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ABSTRACT Many target detectors commonly utilize a single a priori target spectral signature as an input.
However, the detection results are greatly affected by the quality of the a priori target spectral signature
because the spectral variability phenomenon is universal and anisotropic in hyperspectral image data.
This paper proposes a sparse representation-based method to generate an optimized target spectrum from
limited target training samples, which is able to alleviate the impact of spectral variability on hyperspectral
target detection. When lacking comprehensive knowledge about the target object of interest, an optimized
representative target spectrum should be expected to be reconstructed by the hyperspectral data themselves in
a sparse representation manner following the characteristics of the data structure and then be generated by a
set of selected candidate pixels that contain the target signal with a varying status.With the optimized a priori
target signature, the experimental results of the detection of different characteristics of objects with three
different types of hyperspectral images confirm the effectiveness, robustness, and generality performance of
the proposed method.

INDEX TERMS Target detection, spectral variability, sparse representation.

I. INTRODUCTION
The spectral features in hyperspectral imagery (HSI) con-
tain a significant structure that, if fully exploited, could
enable more efficient data acquisition and improved data
analysis [1]. The band design differs from multispectral sen-
sors — not only in the way it continuously covers wider
wavelength ranges but also the diagnostic spectral curves
it provides by corresponding to each type of material. The
spectral imagingmodality of HSI that contains environmental
and geographical information can be adaptively utilized to
extract varied types of information that can be only obtained
by special design in multispectral sensors [2].

Exploiting HSI has been declared to be extremely chal-
lenging due to the particularly complicated remote sens-
ing environment [3]. One of the most widespread perceived
challenges on an image scene is that even so-called pure

pixels that are supposed to be composed of a single mate-
rial would have reflectance spectra that lie in a nonlinear
space or is manifold due to variations in illumination, view
angle, material heterogeneity, scattering from the local scene
geometry, and the presence of moisture [4], [5]. In actual
hyperspectral imaging scenes, pure pixels are impossible
to actually observe due to the material mixtures within a
pixel and scattering from adjacent areas due to its method of
collecting energetic signal. This problem causes barriers to
execution of many hyperspectral image processing tasks [6]
and is especially severe for a target detection task that distin-
guishes few target pixels from the overwhelming number of
background pixels [7].

Generally speaking, most state-of-the-art target detectors
rely on the quality of the a priori information about the targets,
but obtaining such information is difficult due to the noise
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signal [8], [9], the spectral variation, and the sub-pixel target
phenomenon [10]. Noise removal had been widely studied
and is not the main issue in this paper. Sub-pixel targets arise
from the fact that the ground sampling distance is usually
larger than the size of the targets of interest due to the lim-
itations of the spatial resolution of the hyperspectral imaging
sensors [11], [12]. The spectral variation phenomenon refers
to the reflectance spectrum of a certain desired material;
although this spectrum is supposed to be unique, multi-
ple factors can introduce spectral variability to a particular
material [13]. Some references had also reported that sub-
pixel targets can be considered another form of spectral vari-
ability [14]. Focusing on the spectral variation phenomenon
including the contribution piece of the sub-pixel caused, the
ideal circumstance is that detectors are successfully applied to
HSI target detection tasks based on the premise that the target
endmember can be accurately estimated and unmixed [15].
This means that a unique representative point in the high-
dimensional data space should be selected to account for
the pure signature of an interested target object. The actual
situations, however, that are most representative of an a priori
target spectrum can scarcely be found. Many factors may
be responsible for the variability of obtained target spec-
tra: un-compensated sensor errors, un-calibrated atmospheric
deviation, environmental effects, surface containment, and
adjacency effects, in which reflections from nearby objects
in the scene will deteriorate the uniqueness of the target
signature [16]–[18].

For most traditional detection tasks, a spectrum of inter-
ested target objects from an existing target spectral library is
an expedient choice. However, the gap between the spectrum
of a target in spectral library and one on the real scene
prevents the wide use of the spectral library [19]. When
lacking a usable spectral signature for a specific material,
direct selection from the hyperspectral image is the sole,
albeit inferior, choice to obtain the a priori target signature.
The advantage of image endmembers is that they can be
collected at the same scale as the image and are easier to
associate with image features [20]. However, this requires a
very strict and robust selection procedure to obtain relatively
high-quality information about the a priori information of
targets. All these discussed factors will greatly restrict the
quality of an a priori target signature that can be obtained,
consequently limiting the performance of target detectors.

To address the spectral variability problem, several
successful detectors had been developed by expand-
ing the dimensionality of the a priori target signature.
Orthogonal subspace projection (OSP) separates a space
composed of desired spectral signals from the undesired
spectra [21]. Matched subspace detectors (MSD) provided
invariant approaches for signal detection using hypothesis
tests based on linear subspacemixturemodels [22]. An invari-
ant material identification method based on the maximum
likelihood estimation had also been developed to address the
spectral variability through the use of a comprehensive physi-
cal model to capture the dependence of the reflected sunlight,

the reflected skylight, and path-radiance terms on the scene
geometry and on the distribution of atmospheric gases and
aerosols over a wide range of conditions [10]. A nonlinear
support vector data description (SVDD) method can char-
acterize the target class’s spectral variation from a single
pure target training sample with the Markov model [23].
These methods have been verified to effectively address
the spectral variability problem to some degree, but their
performances will still be affected by the quality and quantity
of the available set of training target pixels, which is rare
and precious in practical cases. Moreover, these methods
were obviously not appropriate for detectors that rely on
a single target spectrum, such as the Adaptive Coherence
Estimator (ACE) [24], Matched Filter (MF), Constrained
Energy Minimization (CEM) [21] and Adaptive Matched
Filter (AMF). For one of the most commonly used detectors,
ACE, using a single target spectrum or an average of the
candidate target spectra from the image was routine. Due
to the effect of the spectral variability, a highly qualified
single a priori target spectrum is badly needed in practical
cases for these detectors. To summarize, the current methods
of acquiring the a priori target spectrum are not sufficient
to obtain the optimum detection results. There is a clear
need for research on how to use available data and minimum
prior knowledge to optimize the crucial target signature from
limited or even a single target training sample to address the
spectral variation mentioned above and reduce the detection
error probability to the best possible outcome.

The spectrum optimization method had been rarely dis-
cussed in previous research because most studies have
focused on the design of detectors. It should be clearly noted
that if the provided training sample for target detectors is
inaccurate, the estimation bias of a given detector is unavoid-
able. Some researchers had already noticed this bottleneck for
HSI target detection and made some attempts toward obtain-
ing higher quality a priori target information. An automatic,
robust, iteratively reweighted spectrum generation method
for an unstructured detector had been proposed to produce
satisfactory detection performance from a random chosen
a priori target spectrum [25]. The method used all available
spectra regarding possible target candidates to adaptively
converge to an optimized a priori target signature. The com-
putational costs and convergence issues cannot be omitted as
it is an iterative algorithm and followed a common approach
to determine whether the material present in a given pixel
is spectral un-mixing. The vectors forming a convex hull
with the involved HSI data are called endmembers, which
presents unique spectral signatures of the various material
components in the scene. In the data processing society,
a number of methods had been proposed for determining
endmembers, including algorithms that selected endmem-
bers from the data based on a measure of pixel purity [26]
or the quality of the resulting convex cone [27], tools that
assisted in the manual selection of endmembers from the
data [28], algorithms that optimized endmembers for linear
filtering [29], methods based on finding convex cones using
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principal component analysis (PCA) decompositions [30],
iterative statistical methods that optimized the resulting con-
vex cone [31], and iterative measures to select optimal end-
member sets from larger potential sets [32]. However, these
algorithms basically assumed the existence of pure pixels in
the scene and consequently attempt to encompass the data
within a cone rather than directly represent the data varia-
tions. For the unusual event of a target detection task, in which
a scarce training sample could be obtained to describe the
statistical and distributional features of this certain class, none
of these methods attempt to directly exploit a good represen-
tation of the low-dimensional, non-linear spectral variations
inherent in the HSI data [1].

The signal processing community had recently employed
signal models based on the notion of sparsity to characterize
high-order statistical dependencies in data, which is accu-
rately suitable for HSI representation [33]. The sparsity-based
HSI representation models can be depicted as a pixel vector
expressed by a linear combination of just a few elements from
a given set of vector dictionaries, where the coefficients are
calculated to have as few non-zero elements as possible. This
can be considered as a way to search for the intrinsic dimen-
sionality of HSI as another version of a common approach
PCA (Principal Component Analysis). Contradictorily, PCA
assumes the Gaussianity of the data, which means its inca-
pability in capturing high-order and non-Gaussian statistics
is present in the HSI data [34]. Sparse coding models can
express a point in a high dimensional dataset with the lower
dimensional space of active coefficients. As the PCA calcu-
lates only a few principal components and uses essentially
all of them to represent each pixel, sparse coding models
typically employ a much larger dictionary but use unfixed
elements to represent each pixel. When considering in terms
of a probabilistic model, the sparsity constraint corresponds
to a non-Gaussian prior that enables the model to be more
flexible to capture higher order statistics in the data.

With the gradual high spatial resolution of HSI sensors,
the sparsity model had been reported to be especially rele-
vant for describing the structure of the data as the amount
of dominant materials being small in a vector, which coin-
cides with the case of high spatial resolution hyperspec-
tral data. Initial research using sparsity models for spectral
un-mixing has shown promising results, as stated in [35].
These sparse representation-based methods leverage the spe-
cific high-order statistics of the example dataset to find the
underlying low-dimensional structure that is most efficient at
representing the data [36], [37]. To effectively and generally
search for the most representative spectral feature of under-
detected materials from unknown data — because intrinsic
endmembers may be sparsely represented — when the a pri-
ori target signature is uncertain, part of the data points with
the higher likelihood of target candidates are expected to
probe and analyze following a sparse representation manner
for addressing the bottleneck of the HSI target detection.

The remainder of the manuscript is organized as follows.
Section II analyses the spectral variability phenomenon, and

the proposed sparse representation-based a priori target sig-
nature optimization algorithm is detailed. The experimental
design that considers performance improvement, practicabil-
ity, robustness and generality about the proposed algorithm
in three real hyperspectral datasets is presented in Section IV.
Finally, conclusions are drawn in Section V.

II. METHOD
A. SPECTRAL VARIABILITY
As discussed in the introduction, target detection algo-
rithms are usually applied in a single radiometrically cor-
rected hyperspectral image. Therefore, the spectral variability
caused by the sensor, atmosphere, and seasonal changes are
not considered in this manuscript. To summarize: the main
contribution to the spectral variability phenomenon in target
detection tasks lies in two facets: interior factors and exterior
factors.

Exterior factors incorporate all spectral changes created by
the surrounding materials and observation deviations caused
by topographical and surface roughness during the sensor
imaging process. It is easy to understand that different man-
made objects may have different degrees of surface rough-
ness, which will directly affect the reflectance intensity of the
electromagnetic waves. For hyperspectral images with either
high or low spatial resolution, spectral mixing is universal.
In low spatial resolution images, disparate materials jointly
occupy a single pixel such that the pixel is composed of
several individual spectra [38]. In this circumstance, when
the spectrum of the pixel is selected as the target signature,
it cannot accurately represent the characteristics of the target
material. The spectral variability caused by spectral mixing
is commonly resolved using a spectral un-mixing procedure.
Spectral mixing is inevitable, not only for low spatial res-
olution images, but even for high spatial resolution images
because mixed pixels can result when distinct materials are
combined together into an intimate mixture in the same
area. Furthermore, when multiple bounces are caused by
the intimate components or a rough surface, the spectral
variability ultimately presents a nonlinear characteristic [39].
As the mixing process can sometimes be quite complicated,
many algorithms have been developed to un-mix the hyper-
spectral data with different mixing assumptions, including
geometrical, statistical, and sparse regression based
approaches [40], [41]. As the target pixels are very rare in the
image, the endmembers extracted from the image may not
include the desired target, and, if included, the spectrum may
not satisfy the accuracy required for target detection [42].

Interior factors, also called intrinsic factors, are engendered
by the target materials themselves. The size of particles, the
texture of composites, and variation in the material such as
age-induced colour fading and uneven material components
will all lead to various spectral characteristics of one single
object. For example, it is common that materials are com-
posites, especially for artificial objects, where the uneven
proportions of different ingredients cause spectral variability.
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The difference caused by the aging of materials can also be a
problem,which leads tomaterial deteriorating and colour fad-
ing. Finally, the surface may be contaminated by an unknown
pollutant, such as paints in different colours or unexpected
animals, etc. Because these factors are hard to predict and
estimate in a model, few studies have addressed this problem
and offered efficient solutions.

FIGURE 1. Distribution of the spectral characteristics of target candidates.

Avisual map is utilized to describe how serious the spectral
variability will impede the successful detection of the candi-
date target pixels in a real hyperspectral image scene. A total
of 116 pixels of the target are selected from a hyperspectral
image cube, which will be introduced in the experiment
section. The digital number of values of three individual
bands of all the background pixels and the target pixels, which
are shown in blue filled dots and red crossmarks, respectively,
are shown in Figure 1. The diagram reflects the distribution
features of the spectral characteristics of the pixels in the
hyperspectral image scene, which, in most detectors, will be
treated as the only input feature. Due to the spectral variability
phenomenon, the scattered target pixels display a distribution
status of being non-identical and non-Gaussian.

The most representative point needs to be selected from
these red cross points to be treated as an a priori target
signature for detectors. Obviously, the distribution of target
candidates illustrates the difficulty in searching for a quali-
fied candidate when there is a lack of previous knowledge.
Furthermore, a simple demonstration of the bias of detection
performance caused by the a priori target spectrum is then
shown in Figure 2.

Four candidates that could be treated as the a priori tar-
get spectrum are carefully selected from the image, which
come from different sections of the target objects in differ-
ent illumination conditions. Figure 2 is a schematic plot of
how and how seriously a randomly selected a priori target

signature can impact the final detection performance by a
certain detector, ACE. It can be easily seen that the four
detection maps have obvious biases in the tendency to present
higher detection scores for the pixels that are in amore similar
condition or are much closer to the pre-selected a priori target
spectrum. This is especially dangerous when a hasty decision
has to be made when lacking prior knowledge of the target of
interests, as is the case in the last blue frame with the target
signature selected from location (89,11), which is even seem-
ingly a wise choice from the main body of the target object.
What this spectral variability problem has shown here is the
fact that detection performance is commonly not expected to
correspondingly reflect the desired similarities between the
target objects and a chosen representative target spectrum in
the scene.

B. THE SPARSITY-BASED A PRIORI TARGET SPECTRUM
OPTIMIZATION METHOD
Considering the complicated contributing factors of spectral
variability in target detection, it is not impossible to present
categorized solutions that are specialized for many reasons.
Methods of adequately exploiting the intrinsic connections of
the data point themselves and adaptively adjusting the bias of
a random input of the target signature remains a significant
challenge for the target detection task. This would not be
practical in actual cases as spectral variation reasons should
be analysed accurately in advance. In this paper, an algorithm
is designed to optimize the a priori target signature from a
spectral variability-suffered spectrum to consequently obtain
satisfactory and stable detection performance from differ-
ent target signatures with glaring discrepancies. Because the
detection results are seriously susceptible to the a priori target
signature, a practical, stable and general algorithm should
be proposed that fully considers the characteristics of the
hyperspectral data structure.

The basic assumption is that the various forms of target
candidates have already existed in different statuses on the
image scene, which is always true. Our work is to find the
different statuses of the targets and use them to optimize a
more representative a priori target signature. Each pixel of
the hyperspectral image is composed of only several types
of endmembers, and the sparsity model has been reported
to be especially relevant for describing the structure of the
data because the number of dominant materials is small in
a vector. This advantage could be leveraged when using the
sparse representationmodel to describe a given vector. All the
other descriptive vectors should wholly or partly cover some
extent of the status of the given vector. These vectors are all
related in a sparse space, where an elaborate combination of
the vectors is expected to better cover all the possible status of
the target object of interest. The spectral variability problem
should be alleviated, and better target detection performance
should be obtained.

Figure 3 depicts the whole workflow of the proposed
sparsity-based target spectra optimization method. From the
original HSI data and some specific targets of interest, such
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FIGURE 2. Bias of detection performance from different targets a priori.

as the airplane located on the upper right corner, a random
input of the target spectrum as a priori information is selected
for an initial detection. The intensity map shows the possi-
bilities that each pixel may contain the signal of an inter-
ested target. There are a certain number of pixels that have
greater possibilities than the others according to the random
input of the target spectrum, which is circled in black. These
candidate pixels are selected for construction of an over-
complete dictionary whose atoms are descriptive vectors that
wholly or partly cover the different status of the given target
signature. This dictionary is expected to sparsely represent
each potential target pixel vector. Fewer high score pixels are
thenmarked out, and for each of them, a coefficient vector can
be derived with the mentioned fixed sparse code dictionary.
The coefficient vectors are sparse vectors with a few nonzeros
and mostly zeros. The location of those that correspond to
the contributed pixels in the given target spectrum on the
scene and their emergence frequencies reflect their weights.
After the solutions of all the coefficient vectors are presented,
a vote procedure is adopted to determine the frequency of the
existence of these potential target pixels. Eventually, pixels
with top frequencies are chosen to re-construct the refined
a priori target spectrum, and the final detection result is then
given.

1) HYPERSPECTRAL TARGET DETECTOR
ACE is a benchmark detector that has been proved to be
effective with a single target spectrum [42]. Because there is
no single best detector [44], ACE is taken as an example of

the matched filter type detectors. Differing from the struc-
tured background model based detectors, the unstructured
background models do not need explicit a priori information
about the background, which makes the spectral variability
problem simplified here, only focusing on the target spectral
optimization. For a given hyperspectral pixel vector, when
the additive noise is included in the background matrix B,
the competing hypotheses between the target and non-target
pixel are:

H0 : x = b, b ∼ N (0, 0) Target absent

H1 : x = Sαt + b, Target present (1)

where the S matrices are the target signatures and αt is
the corresponding abundance contained in the target pixels.
If there is no target abundance in the pixel, it can be described
with b, which is modelled by a multivariate normal distribu-
tion with a zero mean and covariance matrix 0.

With the implication of the generalized likelihood ratio
approach, Kelly obtained the famous detector, known as
Kelly’s GLRT [24]:

DKGLRT (x) =
xT 0̃

−1
S ·
(
ST 0̃

−1
S
)−1
· ST 0̃

−1
x

N + xT 0̃
−1
x

(2)

where 0̃ represents the estimation of the covariance matrix
from the data and N is the number of the total pixels in the
image. If the value of pixel x is beyond a given threshold η,
it is assigned to the target class. However, in the hypotheses
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FIGURE 3. Flowchart of the sparsity-based target spectra generation method.

above, the covariance matrix of the background is the same
under the H0 and H1 hypotheses, which is not accurate in
most cases [22]. In other words, to be more accurate, the
background statistic of a pixel with or without the target
signal should be different. Thus, the background has the same
covariance structure but different variance, and this variance
is directly related to the fill factor of the target, i.e., the
percentage of the pixel area occupied by the target object.
Therefore, the competing hypotheses are more appropriately
written as

H0 : x = b, Target absent

H1 : x = Sαt + σb, Target present (3)

where x ∼ N(0, 0) under H0 and x ∼ N(Sα, σ 20) under H1.
The different variance is related to the percentage of tar-
get pixels in the image, considering the effect of the target
in proportion to the alteration of the covariance matrix of
the background, which is the impact of the parameter σ .
Kraut [45] developed the ACE detector. Here, the matrix S
contains the available a priori variability information about
the target, and 0̃ represents the estimated covariance matrix
from the data, which is usually calculated from the whole

image:

DACE (x) =
xT 0̃

−1
S ·
(
ST 0̃

−1
S
)−1
· ST 0̃

−1
x

xT 0̃
−1
x

. (4)

The ACE detector is taken as an exemplar algorithm to val-
idate the effectiveness of the optimizationmethod. The gener-
ality in the experiment section validating the ACE detector in
the workflow could be replaced by other benchmark detectors
because only detection scores from the detector is crucial for
the following steps.

2) SPARSE REPRESENTATION
The randomly chosen target signature s should then be
sparsely represented by pixels with high detection scores,
which will wholly or partly cover some extent of the status of
the given signature. In fact, the ideal a priori target signature
must lie in high dimensional space that is spanned by all
other statuses of the potential target pixels. The structure
of the mentioned spanned space is totally unknown due to
the discussed complicated factors, such as the imaging scene
and the attributes of the desired targets. Therefore, the space
could either be linearly or nonlinearly described, while the
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sparse representation shows good performance for the data
description when they are in an unknown manifold.

The substantial correlation among hyperspectral bands
and pixels determine the sparse characteristics of hyperspec-
tral data. This coincides with the sparsity-based techniques,
which have been proposed for many hyperspectral process-
ing fields such as classification, un-mixing, facial recogni-
tion, dimensionality reduction and target detection [46]–[50].
Studies in [51] for the first time explores both the statistics
and sparsity features to propose an integrated hybrid hypoth-
esis based sub-pixel detector, which proves more effective
than state-of-the-art sparsity detection methods. Given a pixel
s ∈ RN and a predefined fixed dictionary

{
φk
}
with φk ∈

RN for k ∈ [1, . . . ,M ], the goal of sparse coding is to
find a set of coefficients that represents each of the potential
target candidates using as few non-zero elements as possible.
More specifically, each previously chosen target pixel scan
be modelled to be situated in a dictionary that is made of the
union of all the potential candidate pixels:

s = 8α (5)

where8 can be spanned byMpixels existing in the image that
contains a target signal with a different degree and status and
whose rows are the measurement vectors. For DACE (xi) >
Tb, xi is recorded as one of the M pixels. M should be
determined by a detection score threshold, which is noted as
Tb. α = {α1, α2, . . . , αM} is the corresponding coefficient
of the M pixels involved, also known as the sparse vector.
From amathematical point of view, the goal is to minimize an
objective function that combines data fidelity and a sparsity-
inducing penalty. A common choice is to use a regularized
least-squares objective function, such as

Jγ
(
x, {αk} ,

{
φk
})
=

∥∥∥∥∥s−
M∑
k=1

φkαk

∥∥∥∥∥
2

2

+ γ

M∑
k=1

|αk | . (6)

With a mean-squared error as the data fidelity term, the
l1 norm (i.e., the sum of the coefficient magnitudes) as the
sparsity inducing penalty, and with γ as a scalar parameter
switching off between these two terms [52]. This optimiza-
tion is convex in the coefficients when the dictionary is fixed,
meaning that solving the simplified l0 optimization problem
stated in Equation (7) is:

α̂ = argmin ‖8α − s‖2 , s.t. ‖α‖0 ≤ δ0 (7)

where ‖·‖0 denotes the l0 norm, which is defined as
the number of nonzero entries in the vector, also known as the
sparsity level of the vector. δ0 is a given upper bound on the
sparsity level. A classic way to obtain a sparse representation
is through a greedy algorithm, the most famous of which is an
orthogonal matching pursuit (OMP) [53]. It has been proven
by [54] and [55] that under certain conditions, the OMP can
find the sparsest representation of the signal.

Followed by the sparse representation statement, to iden-
tify the ideal signal α, we need to determine which column
of 8 participates in the measurement vector s. The idea is

to pick columns in a greedy fashion. In each iteration, OMP
chooses the column of8 that is most strongly correlated with
the remaining part of s. The OMP subtracts its contribution to
s and iterates in the residual. One hopes that after p iterations,
the algorithm will have identified the correct set of columns.

The inputs of algorithm OMP include 1) an N ×M mea-
surement matrix 8 (the dictionary constructed by Tb); 2) an
N–dimensional data vector s; and 3) the sparsity level q of
the ideal signal. The expected output of the OMP includes
1) an estimate α̂ in Rd for the ideal signal (the location of
the contributed atoms); 2) a set 3m containing q elements
from {1, . . . , d}; 3) anN–dimensional approximation ŝp of the
data s; and 4) an N–dimensional residual rp = s− ŝp.
The procedure is described as follows.
1) Initialize the residual r0 = s, the index set 30 = 8,

and the iteration counter t = 1.
2) Find the index λt that solves the easy optimization

problem

λt = argmaxj=1,...,d
∣∣〈rt−1,ϕj〉∣∣ (8)

If the maximum occurs for multiple indices, break the
tie deterministically.

3) Augment the index set and the matrix of chosen atoms:

3t = 3t−1

⋃
{λt }

8t =
[
8t−1ϕλt

]
(9)

We use the convention that 80 is an empty matrix.
4) Solve a least squares problem to obtain a new signal

estimate:

αt = argminx ‖s−8tα‖2 (10)

5) Calculate the new approximation of the data and the
new residual:

ŝt = 8tαt

rt = s− ŝt (11)

6) Increment t and return to Equation (8) if t < p.
7) The estimate α̂ for the ideal signal has nonzero indices

in the components listed in 3q. The value of the esti-
mate α̂ in component λj equals the jth component
of αt .

Steps 4, 5, and 7 have been written to emphasize the
conceptual structure of the algorithm so that they can be
implemented more efficiently. It is important to recognize
that the residual rt is always orthogonal to the columns of8t .
Provided that the residual rt−1 is nonzero, the algorithm
selects a new atom at iteration t, and the matrix 8t has a
full column rank. In this case, solution αt to the least squares
problem is Step 4 is unique.

3) OPTIMIZATION OF THE A PRIORI TARGET SIGNATURE
Threshold Tb is used to select enough candidate target pixels
8 = {φ1, φ2, . . . φM} to construct a sparse dictionary that
covers the possible status of different forms of target pixels.
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FIGURE 4. The HYDICE dataset: (a) hyperspectral cube; (b) true location of the targets; (c) spectral curves of the different target pixels; and
(d) selected random chosen target a priori.

Another set of pixels that are much more likely to contain
the target signal is then determined by a larger threshold Ta.
For DACE (xi) > Ta, each pixel closely approximates to
the initial a priori target spectrum. The set can be described
as candidate pixels set � = {ω1, ω2, . . . , ωN} to optimize
the target signature, which can be spanned by N pixels. The
initial pixel is excluded as the weight should be 1. Each
pixel in � can then be sparsely represented by the calculated
dictionary 8.

α̂ = argmin ‖8α − s‖2 , s.t. ‖α‖0 ≤ δ0. (12)

The sparse vector βk of N pixel in � accurately embod-
ies the contribution of each vector in 8 to the given target
spectrum. The locations of nonzero elements in the sparse
vector βk are crucial to optimize the a priori target signature.
A vote procedure is introduced here to decide the weight of
each atom in the dictionary, indicated as the frequency that
φk occurs in sparsely representing ωk, where the frequencies
are recorded as εk of each ωk. The weighted average of their
original spectral vector in 8 is then computed by

sfinal =
N∑
k=1

ωkεk/
∑

εk . (13)

With this optimized target spectrum sfinal , the final detec-
tion result with a detector will be given.

III. EXPERIMENT ANALYSIS
The spectral variability phenomenon is universal to all remote
imaging sensors in all types of scenes; therefore this proposed
target spectra optimizationmethod is significant and practical
once it is proven to be efficient and robust. Three HSI datasets
from different sensors and imaging environments had been
used to validate the proposed sparsity-based optimized target
a priori generation method. Four aspects were expected and
passed through the whole experimental design: 1) the pro-
motion of the detection performance of a particular type of
material; 2) the robustness of the optimizing process from a
random input a priori target spectrum; 3) sensitivity analysis

about the relevant parameter and discussion about practica-
bility; and 4) the generality and adaptability of the proposed
algorithm to various types of sensors, scenes, and detectors.

A. HYPERSPECTRAL DATASETS
The three datasets came from different hyperspectral sensors,
including AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer), HYDICE (Hyperspectral Digital Imagery Collec-
tion Experiment), and the Nuance Hyperspectral Imaging
System. The HYDICE image dataset covering an urban area
and themainmaterials were roads, public squares, vegetation,
and bare soil, as shown in Figure 4. The HYDICE imaging
sensor generated 210 bands covering the whole spectral range
of 400–2500 nm, but only 162 spectral bands were used after
discarding the water absorption and low-SNR bands. The
spatial resolution was 4 m and the vehicles were selected
as the targets to detect. The difficulties in this detection
task lay in the fact that most of the under-detected pixels
were sub-pixel targets due to the spatial resolution and target
size (the target is about the same size as the pixel). Nineteen
pixels were chosen as the references for the target locations
according to their similarities to the spectrum of the vehicle
targets [56], as shown in Figure 4(b). Figure 4(c) showed all
the curves of the 19 pixels that contained the target signal.
They presented quite different statuses due to the spectral
variability phenomenon, as mentioned before. We chose four
of them, which were randomly located at (9,30), (25,69),
(71,76) and (79,21) on the image for the a priori target input.

The San Diego image was collected by AVIRIS, an air-
borne sensor covering a naval air station in San Diego,
California. The colour image is shown in Figure 5 (a). A total
of 189 bands remained after removing the water absorption
bands and low-SNR bands, covering a wavelength range
of 0.4–1.8 . The spatial resolution was 3.5 m and the image
was mainly composed of buildings with manmade impervi-
ous infrastructure, such as different types of buildings, park-
ing aprons of different materials, an airport runway, and a
small quantity of vegetation. We chose the airplanes as the
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FIGURE 5. AVIRIS dataset: (a) hyperspectral cube; (b) true location of the targets; (c) spectral curves of the different target pixels; and (d) selected
random chosen target a priori.

FIGURE 6. Nuance dataset: (a) hyperspectral cube; (b) true location of the targets; (c) spectral curves of the different target pixels; and (d) selected
random chosen target a priori.

targets for detection. The location of the targets is shown
in Figure 5 (b). In total, 116 pixels were selected as targets,
which were composed of full-pixel targets in the main body
of the airplanes and sub-pixel targets on the edges of the
airplanes. The difficulties in this detection task lay in that
full-pixel and sub-pixel targets simultaneously existed in the
scene. The sub-pixel targets on the edge of the airplane
body were affected either by being spectrally mixed with
the reflection of the parking aprons or the multi-scattering
phenomenon between the airplane body and surroundings.
As shown in Figure 5 (c), the spectra of the 116 pixels greatly
differ from each other, even for the full-pixel targets in the
centre of the three airplanes. Therefore, there was a deliberate
choice of 4 random inputs of the target a priori covering
the main body (89,11), right wing (91,10), left wing (53,37)

and tail of the airplane (71,23), respectively, as shown in
Figure 5 (d).

The third real hyperspectral dataset was acquired by the
Nuance Hyperspectral Imaging System. This sensor can
acquire imagery with a spectral resolution of less than 10 nm,
and the spectral imaging range covers 650 to 1100 nm.
Because it is a hand-held device, the imaging scope is
quite narrow, and the spatial resolution is approximately
0.01 m, considering the current focal length. As a result,
we used a small-scale scene with comparatively smaller tar-
gets deployed in the scene. In detail, ten stones of varying
sizes were located in the grass scene to simulate the circum-
stances of full-pixel targets, and the false colour image is
shown in Figure 6 (a). The difficulties in this detection task
lay in the fact that although all the candidates in this scene
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TABLE 1. AUC values of different parameter combinations in AVIRIS dataset.

were full-pixel targets, the spectral variability phenomenon
was exhibited in different ways, including complicated illu-
minations caused by directions to the light, bumpy surface
of the most ordinary stones, as well as the imaging quality
of the sensor with no radiometric calibration. The spectral
variability of all 1254 target pixels was even more serious.
As a display of more than 1200 spectra is difficult to interpret,
the spectra of the 254 target candidate pixels were downsized
to a scale of 126 spectra in every 10 pixels, as shown in
Figure 6 (c). Ten typical random selected targets a priori were
labelled and shown in Figure 6 (d).

B. EXPERIMENT PARAMETER SETTINGS
There are two parameters in the workflow. Corresponding to
Tb, B is the number of pixels that compose the dictionary, and
corresponding to Ta, A is the number of pixels that is selected
for the statistics to generate the new target signature. For the
AVIRIS dataset, we had adopted an exhaustive method to test
all the combinations of these two parameters within a certain
range.

As the candidate pixels were selected from the dictionary
pixels, the value of parameter A should be set as larger than
that of B. After obtaining all the detection results from the
given parameters, the ROC (Receiver Operating Characteris-
tic) curves can be drawn according to the actual distribution of
the targets. Because there were toomany curves that were dif-
ficult to visually interpret, the AUC (Area Under Curve) val-
ues were calculated by an integration method. Table 1 shows
the detailed AUC values under different detection circum-
stances with a varied combination of these two parameters.
The AUC value table shows good detection performance gain
in general, while the peak of the AUC value appears at the

combination of 0.08 and 0.12. These AUC statistics given
by exhaustion method of different parameter combination
is only designed to convince the audience that the results
are not sensitive to the choice of these parameters, and the
performance could be maintain at a relatively high level when
dedicated choosing progress of parameters is missing.

FIGURE 7. Locations of the selected candidate and dictionary pixels in
the original data space.

Take the detection scenario of Ta = 0.12, Tb = 0.08 as an
example, where the details about the relative experiments are
displayed. According to these particular parameters, the num-
ber of candidate pixels is 20 and the number of dictionary
pixels is 79. From Figure 7, the locations of the selected
candidate and dictionary pixels out of all the pixels were
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FIGURE 8. Detection performance improvement before and after the
algorithm. (a) Initial detection. (b) Final detection. (c) ROC curves.
(d) Initial detection scores. (e) Final detection scores

displayed in original data space for a directly perceived pur-
pose. The points with green asterisks were the pixels that are
related to the initial target a priori, which also composed the
dictionary to sparsely represent the initial spectral signature,
while the red cross marks were the pixels that will be voted
for significance and are consequently utilized to optimize the
optimal target a priori.

The parameter setting for dictionary pixels and candidate
pixels substantially reflect the pixels that are going to be
used in the optimization process. Either too few or too many
pixels is not appropriate for dictionary construction because
too few pixels will be inadequate to cover all the statuses of
the target signal, while too many pixels will have repeated
statuses, consequently impacting the frequency calculated in
the generation of the final a priori target signature. A wise
decision here is to use a parameter that can select a dic-
tionary pixel set with number that is no larger than the
real target pixels and a parameter that determines a can-
didate pixel set of an even smaller size, e.g., one or two
dozen.

FIGURE 9. Robustness test of randomly chosen targets a priori in the
AVIRIS image.

With these candidate pixels, the optimal spectrum target
a priori can be generated. The comparison between the initial
and final detection performance was illustrated in Figure 8.
For a better visual effect, the detection performances in
Figure 8 (a) and (b) were enhanced in a square root manner
by ENVI software. The corresponding detection scores were
displayed in Figure 8 (d) and (e), which clearly illustrated the
improvement of the detection. The generated target a priori
has a comprehensive consideration of all the target pixels
in different conditions and therefore yields a more balanced
detection score of all the pixels of the aircraft body. The
ROC curves in Figure 8 (c) also reflected the generated target
signature’s superiority to the original one because the final
detection curve occupies the upper location entirely.

C. ROBUSTNESS ANALYSIS
Another significant issue of this proposed algorithm is the
robustness, i.e., whether a relatively stable detection outcome
can be derived from a series of random inputs of targets
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FIGURE 10. ROC curves of the detection performance improvement from
randomly chosen targets a priori in the AVIRIS image.

FIGURE 11. Spectra curves of the target a priori before and after the
algorithm.

a priori. As has been stated in Section 3.1, four distinguished
locations of the image target a priori were selected to validate
the robustness of the proposed target spectrum generation
method. The four image spectra came from different parts of
the planes, which greatly varied from each other and would
generate partial detection results if they were directly placed
into the detector, as shown in Figure 9. After using the same
parameter setting as in the previous section, the proposed
algorithm is capable of alleviating these random selected
deviations as in cases (53, 37), (71, 23), and (89, 11). Even for
the badly chosen target a priori (91, 10), the initial detection
result showed its strong incapability, while the generated
target spectrum could amend the consequences caused by the
bad choice.

ROC curves had been drawn in four pairs, corresponding
to the initial and final detection performance of each circum-
stance of the four inputs. The lighter curves in the colour
scheme were the detection performance by the initial target
spectra, while the darker curves corresponded to the detection
results after improving the target signature. It can obviously
be seen that the performances all substantially improved.

FIGURE 12. Robustness test of randomly selected target a priori in the
HYDICE image.

FIGURE 13. ROC curves of the detection performance improvement in
HYDICE image.

Regardless of the initial quality of the target a priori, rela-
tively good ones targets such as (89,11) and (53,37), or even
an unsound one such as (91,10) — which is on the wing
edge of the airplane, where the spectrum can easily being
mixed with other materials — the enhancements are remark-
able. This experiment had validated the practicability of the
proposed algorithm when the choice of the image target
signature is inexperienced and arbitrary, which is common
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FIGURE 14. Robustness test of randomly selected targets a priori in the Nuance image.

when there is a lack of comprehensive expertise regarding
the task.

To further reveal the mechanism of the proposed method,
the generated spectra from these four initial targets a pri-
ori were recorded and drawn in Figure 11. For a clear
presentation, the initial spectra were marked with a series
of tint colours, while the final spectra were marked in
dark paired colour. Four arrows were labelled to vividly

describe the change of the target signature. The gen-
eral features of the spectra had been well maintained,
such as the peaks and troughs; some were amended to
some extent, while small fluctuations and anomalies had
been moved to make the target feature smoother. Broadly
speaking, the four generated spectra from the random
input reached a similar outcome from an optimal target a
priori.
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FIGURE 15. ROC curves of the detection performance improvement in the
Nuance image.

FIGURE 16. Tests on different detectors with sparse representation-based
target a priori optimized method.

D. DETECTION PERFORMANCE OF GENERALITY
Since the effectiveness and robustness of the proposed
algorithm have been validated, its generality in other
hyperspectral datasets should also be tested. The HYDICE
andNuance datasets mentioned in Section 3.1 were utilized to
further confirm the algorithm with other sensors and imaging
environments. Because the spectral variability phenomenon
is universal and anisotropic, for the airborne and handheld

FIGURE 17. ROC curves of the detection performance improvement using
several benchmark detectors.

sensors, the phenomenon is still important but in different
ways. Taking the intrinsic data characteristics into consid-
eration, the proposed algorithm should have a satisfactory
performance of generality when utilizing other dataset and
circumstances.

Figure 12 showed the initial and final detection results
obtained by the original target a priori and optimized target
a priori, respectively. The parameters for Ta and Tb were set
as 0.1 and 0.06 following the principle of controlling the size
of the dictionary set and candidate set. Because the targets
under detection were vehicles on this image, the target spectra
varied from the colour of the cars, the material quality of the
cars, the subpixel proportion of car body in the pixels and the
mixed spectra due to different objects on which the cars are
located. The noise signals were strong in the initial detection
because knowledge about the vehicle targets was rare, while
the optimized target signature gave stable detection results
regardless of the data that had been initially placed in the
detector.

ROC curves further certified their growth in detection per-
formance. Most targets can be recognized within a 1% false
alarm rate.

The Nuance dataset had been acquired in a handheld man-
ner, which experienced a relative straightforward imaging
path. However, the variability caused by the sensors and
image background still seriously impacted the detection of
the stone. Ten pixels of the image spectrum had been selected
from the body of the stone, respectively, to be treated as inputs
of the ACE detector.

The parameters for Ta and Tb were set as 0.2 and 0.1
following the same principle. As shown in Figure 14, the col-
umn of initial detection exhibited a pattern in which the initial
signal of the target a priori input was not strong enough to
represent all the target pixels in the image. The optimized
target signature, however, made the target distinctly separate
from the background. Five out of the ten pairs of ROC curves
had been drawn to quantitatively reflect the enhancement of
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the detection performance, where the curves in light colours
corresponded to the original performance and their counter-
parts in dark colours were the results after optimization.

E. ALGORITHM PORTABILITY
The proposed method for the optimized target a priori gen-
eration is further expected to have stable portability when
adopted in other hyperspectral target detectors. Some bench-
mark detectors had been therefore listed in Figure 16, and
their detection performances with and without the sparse
representation-based optimized targets a priori were also dis-
played. The benchmark detectors include the most frequently
used MF, CEM and AMF.

Visual interpretation had proved that the capability and fea-
sibility of the proposed algorithm was not limited to the ACE
detector. The contribution of this optimization method does
not solely embody improvement of certain detector designs
but also a class of detectors.

This is especially significant to conclude its practicability
in other application scenes. The sparse characteristic has gen-
erally existed in hyperspectral data, which results in an inno-
vative use of this representation in an ideal way to optimize
the substantial form of the target a priori. With these higher
quality target signatures, the ROC curves were obtained,
which were marked in darker colours in Figure 17, which
had surpassed the ones in lighter colours obtained from the
original target a priori. The improvements were obvious and
no extra knowledge was required, making this algorithm very
practical.

IV. CONCLUSIONS
The quality of the a priori target signature is the bottleneck
of target detection tasks from hyperspectral imagery. If the
provided training sample for target detectors is inaccurate,
the estimation bias of a given detector is unavoidable, regard-
less of how advanced the detectors are being designed. The
proposed sparse representation-based a priori target signature
optimization method can quickly and effectively generate a
relatively high-quality spectrum as an input for a series of
detectors. The experimental results for three real hyperspec-
tral datasets with varied sensors and scenes have validated its
capability of enhancing the detection performance, as well as
giving robust results when placed into different a priori target
signatures. However, it works under the assumption that the
interested target exists in the scene thereby the initial choose
will be somewhat related to the true spectra of the target.
For future studies, the proposed algorithm can be further
generalized and test to other detectors as it purifies the target
priori before designing any detectors. Exploiting the sparse
characteristics of hyperspectral data and intrinsic feature of
the target spectra could alleviate the uncertainties caused
by target spectral variability, consequently overcoming the
mentioned bottleneck. If the parameters could be adaptively
calculated instead of a referential value, with no additional
data needed, it will make the algorithm more practical and
promising in widespread application.
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