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ABSTRACT This paper describes the research made toward improving medical case retrieval for
Alzheimer’s Disease (AD). Our approach considers using Magnetic Resonance Images as an input for the
search. To improve the retrieval process, we used longitudinal information extracted from the different sets
of scans acquired at different time points and automatically extracted descriptors to represent input images.
All experiments were performed with and without quality control (QC) to determine the influence of the
errors caused by the automated processing to the results relevance. For the experiments, a total of 267 subjects
from the AD Neuroimaging Initiative database with available scans at baseline, the 6-month, 12-month, and
24-month follow-ups were selected. The obtained results showed that the selection of the time points for
extraction of the longitudinal information influences the retrieval performance. Results also showed that not
all automatically generated descriptors lead to improvement of the results. Longitudinal volume changes
provide the most relevant representation. Adding QC phase in the experiments leads to improvements in all
examined scenarios. The results showed that the most frequent automatically selected features are common
semantic markers for AD.

INDEX TERMS Longitudinal, Alzheimer’s disease, image retrieval, feature extraction, brain, magnetic
resonance imaging.

I. INTRODUCTION
Alzheimer’S disease (AD) is one of the most frequent neu-
rodegenerative diseases in older adults nowadays. It leads
to a nerve cells degeneration and tissue loss as the disease
progresses. Until now, no cure has been found for the disease.
However, finding relevant biomarkers, reaction to a certain
therapy, monitoring the progression of the disease, early dis-
ease detection and prognosis are active research fields [1].

Advances in medicine and genetics, as well as the rapid
evolution of technology and medical imaging techniques
increase the amount of generated data for the AD medical
cases. For each medical case, variety of data types are pro-
duced, including medical images of the brain, genetic mark-
ers, cognitive tests results, blood and cerebrospinal fluid
biomarkers. They all need to be efficiently organized, stored,
and represented in order to provide easier and more appropri-

∗Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but
did not participate in the analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowl-edgement_List.pdf.

ate access to the medical cases and to enable use of those data
in the research for knowledge discovery. This could improve
the diagnostic and therapeutic processes [2], [3].

A great part of the generated data for AD cases consists of
medical images. Considering that the information extracted
from the brain image provide precise and consistent markers
for diagnosis and monitoring the development of the disease,
our research is focused on medical case retrieval by using
medical images as input queries [4]–[10].

The image retrieval process requires representing the
image query with a descriptor and then comparing it with the
descriptors of all of the images stored in themedical database.
The system returns a sorted list of the database images with
the most similar at the top [11].

Most of the current systems apply the approach of describ-
ing the image using their visual characteristics [12]. This
strategy is facing with three major limitations. First, such rep-
resentation does not have semantic relevance for the image,
which results in imprecise retrieval that can be irrelevant and
impractical in the clinical and research centers [2], [13]. Sec-
ond, the dimension of the generated feature vector might be
very high [14]–[17], reducing the efficiency of the retrieval.
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Thus, finding the most appropriate and efficient image repre-
sentation is crucial for providing semantically relevant result.
Third, having in mind that AD is characterized by progressive
neurodegeneration, the brain changes over time are evenmore
descriptive than the brain condition at a single occasion. This
can provide additional information for the retrieval process.

The paper presents the results of the research done
to overcome these limitations and hence, to improve
medical case retrieval for AD. Therefore, we used the
domain knowledge to add the semantical meaning of the
visual image content. Additionally, to provide more pre-
cise and clinically more relevant answer from the system,
we decided to use the longitudinal rather than cross-sectional
representation.

The objectives of the study are to: (1) test the hypothesis
that the features generated using an appropriate set of time
points to extract the longitudinal information will improve
the overall relevance of the retrieval response; (2) identify
the most relevant and efficient longitudinal changes (seman-
tic descriptors) to represent the subjects/cases (e.g. rate of
change, percent change, etc.); and (3) test the hypothesis that
the errors arising from the image processing influence the
retrieval performance.

For that purpose, we examined image representations com-
prised of longitudinal changes, such as rate of change (RC),
percent change (PC), and symmetrized percent change (SPC)
of volume and cortical thickness of the brain structures. They
are meant to reflect the severity of the disease and the advance
of the degeneration [18], unlike the raw volume or cortical
thickness measurements representing the static state at a
specific time point of degeneration [19]. To calculate these
longitudinal changes, we created an unbiased within-subject
template space and image [20] using robust, inverse consis-
tent registration [21] with automated longitudinal processing
stream [22] in FreeSurfer. Additionally, we built the template
with different sets of time points in separate scenarios and
evaluated the aforementioned type of feature vectors derived
from the different templates separately.

Automated processing might result in failures, possibly
affecting the retrieval process. To examine to which extent
they influence the results, we performed all experiments with
and without quality control (QC).

To evaluate the strategy, we selected subjects from AD
and Normal Controls group with scans at four available time
points from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu).

The benefits from this research are multifold. First, the
retrieval process is based on rich longitudinal information
rather than information extracted from one specific occa-
sion. Results showed that different sets of time points con-
tribute differently to the relevance of the retrieval response.
Second, we recommend the most appropriate subject repre-
sentation for case retrieval based on imaging markers from
the evaluated pool of longitudinal measurements. Accord-
ing to the results, we identified volume percent change
and volume symmetrized percentage as most promising for

representation, yet with comparable descriptor dimension
with the other cases. In this way, the retrieval is directed
towards answering the questions of the type ‘‘find all sub-
jects/cases that have similar longitudinal changes in the
brain anatomy to the query’’. From the medical point of
view, this is very beneficial because the retrieved top sim-
ilar cases might empower physicians with rich information
covering the similar disease progression, treatment reac-
tion, and consistency of the imaging markers as the disease
advances. Third, the influence of the possible errors due
to the automated processing was evaluated. The obtained
results showed significant improvement by involving the QC
phase. All these findings are toward semantically more rel-
evant retrieval result. Providing this is very important from
the clinical, as well as from the research and educational
perspective.

We provide the related work in Section II. The methods
used in this study are presented in Section III, whereas the
experimental results are shown in Section IV. We discuss the
results in Section V and present the concluding remarks in
Section VI.

II. RELATED WORK
Several studies address image retrieval applied to AD
data. However, they challenge different aspects of the pro-
cess. Most of them follow the traditional feature extrac-
tion techniques, deriving features from the visual cues in
the images [14], [16], [17], [23]. Intensity histograms, local
binary pattern, and gradient magnitude histograms are used
in [23] to generate feature vector for the middle slice. Global
and local texture features, such as Discrete Cosine Trans-
form (DCT), Daubechie’s Wavelet Transform (DWT), and
Local Binary Patterns (LBP), are applied on a selected subset
of slices in [14], [16]. Laguerre Circular Harmonic Functions
expansions are used to capture the local image patch struc-
ture in [17]. Then, they apply the Bag-of-Visual-Words to
a specific region of interest, the hippocampus. The feature
extraction in this research is performed in a slice-by-slice
manner. The main drawback encountered in these studies is
the retrieval semantics. Even more, because the research is
performed on 2D bases on one or multiple slices, possibly
significant spatial information might be excluded. Authors
in [24] present attempts to improve the retrieval semantics
by explicitly using the domain knowledge. They represent the
images with subcortical volumes and cortical thickness of the
brain regions improving results with fewer features.

The main common limitation of the previous studies is
performing the retrieval on the bases of the brain structural
condition at a specific time point, i.e. cross-sectionally. On the
opposite, the neurodegenerative diseases, among which is
AD, are characterized with a specific pattern of atrophy
that can be monitored and reflected in a longitudinal man-
ner [25]–[28]. Existing research based only on two time
points showed that data obtained by these time points might
not be sufficient and reliable enough to represent brain change
due to the disease progression [29]. Additionally, extract-
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ing the information from longitudinal data with indepen-
dently cross-sectional processing of the images may provide
longitudinally inconsistent estimates leading to unreliable
results [30]. To overcome this limitation, research is going
toward specialized solutions using multiple time points [19].
They use structural brain information, such as volume of
subcortical structures or cortical thickness, at multiple time
points or a combination of them. Taking into consideration
that such features have a sort of a static nature reflecting
the brain condition at each available time point, there is still
possibility to investigate and improve results obtained by this
strategy.

The evolution of all these strategies appears in the input
question for the retrieval system. They start from the question
‘‘find all subjects/cases with similar visual features to the
query’’ when using cross-sectional traditional feature extrac-
tion methods. Then, they go through ‘‘find all subjects/cases
with similar structural characteristics to the query’’ in the
case of cross-sectional studies, using the domain knowledge
for feature extraction. They finally end with ‘‘find all sub-
jects/cases that have similar anatomical changes to the query’’
in the research based on longitudinal structural features.

This paper focuses on the last strategy for the input ques-
tion aiming to improve medical case retrieval.

III. MATERIALS AND METHODS
A. LONGITUDINAL DATA AND PROCESSING
We based our study on longitudinal data for patients that
underwent examination for Alzheimer’s disease. Longitudi-
nal data is obtained by measuring the outcome variables
repeatedly on the same cohort of individuals at multiple time
points, ordered in time. This enables identifying the influence
of the changes in the measurements over time to the exam-
ined clinical, biological, or experimental factor. Considering
the examined disease, which is a non-stationary continuous
process, those changes might reflect the diseases progress
and/or reaction to the treatment. Additionally, longitudinal
studies provide direct assessment of within-subject changes
across different time points, free of any between-subject
variability, more precisely and without confounding cohort
effects [31], [32].

Reliable estimations of volume and thickness and their
changes over time are extracted by automatically processing
all the images with the FreeSurfer’ longitudinal stream [22].

At first, we processed cross-sectionally all the available
time points. This processing includes motion correction,
removal of non-brain tissue using a hybrid watershed/surface
deformation procedure, automated Talairach transformation,
segmentation of the subcortical white matter and deep
grey matter volumetric structures, intensity normalization,
tessellation of the grey matter - white matter boundary, auto-
mated topology correction, and surface deformation follow-
ing intensity gradients. After computing the cortical models,
registration to a spherical atlas was applied. It utilizes individ-
ual cortical folding patterns to match cortical geometry across
subjects, ending with the parcellation, labeling, and statistics.

Then, we generated an unbiased within-subject template
space and image [20] using robust, inverse consistent registra-
tion [21] for previously independently processed time points.
The longitudinal scheme was designed to be unbiased with
respect to any time point (TP). There was no initialization
with information from a specific time point. A template vol-
ume was created and run through FreeSurfer treating all time
points the same. Then, we longitudinally processed each time
point. This step used information from the subject-template
and from the individual runs to initialize several algorithms.
These included skull stripping, Talairach transforms, atlas
registration, as well as spherical surface maps and parcel-
lations. In this way, reliability and statistical power were
significantly increased. After automated segmentation and
quantification, several types of measurement were available
for analysis, including volume, cortical thickness, surface
area, etc. [22].

To evaluate whether the selected time points included in the
template generation influence the appropriateness and relia-
bility of the derived measurements in the retrieval, we cre-
ated the template with different sets of time points. In this
examination, we did not consider templates with two time
points, basically because the template was generated as a
voxel-wise median, which is equal to mean in the case of two
time points. This results in blurry edges, instead of crispy
in the case of more time points included in the template.
Using intensity median instead of mean enables to remove
the influence of outliers, such as scans with strong motion
artifacts. Thus, more time points lead tomore stable templates
meaning that more reliable and accurate measurements are
expected [22]. We considered sets of three and four time
points and examined the following four scenarios:

• T123 – template generated using TP1, TP2, and TP3
• T134 – template generated using TP1, TP3, and TP4
• T234 – template generated using TP2, TP3, and TP4
• T1234 – template generated using TP1, TP2, TP3, and
TP4.

TP1 denotes the first time point available for the patient
-namely, the scan acquired at the first hospital visit (the
baseline). The others represent the follow-ups, where TP2 is
6 months later, TP3 – one year later, and TP4 is two years
later with respect to the baseline. The templates T123 and
T134 are equally spaced with six months difference between
the time points in the first one and 12 months difference in
the second one. Although the T234 and T1234 are differently
spaced, the time spacing is (approximately) the same across
the subjects in all the scenarios.

After the fully automated longitudinal processing, ROI
measurements, such as volume, cortical thickness, surface
area, etc. are available. Among them, volumes and cortical
thickness estimates are found to be valuable imaging mark-
ers [33], [34]. On the other hand, research showed that the
surface area has significantly low performance [34] and it is
not considered for further analysis in this paper.

Plain subcortical volume measurements and cortical thick-
ness estimates were used in the similar setup in the previous
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work [19]. However, they reflect the static state at specific
time point of degeneration, whereas longitudinal changes
such as rate of change and percent change represent the speed
and severity of degeneration. Considering this, we reduced
the temporal data within each subject to a single statistic (e.g.
annualized atrophy rate or percent change) of the subcortical
and cortical volumes and cortical thickness, and subsequently
used in the experiments.

B. FEATURE VECTOR GENERATION AND
FEATURE SELECTION
The image retrieval uses feature vector that represents the
image given as a query, and then compares it with other
feature vectors for all the images stored in the image base.

We created the feature vector using the longitudinal infor-
mation extracted from the images. We considered the follow-
ing statistics calculated using FreeSurfer:

• Rate of change (RC) - the difference per time unit.
In fact, the slope of a linear fit across time within each
subject is computed. Depending on the time variable this
will yield the volume loss in mm3/time or thinning in
mm/time for each brain region. In this study, we mea-
sured the time variable in years.

• Percent change (PC1/fit) – percent thinning/volume
loss per year. It is calculated as the rate normalized
by the measure at the first time point times 100 (e.g.
percent tinning per year). It represents the amount of
percent thinning/volume loss at a given region. In fact,
in this research we used the PC1/fit. It was calculated
with respect to the value obtained from the linear fit at
baseline, which is more reliable and noiseless than the
baseline value directly.

• Symmetrized percent change (SPC) - the rate with
respect to the temporal average (instead of taking it from
the first time point). The temporal average is computed
from the linear fit at the middle of the time interval.
Symmetrized percent change is more robust measure
than PC1. The reason is that the thickness at time point
1 is noisier than the average or an outlier. Moreover, SPC
is symmetric. Considering this, SPC is recommended to
be used in the analyses [22].

On the basis of this, we generated six types of feature vectors:
Type 1: volume RC (VolumesRC) – a statistic derived

from the volumetric temporal information per case for each
region. We calculated RC for 55 measures obtained from the
subcortical segmentation and 68 from the cortical parcella-
tion (34 from each hemisphere, left and right), 123 measures
in total for each case;
Type 2: cortical thickness RC (CTRC) – a statistic derived

from the cortical thickness temporal information per subject
for each region, 70 measures in total (35 for the regions
of each hemisphere, left and right, together with the mean
thickness for each hemisphere);
Type 3: volume PC1fit (VolumesPCfit) – a statistic derived

from the volumetric temporal information per subject for each
subcortical region, 123 measures in total for each case;

Type 4: cortical thickness PC1fit (CTPCfit) – a statistic
derived from the cortical thickness temporal information per
subject for each region, 70 measures in total;
Type 5: volume SPC (VolumesSPC) – a statistic derived

from the volumetric temporal information per subject for each
subcortical region, 123 measurements in total for each case;
Type 6: cortical thickness SPC (CTSPC) – a statistic

derived from the cortical thickness temporal information per
subject for each region, 70 measures in total.

It should be noted that regarding the available volumetric
measurements, we excluded the volume of the fifth ventricle,
left and right non-white matter hypointensities, because they
were not available for most or for all the subjects. We con-
sidered the regions for which the estimates were available
for the left and right hemisphere separately without averag-
ing or summing them.

To analyze the power and semantical appropriateness of
the longitudinal subject representation, we derived all the six
feature vector types based on the four listed templates. How-
ever, to provide fair and clear evaluation, each experiment was
based on the same conditions (included time points/feature
vector type) for all the subjects.

We also applied feature subset selection to reduce the
feature vector dimensionality and to select the most relevant
features. In fact, we used the Correlation-based Feature Selec-
tion (CFS) method [35], due to its powerful influence on the
retrieval in the previous studies [19], [24]. It is based on eval-
uation of the subsets of features, considering the usefulness
of the individual features for predicting the class along the
degree of intercorrelation among them. This means that good
feature subsets should contain features highly correlated with
the class, yet uncorrelated to each other [35]. Considering
the application domain, we expected features sensitive to the
disease to be selected.

C. IMAGE RETRIEVAL
When a query is given to the image retrieval system, it com-
pares the query to all other subjects in the database. As a
result, it generates a sorted list of cases based on the subjects’
similarity to the query, with the most similar one at the top.

We represented the subjects with features vectors gen-
erated using the strategy described in the previous subsec-
tions. We performed the feature selection independently of
the query subject information to provide an unbiased result.
Hence, we obtained a specific feature subset for each query
subject using the information of all other subjects in the
database. To examine the stability of the selected features,
we recorded the inclusion rate, i.e. how frequent each feature
was selected.

Considering the small number of subjects included in
this study, we used leave-one-out strategy. This means that
each subject representation was used as a query against
all other representations stored in the database. The sim-
ilarity measurement between the feature vectors was per-
formed using Manhattan distance. We selected Manhattan
distance on the experimental bases, because it provided
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TABLE 1. Longitudinal ADNI sample demographics.

better retrieval results among several other similarity mea-
sures including Canberra, Euclidean, Chebyshev distance,
and Cosine similarity.

To evaluate the examined strategies, we used standard-
ized evaluation metrics for quantitative measurement of the
retrieval performance:

• Mean Average Precision (MAP) – the mean of the aver-
age precision scores for each query, evaluationmetric for
the general retrieval performance. It is meant to favor

TABLE 2. Timing of scans per time point by clinical group.

retrieval systems that return more relevant cases at the
top of the list;

• Precision at first 1 (P1) – precision of the first (top)
returned case;

• Precision at first 5 (P5) – precision of the first (top) five
returned cases;

• Precision at first 10 (P10) – precision of the first (top)
10 returned cases;

• Precision at first 20 (P20) - precision of the first (top)
20 returned cases;

• Precision at first 30 (P30) - precision of the first (top)
30 returned cases;

• R-precision (RP) – precision at first (top) R returned
subjects, where R is the total number of relevant cases.

The retrieved case is assumed to be relevant if the patient has
the same diagnosis as the query one. The higher the relevant
cases in the retrieved list, the higher the value of the precision
is.

D. PARTICIPANTS AND INCLUSION CRITERIA
Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The data contains serial mag-
netic resonance images (MRI), positron emission tomog-
raphy (PET) images, other biological markers, such as
cerebrospinal fluid (CSF) markers, APOE status and full-
genome genotyping via blood sample, as well as clinical
and neuropsychological assessments. This information can
be combined to measure the progression of mild cognitive
impairment and early Alzheimer’s disease that has been the
primary goal of ADNI. The database contains data about
cognitively normal individuals, adults with early or late
Mild Cognitive Impairment, and people with early AD with
different follow-up duration of each group, specified in
the protocols for ADNI-1, ADNI-2, and ADNI-GO (see
http://www.adni-info.org).

To evaluate the presented strategy, we selected a total
of 267 subjects from ADNI-1 standardized lists by using the
following criteria: (1) each subject belongs to AD or NL
group; (2) for each subject, scan at baseline (TP1) and the
6-month (TP2), 12-month (TP3), and 24-month (TP4) follow-
ups are available. Table 1 provides subject demographics for
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TABLE 3. Value of MAP for the retrieval based on the measurements
extracted using the template T123.

TABLE 4. Value of MAP for the retrieval based on the measurements
extracted using the template T134.

the analyzed sample. The timing of scans per time point by
clinical group is reported in Table 2.

As explained, we processed all subjects with FreeSurfer
image analysis suite. After inspecting the processed data,
we encountered global or regional failures in some of them.
The subjects with such failures in at le ast one time point were
detected. According to the previous research performed on
the same dataset [36], the quality control was recommended
on the automatically processed data. Due to the lack of a
medical expert and to ensure the fully automated processing,
we excluded these cases and performed the examination on
the selected cohort that consists of 153 subjects, 41 AD and
112 NL.

IV. EXPERIMENTAL RESULTS
In this section, we summarize the results from the evaluation
of the presented strategy. The values of the evaluation metrics
MAP and RP are grouped by template scenarios. Table 3

TABLE 5. Value of MAP for the retrieval based on the measurements
extracted using the template T234.

TABLE 6. Value of MAP for the retrieval based on the measurements
extracted using the template T1234.

contains the results in the case of template T123. The eval-
uation scores considering the template T134 are presented
in Table 4. Table 5 lists MAP and RP values for the template
T234, whereas the results regarding the template T1234 are
summarized in Table 6. These tables contain results in both
cases, with and without QC.

The measurements extracted from the longitudinal pro-
cessing using TP1, TP3, and TP4 provide the best results
for the cases that include temporal information from three
time points. Both cases that include the last two time points,
the case based on T134 and T234, gave better results than the
case that uses T123. The same conclusions were derived in
both situations, with and without QC (Table 3-5).

We noticed improvement of the MAP and RP values when
we based the retrieval process on the information extracted
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TABLE 7. Precision at specific point in the case with QC.

from four time points (Table 6). Particularly, there was a
general improvement over the scenarios based on T123 and
T234 in all of the cases on the bases of MAP. This stands for
all experiments, with and without QC. However, comparing
the cases based on T134 and T1234, the MAP value was the
same when the subjects were represented by the volumetric
SPC (0.78) or by cortical thickness rate of change (0.69) in
the cases without QC. On the other hand, in the experiments
with QC, the measurements extracted from four time points
provided higherMAP values than those with three time points
in all of the cases. The representations based on four time
points led to higher RP in all of the cases in general.

Additionally, Table 7 (for the case with QC) and Table 8
(regarding the case without QC) contain values of the preci-
sion at a specific point. In each table, the results are grouped
by the template type. In the case with QC (Table 7), the preci-
sion at specific point calculated to evaluate the retrieval based
on four time points, outperforms all of the cases with three
time points based on T123 and T234, except one case in the

TABLE 8. Precision at specific point in the case without QC.

scenario with QC. That is the P1 provided by the feature type
VolumesRC based on TP2, TP3, and TP4. It is 1% higher than
in the case based on the template T1234.

Regarding the comparison between the templates
T1234 and T134, the results are comparable, even though
the template T1234 provides higher precision in most of the
cases. In fact, regarding the cases based on volume rates
derived from the TP1, TP2, TP3, and TP4 from one side, and
TP1, TP3, and TP4 from the other side, there were situations
in which the three time points led to the same precision (for
VolumesRC and VolumesSPC) and 1% better for P10 on the
bases of T134_VolumesRC. This stands for the cases with
QC (Table 7). In the experiments without QC, the situation
is similar in the cases of feature types VolumesPCfit, Vol-
umesSPC, and CTRC, for which we noticed the same or 1%
higher precision value in the cases that included TP1, TP3,
and TP4 than in the cases based on four time points. For all
the other situations, the longitudinal measurements extracted
by using temporal information from four time points provided
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better retrieval performance on the bases of precision at a
specific level.

Considering the QC, it is evident that in all the cases in
general it leads to significantly improved retrieval perfor-
mance on the bases of MAP and RP. Regarding the precision
at specific point, the precision at level 1 is higher in the
experiments without QC, in the case when volumetric PCfit
and SPC are derived from the time points 1, 2, and 3, or the
same in the case based on CTRC generated from TP1, TP3,
and TP4. But, it is significantly faster dropping through the
other levels than in the experiments with QC. In all the other
cases, we noticed higher precision at a specific point in the
scenarios with QC than in those without QC.

When analyzing the feature vector type, we came to the
conclusion that the volume changes provide better results
than the cortical thickness changes, on the bases of the general
retrieval performance evaluation metric MAP, as well as the
R precision (Table 3-6). The bestMAP value in general (0.84)
was calculated in two cases, based on T1234_VolumesPCfit
and T1234_VolumesSPC in the experiments with QC. The
T1234_VolumesPCfit also led to the best RP value (0.80).
In the experiments without QC, we also calculated the highest
MAP when we used VolumesPCfit features, whereas we
obtained the highest RP in the cases of VolumesPCfit and
VolumesSPC, all derived from the four time points.

We gained the best P1 precision (0.9) when the QC phase
was included in the scenario based on volume symmetrized
percent change and volume percent change, whereas in the
case without QC - in the scenario based onVolumesSPC. This
was obtainedwhenwe used the longitudinal information from
all four time points.

In the cases where we used cortical thickness changes
to generate the feature vector, the scenarios based on
T1234_CTPCfit and T1234_CTSPC led to the highest MAP
value of 0.79. These scenarios also led to the highest RP
from all scenarios based on cortical thickness changes. How-
ever, these results are worse than those obtained when using
volumetric based measures. We also came to this conclusion
considering the detailed precision at a specific level.

After the feature selection, a comparable number of fea-
tureswere selected as themost relevant between the examined
feature vector types, yet significantly smaller in comparison
to the original feature vector dimension. In fact, 19–21 fea-
tures were selected in most of the queries in the volumes-
based scenarios (feature type 1, 3, and 5) that provide the best
results. Considering the CT-based scenarios (feature type 2,
4, and 6), 12–14 features were selected in most of the queries.
Even though the number of the selected features in most of
the cases based on volumetric rates is slightly higher than in
the cases of cortical thickness rates, it is still minor increase
considering the level of improvement of the retrieval results.

V. DISCUSSION
Our examination provides a good insight of the appropri-
ateness and efficiency of longitudinal information used in
the retrieval process. Regarding the information extracted

during the longitudinal processing based on three time points,
the cases that incorporate later time points provide better
retrieval results. The rationale behind this is that the last scans
are acquired when the disease is in more advanced stage and
the brain changes are prominent. Retrieval based on four time
points led to general improvements comparing to the cases
based on three time points. This is reasonable because the
information derived from the within-subject template using
more time points is more stable and reliable [22]. However,
we noticed comparable results with the scenarios based on
the template T134. Thus, according to the obtained results,
we recommend using as much time points as possible to
provide more robust and precise measurements. We believe
that the equal time spacing between the time points, together
with the presence of the later scans, make the information
based on TP1, TP3, and TP4 more suitable than the other
three time points based information and comparable to the
four time points based scenarios. Thus, in the situation when
the processing time or the number of scans are limited,
the processing based on TP1, TP3, and TP4 is advisable.

When choosing whether to use volume or thickness
changes, the experiments showed that volume-based changes
are preferable. They globally provide better retrieval results,
with few more features than the cases based on cortical
thickness changes. Particularly, on the basis of the obtained
results, we recommend volume percent change and sym-
metrized percent change due to their powerful capability to
represent the disease development. Additionally, the feature
subset selection provides à significant reduction in the feature
vector dimension, making the retrieval processmore efficient.
It is important to emphasize that among the most frequently
automatically selected features using the feature selection,
we identified the changes in the brain structures which,
according to the literature, are highly affected by the disease.
These include volume change of lateral ventricles, inferior
lateral ventricles, third ventricle, hippocampus, left part of
the amygdala, entorhinal cortex, fusiform, parahippocampal,
as well as changes in entorhinal thickness, thickness of pos-
terior cortical areas, or insula cortex.

The obtained results in this study are better than those
achieved in [19] on the same cohort. However, they are not
directly comparable, because the volume and cortical thick-
ness measurements in that study were generated using the
information from at least four time points. According to our
study, the inclusion of more time points might influence the
results, so the comparison might not be reasonable and fair.
Due to the diversity of the datasets or the selected subjects
that are used for evaluation, we also cannot make and report
objective comparison with the other studies directed to image
retrieval for AD [14], [17], [24], [29], even though we can
notice improved retrieval performance using our strategy.

The main findings considering the general evaluation met-
rics are:

1) Usingmore and latter time points improves the retrieval
results. But, in the situation when the processing
time or the number of scans are limited, then latter and,
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if possible, equally spaced time points might be more
appropriate.

2) Volume changes with applied feature selection provide
more powerful and semantically relevant subject rep-
resentation that leads to better retrieval performance.
Specifically, percent change and symmetrized percent
change cortical and subcortical volumes are recom-
mended. Also, these features might be seen as promis-
ing imaging markers for AD.

3) Quality control improves the results in all experiments,
thus we recommend to be used whenever possible.

Our future work is directed toward finding a proper
combination of the longitudinal changes, plain volume and
plain cortical thickness measurements to further improve the
semantics derived from the medical cases. Moreover, we are
going to extend this research to a bigger cohort to provide
more reliable evaluation.

VI. CONCLUSION
The current results showed that the time points used to extract
the longitudinal information and their number influence the
retrieval performance for the selected cohort. Additionally,
we evaluated and recommended the most suitable longitu-
dinal changes that lead to improved and semantically more
reliable retrieval. In fact, volume percent change and vol-
ume symmetrized percentage change extracted from all four
time points were found to be the most representative for the
disease, outperforming all the other descriptors. The feature
selection provides significantly lower dimension of the fea-
ture vectors, making the retrieval more efficient. We also
discovered that errors encountered from the automated pro-
cessing negatively influence the retrieval performance. Thus,
we recommend to use the quality control.
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