, S) - PM) + 27 (RL)] × 7 (simulation cases) = 973 sim-
ulation experiments/models.

B. PARAMETERS OF SIMULATION EXPERIMENTS
10 independent replications of each simulation model con-
figuration were executed, where each replication ran up to
the point where 4.5 million end-items were completed in the
manufacturing facility so as to assure that the system had
reached steady state. The output of each simulation model
configuration, i.e. average inventory and backorders level,
was averaged over all its replications.

The RL-based approach was evaluated off-line, i.e. for
each simulation case there was an additional training repli-
cation, whose duration also corresponded to the completion
of 4.5 million end-items, where the agent simply derived
a control policy and no statistics were monitored. In the
training replications, all elements of the Q- table were set to
0 initially and the exploration probability e (refer to section V
for details) was held constant throughout the simulation. The
RL-based control policy that was computed in the training
replication was then evaluated in 10 replications, similarly
to the alternative parametric maintenance and production
control policies.

In the evaluation phase, the decision-making agent does
not make explorative decisions (e = 0) nor updates its
action selection policy, in order to ensure a fair comparison
among the alternative approaches. Furthermore and on the
same grounds, the same random number streams, in repli-
cations with the same index, were used for all alternative
maintenance/production control approaches. The simulation
models, as well as the RL agent, were coded in standard C++
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and the experiments were carried out on a PC with 64-bit
Windows 7 OS, 3.4 GHz CPU and 4 GB RAM.

C. OVERVIEW OF EXPERIMENTAL RESULTS
In fig. 4, the performance of the alternative mainte-
nance/production control schemes is summarized.

FIGURE 4. Lowest total cost of alternative maintenance/production
control approaches.

The height of the bars corresponds to the lowest objec-
tive function value (refer to section III) attained by each
approach. The control policies computed by the RL-based
agent clearly outperform all parametric control policies in
all simulation cases. This indicates the potential of applying
Machine Learning methods to complex optimization prob-
lems from the field of industrial engineering. Moreover, it is
evident that ad hoc control policies are rather far from being
optimal in this setting. The RL-based agent selects control
actions by explicitly taking into account the synergy between
production and maintenance decisions and this highlights the
benefits of following an integrated maintenance/production
policy that has been computed, based on the feedback of the
controlled system.

Regarding the parametric policies, it is observed that the
(s, S) – CBM and (s, S) – PM systems outperform their pull
type counterparts, namely Kanban – CBM and Kanban –
PM in this series of experiments. No definitive conclusions
can be reached regarding the maintenance policy type, since
condition based maintenance seems to yield better results
in some cases and worse in others, compared to periodic
maintenance. The best parameters of the alternative main-
tenance/production control approaches are given in table 6.
The effect of the parameter values on the performance of the
various ad hoc control policies is detailed in the following
section VI.D.

D. ANALYSIS OF PARAMETRIC PRODUCTION
AND MAINTENANCE POLICIES
In this section, and based on the results obtained by the
simulation experiments, we discuss the properties of the cost

TABLE 6. Best parameters of alternative maintenance/production control
methods.

FIGURE 5. Expected cost for varying levels of b for the Kanban – CBM
policy.

function for the alternative parametric production/
maintenance control policies. Furthermore, the effect of the
respective control parameters (b, s, TBM) on the cost func-
tion is examined. It should be noted that, the total number
of conducted experiments pertaining to parametric policies
is 784. Therefore, in order to save space and to prevent
figures 5-8 from becoming cluttered, the analysis is limited
to an indicative subset of the experimental results. It is
underlined that this section is not meant to be an exhaustive
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FIGURE 6. Expected cost for varying levels of b and s, for the (s, S) – CBM
policy.

FIGURE 7. Expected cost for varying levels of TBM for the Kanban – PM
policy.

investigation of the various properties of the policies, because
this is beyond the scope of this paper. Nevertheless, useful
insights regarding the behavior of the examined parametric
production/maintenance policies can be gained from the
analysis of this section.

Fig. 5 shows the cost curves in respect to parameter b of the
Kanban – CBM policy for simulation cases 2, 3, and 4. It can
be seen that the objective function is convex in respect to b
and that the positioning of the function curve in the 2D plane,
as well as the location of the unique minimum, depends on
the simulation case.

It is reiterated that b is the deterioration threshold for con-
ducting minimal maintenance of the manufacturing facility
and that the mean duration of maintenance activities rises
with the deterioration level. Therefore, a relatively small b

FIGURE 8. Expected cost for varying levels of TBM and s for the
(s, S) – PM policy.

means that the production system is maintained frequently
for rather short periods. On the other hand, a relatively high b
leads to less frequent but lengthier maintenance activities.
Maintenance prevents hard failures and so, by increasing the
availability and throughput of the system, the mean length
of backorders is decreased. However, during maintenance
production is ceased and therefore a manufacturing facility
down-time is also incurred. The optimal value for b is the one
that resolves the aforementioned trade-off effectively.

Fig. 6 shows the cost surfaces in respect to b and s param-
eters of the (s, S) – CBM policy for simulation cases 3 and 5.
Here, the cost is an increasing function of parameter s,
or equivalently, the minimum end-item inventory level tar-
geted by the (s, S) production control policy. The higher the
parameter s is, the more time the manufacturing facility is
in a working state, resulting in increased inventory levels and
holding costs. However, note that in cases 3 and 5, a relatively
moderate workload is imposed on the production system and
consequently, the holding cost component overshadows the
backorders cost component. On the other hand, in the heavy
workload simulation case 1, the emphasis is on minimizing
the mean length of the backorders queue, and consequently
the optimal value of parameter s is 5 (refer to table 6).
The optimal b for cases 3 and 5 is found to be 3 and 1,

respectively. This can be attributed to the fact that the dete-
rioration failure rate is lower in case 5, as compared to that
of case 3, thus less frequent maintenance actions are needed.
This allows for parameter b to be set to the lowest possible
value, in order to keep the average duration of the mainte-
nance activities, along with the resulting down time, at low
levels.

Fig. 7 shows the cost curves in respect to parameter TBM
of the Kanban – PM policy for simulation cases 1 – 3. It is
observed that the cost is an increasing function of TBM in
cases 1, 2 and a decreasing function of TBM in simulation
case 3.
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In all three cases, the cost function tends to level after some
point. It should be noted that the demand arrival rate decreases
from case 1 to case 3 (refer to table 4). Therefore, in e.g.
case 1, there is a relatively high arrival rate, and since Kanban
is a pull type policy, the manufacturing facility is frequently
authorized to produce. Consequently, the production system
spends a large fraction of time in the working state and
deteriorates relatively quickly. As a result, frequent periodic
maintenance is needed to prevent hard failures or lengthy
minimal maintenance activities, due to increased deteriora-
tion levels. This explains the shape of the cost curve for
simulation case 1 and similar arguments can be also made
for case 2. On the contrary, in simulation case 3 the arrival
rate is relatively low and so, the actual manufacturing facility
deterioration rate is also low. It follows that the time between
successive maintenance activities should be sufficiently high,
in order to avoid unnecessary down time of themanufacturing
facility due to maintenance.

Fig. 8 shows the cost surfaces in respect to TBM and
s parameters of the (s, S) – PM policy for simulation
cases 4 and 7. Note that in case 4, the deterioration failure
rate and the minimal maintenance rate is lower and higher,
respectively, in relation to simulation case 7.

This is the reason why the expected cost is generally higher
in case 7, as compared to that of case 4. In case 7, the mean
duration of minimal maintenance, especially in high dete-
rioration stages, is rather comparable to the mean duration
of repair. Furthermore, minimal maintenance restores the
system to the as-bad-as-before state, whereas repair restores
the system to the as-good-as-new state. As a result, in this
case it might be preferable to occasionally let the system
experience a hard failure, rather than subject it frequently
to maintenance activities, and this explains the best value of
TBM for this simulation case. On the other hand, the best
value of parameter TBM for case 4 resolves the trade-off
between keeping the deterioration of the facility low and
not incurring high down times due to maintenance activities.
The cost is an increasing function of parameter s in both
case 4 and 7, and the rationale for that is similar to the related
analysis of the (s, S) – CBM policy for cases 3 and 5 in a
previous point of this section.

E. ANALYSIS OF RL-BASED JOINT
PRODUCTION/MAINTENANCE CONTROL POLICIES
In this section, some remarks are made on indicative inte-
grated production/maintenance control policies, derived by
the RL-based decision-making agent. Note that in all simu-
lation cases of this research, Imax = Bmax = 10, d = 6
and consequently, the Q-value table of the agent consists
of 146 states, as shown in equation (7). By taking into account
the admissible controls function (section V), it can be easily
inferred that the Q – value table contains 20 (states) × 2
(available actions)+ 6 (states)× 2 (available actions)+ 120
(states) × 3 (available actions) = 412 action values.

The control policies computed by the decision-making
agent are rather complex and largely differ from one

FIGURE 9. Control policies obtained by the decision-making agent in
case 3 (on the left) and in case 1 (on the right).

simulation case to another. Nonetheless, some general fea-
tures of the policies seem to uphold across some simulation
cases. In order to provide a qualitative interpretation of the
RL-based control policies, an indicative depiction is shown
for the ones pertaining to simulation cases 1 and 3 in fig. 9.

In fig. 9, areas marked with ‘‘N/A’’ correspond to states not
visited by the decision-making agent during the training repli-
cation and consequently, the related elements of the Q-table
are fixed to their initial, arbitrarily selected, values. Note that
in Reinforcement Learning, for a Q-value to be updated, the
state pertaining to it must be visited during the simulation
execution. This is a favorable trait of RL, because action
values are updated only for situations that are actually likely
to occur, thus reducing the computational overhead. It is
not known beforehand which states are going to be visited,
because state transitions depend on the policy followed by
the agent, which in turn is dynamically updated during the
learning process.

It is observed that the RL-based joint production/
maintenance policies for cases 1 and 3 are complex and that
they cannot be easily characterized by monotone switching
curves. This can be primarily attributed to the complexity of
the underlying optimization problem. Nonetheless, it is noted
that these control policies are approximations of the respec-
tive optimal policies, because they are constructed on the
basis of sample paths of the production system dynamic evo-
lution generated by discrete-event simulation. Consequently,
some degree of statistical error is incorporated in the compu-
tation of the respective Q-values and might also be reflected
into the derived policies.

Simulation cases 1 and 3 differ only in terms of the arrival
rate. In case 1 and 3 the production system is under rela-
tively heavy and moderate workload, respectively. Therefore,
in broad terms, the decision-making agent opts to authorize
production in case 1 if the inventory position is under some
level, regardless of the manufacturing facility deterioration
stage, in order to meet the rapidly incoming demand of end-
items. If the inventory position is over some level, the agent
chooses to either maintain the facility or stop production
to avoid the build-up of excessive inventory. In that case,
the agent authorizes minimal maintenance if the facility is
‘‘amply’’ but not ‘‘too’’ deteriorated. This policy can be
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interpreted as follows: when the manufacturing facility is
highly deteriorated, minimal maintenance is relatively pro-
longed and only restores the system to the as-bad-as-before
state, making it less preferable than repair, which renders
the system good-as-new. On the other hand, if the facility
deterioration is low, the chances of a hard failure are small
and maintenance is not advised, because of the incurred down
time.

The rationale of the control policy computed by the RL
agent in case 3 is somewhat similar to that of case 1, with
one major exception: the agent can authorize a minimal
maintenance even if there is backordered demand in the
production/inventory system. This is because the system is
under moderate workload in case 3 and so production can
easily keep up with incoming demand.Moreover, in this case,
prevention of hard failures compensates for the down time
incurred by minimal maintenance activities.

VII. CONCLUSIONS AND DIRECTIONS FOR
FUTURE RESEARCH
The problem of integrated production/maintenance control
for a deteriorating, stochastic production/inventory system
was investigated. A novel approach, based on Reinforcement
Learning, for deriving optimal or near-optimal policies was
proposed. The Reinforcement-Learning based approach was
compared to several ad hoc production and maintenance
policies that are widely being used in practice. These ad hoc
control policies were found to be suboptimal in all simulation
cases examined in this research. Their performance depends
largely on the values of the respective control parameters.
The application of Reinforcement Learning for solving this
complex industrial engineering problem yielded substantially
encouraging results. Furthermore, the results showcased the
merits of integrated production/maintenance policies that
explicitly account for interactions between maintenance and
production decisions.

This research can be extended by considering more com-
plex production system configurations, e.g. manufacturing
lines, and alternative objective functions. In the former case,
due to the significantly increased size of the state space
multi-agent system architectures might be mandated. Other
directions for future research include the application of
Reinforcement Learning for solving alternative industrial
engineering problems, for example integrated production and
quality control of manufacturing systems that produce imper-
fect end-items.
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