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ABSTRACT We propose a low-latency approach for generating secure electrocardiogram (ECG) feature-
based cryptographic keys. This is done by taking advantage of the uniqueness and randomness properties
of ECG’s main features. This approach achieves a low-latency since the key generation relies on four
reference-free ECG’s main features that can be acquired in short time. We call the approach several ECG
features (SEF)-based cryptographic key generation. SEF consists of: 1) detecting the arrival time of ECG’s
fiducial points using Daubechies wavelet transform to compute ECG’s main features accordingly; 2) using a
dynamic technique to specify the optimum number of bits that can be extracted from each main ECG feature,
comprising of PR, RR, PP, QT, and ST intervals; 3) generating cryptographic keys by exploiting the above-
mentioned ECG features; and 4) consolidating and strengthening the SEF approach with cryptographically
secure pseudo-random number generators. Fibonacci linear feedback shift register and advanced encryption
standard algorithms are implemented as the pseudo-random number generator to enhance the security level
of the generated cryptographic keys. Our approach is applied to 239 subjects’ ECG signals comprising of
normal sinus rhythm, arrhythmia, atrial fibrillation, and myocardial infraction. The security analyses of the
proposed approach are carried out in terms of distinctiveness, test of randomness, temporal variance, and
using National Institute of Standards and Technology benchmark. The analyses reveal that the normal ECG
rhythms have slightly better randomness compared with the abnormal ones. The analyses also show that
the strengthened SEF key generation approach provides a higher security level in comparison to existing
approaches that rely only on singleton ECG features. For the normal ECG rhythms, the SEF approach has in
average the entropy of about 0.98 while cryptographic keys which are generated utilizing the strengthened
SEF approach offer the entropy of ∼1. The execution time required to generate the cryptographic keys on
different processors is also examined. The results reveal that our SEF approach is in average 1.8 times faster
than existing key generation approaches which only utilize the inter pulse interval feature of ECG.

INDEX TERMS Cryptographic key generation, electrocardiogram, bio-electrical signal, body area network.

I. INTRODUCTION
Body Area Network (BAN) is one of the main enabling
technologies for ubiquitous healthcare systems [1]. It has
emerged as a new design to carry out remote patient mon-
itoring efficiently. BAN comprises of medical sensors that
obtain, process, manage, transmit, and store patients’ health
information at all times. Sincemedical sensor nodes deal with
patients’ vital health data, securing their communication is an
absolute necessity [2]. Without robust security features not
only patients’ privacy can be breached but also adversaries
can potentially manipulate actual health data resulting in
inaccurate diagnosis and treatment [3].

Medical sensors rely on cryptography to secure their com-
munications [4]. Proper application of cryptography requires

the use of secure keys and key generation methods. Key
generation approaches that are proposed for generic wireless
sensors are not directly applicable to tiny sensors used in
BANs as they are highly resource-constrained and demand
a higher security level [5]. Key generation in sensor networks
generally requires some form of pre-deployment. Neverthe-
less, given the constrained nature of medical sensors used in
BSNs, conventional key generation approaches may poten-
tially involve reasonable computations as well as latency dur-
ing network or any subsequent adjustments, due to their need
for pre-deployment. Biometrics are generally regarded as
the only solution that is lightweight, requires low resources,
and indeed can identify authorized subjects in BANs [4],
[6]–[8]. By developing robust key generation approaches
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using biometric systems, the security of medical sensors can
be offered in a plug-n-play manner where neither a net-
work establishment nor a key pre-distribution mechanism is
required. Cryptographic keys can be generated within the
network on the fly through the usage of information collected
by medical sensors. Furthermore, key revocation and renewal
will be done automatically when and as needed. The choice
of a biometric to be used for generating cryptographic keys
relies on the capability of medical sensors on extracting
an individual’s relevant biometric information. The selected
feature(s) should also meet the following design goals [4]: (i)
Distinctive, meaning that it should be different for different
subjects at any given time. (ii) Time-variant, meaning that it
should be different for the same person at different time inter-
vals. (iii) Random, meaning that it should be cryptographi-
cally random to provide security. A low degree of randomness
enables an attacker to acquire a patient’s cryptographic key
and manipulate their medical data. (iv) Universal, meaning
that the feature should be measurable from each subject.

Iris, fingerprints, and voice are some physiological features
of the body which have the potential to identify individuals
with a high degree of assurance. However, these biometric
traits are not secure enough to be used for key generation
techniques. The reason is that people often leave their finger-
prints everywhere, audio recorders can be utilized to deceive
speech recognition systems, and iris images can be captured
by hidden cameras [1]. Over the last decades, several efforts
have been made for the development of the next genera-
tion of biometrics known as internal biometrics (also called
physiological biometrics or bio-signals) [9]. The main physi-
ological biometrics include electrocardiogram (ECG), elec-
troencephalogram (EEG) [10], and photoplethysmogram
(PPG) [11]. From mentioned bio-signals, ECG is the only
fiducial-based physiological signal of humans. Fiducials are
points of interest (P, Q, R, S, and T waves) that can be
extracted from each ECG signal. It has been found that
the ECG meets the aforementioned design goals of a bio-
metric trait to be used for cryptographic key generation
techniques [4], [7].

Current ECG-based cryptographic keys are mostly gener-
ated using Inter Pulse Interval (IPI) feature of an ECG signal
[5], [7], [12]–[16]. IPI is measured from two consecutive
R peak points where the R peaks are the tallest and most
conspicuous peaks in an ECG signal. In [17], we demon-
strated that existing IPI-based key generation approaches
suffer from a low level of security in terms of distinctive-
ness, test of randomness, and temporal variance. In this
regard, in [17], we presented two different ECG-based cryp-
tographic key generation approaches that offer higher secu-
rity levels compared to conventional approaches. More pre-
cisely, we proposed to integrate Cryptographically Secure
Pseudo-Random Number Generators (CSPRNG) along with
IPI sequences to generate robust ECG-based cryptographic
keys. First, we proposed a strengthened IPI-based key gener-
ation approach using a sequence of IPIs and the Fibonacci
Linear Feedback Shift Register Pseudo Random Number

Generator (LFSR-PRNG), called IPI-PRNG [18]. Second, we
proposed an alternative key generation approach that utilized
the Advanced Encryption Standard (AES) algorithm [19] and
IPI sequences as the seed generator for the AES, called IPI-
AES. In IPI-PRNG and IPI-AES approaches, our main focus
was to enhance the security of the generated cryptographic
keys while realizing a clear trade-off between the security
level and key generation execution time.

In this article, we propose a new approach, called Several
ECG Feature (SEF) based cryptographic key generation. The
SEF approach alleviates the key generation execution over-
head of the existing as well as our previous approaches, while
preserving the achieved high security levels. The proposed
approach is applied to both normal and abnormal ECG sig-
nals. The main contributions of this article, which is a major
extension of our recent work published in [17], are threefold:
• The SEF approach uses 4 main reference-free1 features
of the ECG signal (being extracted from every ECG
heartbeat cycle) along with consecutive IPI sequences
to generate ECG-based cryptographic keys.

• To reinforce and enhance the security level of our
approach, we consolidate the SEF key generation
approach with two different cryptographically secured
pseudo random number generators: (i) SEF-PRNG: we
strengthened the security level of the SEF approach by
exploiting the Fibonacci-LFSR pseudo random num-
ber generator (ii) SEF-AES: our SEF approach is also
strengthened by utilizing the AES algorithm in counter
mode. This technique exploits our SEF key generation
approach as the seed generator for the AES algorithm.

• We evaluate the efficiency of our SEF, SEF-PRNG,
and SEF-AES approaches by simulations in terms of
distinctiveness, test of randomness, temporal variance,
and execution time on real ECG data from 239 subjects
with different heart health conditions.

The remainder of the paper is organized as follows:
in Section II, the related work and motivation are dis-
cussed. In Section III, bio-electrical signals and ECG char-
acteristics are discussed. Section IV presents the proposed
cryptographic key generation approaches utilizing the ECG
bio-electrical signal. Simulation results including distinctive-
ness, test of randomness, temporal variance, and key genera-
tion execution time are provided and discussed in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK AND MOTIVATION
In [20]–[24], fuzzy vault-based bio-cryptographic key
generation protocols are proposed for BANs. In each of
these protocols, frequency domain characteristics of PPG
and ECG signals are used as the physiological parameters.
Bao et al. [25] presented an entity authentication protocol
and a fuzzy commitment-based key distribution protocol, in
which the IPI values generated from the PPG signals are

1In this context, the reference-free property indicates a dynamic technique
in which no ECG fiducial point is fixed as reference.
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employed as the physiological parameters. In their work,
adaptive segmentation is used to divide the value range of
the IPI into segments. The main drawback of the above-
mentioned approaches is that they are not applicable enough
to be used for generating cryptographic keys for medical
sensors. This is due to the required heavy-weight computa-
tions. Poon et al. [4] and Zhang et al. [7] further evaluated
the performance of Bao et al.’s [25] approach using both PPG
and ECG signals with respect to their error rates. In another
study by Bao et al. [12], another solution is proposed for
which physiological parameter generation is utilized in a bio-
cryptographic security protocol. The authors claimed that the
physiological parameters which are generated utilizing the
individual and multi-level IPI sequences have comparable
distinctiveness and randomness. Nevertheless, the latency of
these approaches is very high as 256 IPIs are required in order
to generate a 64 bit cryptographic key.

Altop et al. [5] and Xu et al. [14] proposed key gen-
eration approaches in which the IPI values generated from
ECG signals are utilized. In both of these works, the authors
employ Gray encoding to map each IPI value to a 4-bit binary
number using a uniform quantization method. According
to the authors, the generated physiological parameters pass
the randomness measurement tests presented by the NIST
test benchmark [26]. They also stated that the generated
physiological parameters pass both temporal variance and
distinctiveness tests. However, in [5] and [14] no related
numerical information for experimental performance evalu-
ation in terms of key generation execution time is provided.
In addition, compared to our approach, these works have
failed to provide as high a security level as our approach in
terms of distinctiveness, test of randomness, and temporal
variance. Zhang et al. [7], Poon et al. [4], and Bao et al. [12]
evaluated the performance of the physiological parameter
generation, utilizing both PPG and ECG signals. The authors
developed physiological parameter generation techniques
which can be utilized in bio-cryptographic key generation
approaches. In their work, these authors claimed that phys-
iological parameters generated utilizing IPI sequences offer
promising features to be exploited for cryptographic key
generation approaches.

Zheng et al. [27] proposed a time-domain physiological
parameter generation method. They used the time distances
between the R peaks as the reference points and other
peak values of an ECG signal from one heartbeat cycle.
The authors claimed that their solution is faster than the
conventional IPI-based methods and it ensures the property
of randomness. However, their proposed approach lacks reli-
ability as it is only applicable to ECG records collected form
subjects with normal ECG rhythm or subjects with no sever
cardiovascular diseases. In healthcare systems, subjects often
suffer from Cardiovascular Diseases (CVDs) such as Cardiac
Arrhythmia, Poor R-wave Progression,Myocardial infraction
and Anterior Wall MI in which the R peaks are not easily
detectable, or might be even missing within one heartbeat
cycle. Choosing the R peak as the reference for calculation

all the other features is not always reliable to be used for the
binary sequence generations. In addition, as the main focus
of the approach present in [27] is on rapid key generation,
distinctiveness and temporal variance properties were not
analyzed and reported in their approach. In this context, we
claim that a robust ECG-based cryptographic key generation
approach needs to cover both healthy and unhealthy human
subjects. This necessities ECG features selection which is
independent of any reference point. In a scenario where one
or more fiducial points cannot be detected (due to some
abnormalities), the system tries to compute and use as many
features as it can collect from the current heartbeat cycle.
This will be continued until the next heartbeat cycle(s) that
ECG signal becomes normal. When ECG features selection
is independent of any reference point, the efficiency and
reliability of the ECG-based cryptographic key generation
will not be affected.

In [17], our main focus was on the development and
analysis of secure and efficient ECG-based cryptographic
key generation techniques. We proposed two different ECG-
based cryptographic key generation approaches for which the
IPI feature of ECG underlays both of the approaches. The
aim was to enhance the security of BANs through a robust
key generation approach where keys are generated on the
fly without requiring key pre-distribution solutions. It was
realized that there is a clear trade-off between the security
level and the key generation execution time of the proposed
ECG-based cryptographic key generation approaches. This
article essentially extends our previous work by reducing the
key generation execution times yet providing high security
levels. Our proposal is motivated by the fact that to alleviate
the key generation execution times, while preserving high
security levels, other main features of an ECG signal in addi-
tion to RR (also known as IPI) can be exploited. In this regard,
our proposed approach exploits the main fiducial points of an
ECG signal to detect and compute the the main ECG features.
The utilized main features include PR, RR, PP, QT, and ST
intervals. This is based on the fact these features are highly
reliable and ensure the randomness property. For this purpose,
we have comprehensively studied the aforementioned main
features of most known ECG signals ranging from normal
to abnormal ones belonging to patients with various cardio-
vascular diseases. We have also investigated the property of
randomness of the aforementioned features to ensure that they
can be used along with IPI for generating cryptographic keys.
We hypothesize that, by exploiting additional features, cryp-
tographic keys can be generated faster and in more efficient
and reliable manner than those approaches which rely only on
singleton IPI sequences and require R peaks as the reference
points. Our approach considers both normal and abnormal
electrocardiogram signal waveforms.

III. BIO-ELECTRICAL SIGNALS AND
ELECTROCARDIOGRAM (ECG) CHARACTERISTICS
A Bio-electrical signal is any signal that can be continu-
ously monitored and measured from any living being’s body.
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Bio-electrical signals refer to the change in electric current
generated by the sum of an electrical potential difference
across an organ, a specialized tissue or a cell system. Such
signals are low frequency and low amplitude electrical signals
that can be measured from biological beings, for instance,
humans.

ECG is a rhythmically repeating and quasi-periodical sig-
nal which is synchronized by the function of the heart, and the
heart performs the generation of bio-electrical events. It is the
electrical manifestation of the contractile activity of the heart
that is recorded at the chest level by measuring signal levels
from several electrical leads attached to the patient’s skin.
ECG has been mainly employed in various medical applica-
tions. For instance, it has been utilized to diagnose cardiac
diseases, which are one of the leading causes of death in the
world [28]. Over the last few decades, there have been many
efforts to develop automatic and computer-based diagnostics
of heart failures [6], [21], [29]–[31]. Recently, ECG has been
broadly utilized for biometric identification [32]–[35].

ECG signals consist of a series of positive and negative
waves. Signals captured from each lead provide different
information. In a single heartbeat cycle, there are particular
waves called P, QRS and T that can be recognized using
different leads for measurement. The first peak, the P wave,
is a small upward wave, which specifies atrial depolarization.
Approximately 160 ms after the onset of the P wave, the QRS
wave is produced by ventricle depolarization. The ventricular
Twave in the ECG indicates the stage of re-polarization of the
ventricles. A significant modification concerning the ECG
anatomy occurs from birth to adolescence, that is, during the
first 16 years of life [36]. According to the study presented
in [36], the amplitude of the P wave does not change consid-
erably while the amplitudes of the S and Rwaves reduce from
childhood to adolescence. A progressive modification of the
Twave from childhood to adolescence has also been stated by
Dickinson [37]. 48 In addition, the QT interval will shorten
much more than the rest of the intervals when the heart rate
increases. This change can be corrected by normalizing the
QT interval according to the heart rate. The dependence of
the QT interval to heart rate can be adjusted utilizing Bazett’s
QT interval correction for which the corrected QT interval is
found to be somewhat constant over the years [38]. It should
be mentioned that for simplicity, we have not considered QT
interval correction/normalization in this article. Aging does
not affect any gender-based variances in cardiac electrophys-
iological properties in adolescents. However, stress, anxiety,
and physical exercise can change the Heart Rate Variability
(HRV) and morphology [36].

IV. GENERATING CRYPTOGRAPHIC KEYS UTILIZING
ECG BIO-ELECTRICAL SIGNAL
Medical sensors rely on cryptographic keys to secure end-
to-end communications or encrypt/decrypt messages that
need to be conveyed between the sensors and health
caregivers [17], [39]. Solutions based on cryptographic keys
generated from individuals’ ECG signals are best suited for

tiny medical sensors as these solutions are lightweight and
require low resources [8]. By developing robust and effi-
cient cryptographic key generation approaches, the security
of medical sensors can be offered in a plug-and-play man-
ner where neither a network establishment nor a key pre-
distribution mechanism is required. Cryptographic keys can
be generated within the network on the fly via the usage
of ECG data collected by medical sensors when and as
needed. The generated keys can be employed, for example,
in end-to-end communications to securely encrypt/decrypt
patients’ medical data being transferred between sensors
and health caregivers [17], [39]. The keys can also be used
for authentication and authorization of peers, confidentiality,
and integrity of the conveyed messages in BSNs [40]–[42].
A robust cryptographic key generated within a BAN can also
prevent probable attack scenarios including passive informa-
tion gathering and message corruption, replay attacks and
Denial of Service attacks (DoS), just to name a few.

As Fig. 1 presents, the first step to generate ECG-based
cryptographic keys is raw ECG data acquisition from sub-
jects. The collected ECG data include information about the
heart rate, morphology, and rhythm being recorded by placing
a set of electrodes on body surfaces such as neck, chest,
legs, and arms. Once collected, raw ECG data needs to be
prepared for further analysis. Analysis of the ECG signal can
be split into two principal steps by functionality: ECG signal
pre-processing and feature extraction.

A. ECG SIGNAL PRE-PROCESSING
The collected data fromECG signals normally contains noise.
The noise has to be removed since the presence of noise
makes the analysis and the classification of the data less
accurate. Pre-processing suppresses or removes noise from
an ECG signal by employing an appropriate filtering scheme.
Hence, pre-processing is an essential task prior to extracting
the features of an ECG signal.

B. ECG SIGNAL FEATURE EXTRACTION
ECG feature extraction is a procedurewhere themain features
of a sample are extracted. The main objective of the ECG
feature extraction process is to select and maintain relevant
data of an original signal. Current ECG feature extraction
methods are classified into two major classes, fiducial meth-
ods and non-fiducial methods. In fiducial methods, points of
interest including P, Q, R, S, and T within a single heart-
beat waveform (i.e., local minima or maxima or amplitude
difference between consecutive fiducial points) are used.
Algorithms based on non-fiducial points do not utilize pecu-
liar points to generate the feature set. Non-fiducial methods
extract discriminative data from an ECG signal without hav-
ing to concentrate on fiducial points. They are prone to a
high dimension feature space, which in turn propagates the
computational overhead and requires more information for
trainings that are practically unbounded [43]. High dimen-
sional information may include irrelevant and superfluous
data that can degrade the performance of the classifier. In this
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FIGURE 1. Block diagram of ECG signal analysis and n-bit binary sequence generation using consecutive IPI sequences.

article, a fiducial-based algorithm is employed to perform the
ECG feature extraction task. In particular, Discrete Wavelet
Transform (DWT) is utilized to extract the required features
of individuals’ ECG signal.

The DWT is a prevalent technique for frequency and time
analysis. Wavelet transformation is a linear function which
decomposes a signal into components at different resolutions
(or scales). Let ψ(t) be a real (or complex valued function)
∈ L2(R). The ψ(t) function can be considered as a wavelet,
if and only if, its Fourier transform ψ̂(ω) satisfies the follow-
ing equation [43]:∫

∞

−∞

(
|ψ̂(ω)|2

|ω|
) = Fψ <∞ (1)

This tolerability clause implies that:∫
∞

−∞

ψ(t)dt = 0 (2)

This means that ψ(t) is oscillatory which its area is equal to
zero. Let ψx(t):

ψx(t) =
1
√
x
ψ
( t
x

)
(3)

be the dilation of ψ(t) by a scale factor of x > 0. In the
above expression, 1

√
x is utilized for energy normalization.

Wavelet transform utilizes a series of small wavelets with
confined duration in order to decompose a signal. Therefore,
the wavelet transform of a function f (t) ∈ L2(R) at scale x
and position l can be written as:

Wf (x, l) =
1
√
x

∫
∞

−∞

f (t)ψ∗(
t − l
x

)dt (4)

where x is the scale factor, l is the translation of ψ(t) and *
denotes the complex conjugate of ψ(t).
The non-stationary nature of ECG signals allows one to

extend principal functions produced by shifting and scaling
of a single prototype function denoted as the mother wavelet.
Various wavelet families including Haar and Daubechies
exist in the literature and have been broadly utilized for the
ECG feature extraction. Haar wavelet is the simplest form of
wavelets. Haar wavelet is simple to understand and easy to
compute, while some detailed information cannot be captured
using it. Daubechies wavelet is theoretically more complex
than Haar and has higher computational overhead. But it is

more reliable as it can capture details that are missed by the
Haar wavelet [28].

In this article, the Daubechies wavelet transform is used
for the ECG feature extraction due to the higher reliability it
offers. More specifically, Daubechies DB4 wavelet is chosen
due to the resemblance of its scaling function to the shape
of ECG signals [44]. R peak detection is the core of the
Daubechies DB4 wavelet feature extraction where the other
fiducial points are extracted with respect to the location of
the R peak points. DB4 has four wavelet and scaling function
coefficients. Each step of the wavelet transform uses the
wavelet function to the input data. If the main dataset has N
values, the wavelet function needs to be applied in order to
calculate N/2 differences which reflect change in the data. In
the ordered wavelet transform, the wavelet values are saved in
the upper half of the N element input vector. The scaling and
wavelet functions are computed by taking the inner output
of the coefficients and four data values. The scaling function
coefficients (h) and thewavelet function coefficient (g) values
can be written as:

h0 =
1+
√
3

4
√
2
= −g3 h1 =

3+
√
3

4
√
2
= g2

h2 =
3−
√
3

4
√
2
= −g1 h3 =

1−
√
3

4
√
2
= g0 (5)

Daubechies DB4 scaling (a) and wavelet (c) functions can be
denoted as:

ai = h0S2i + h1S2i+1 + h2S2i+2 + h3S2i+3
ci = g0S2i + g1S2i+1 + g2S2i+2 + g3S2i+3 (6)

Each iteration in DB4 step computes a scaling function value
and a wavelet function value. The index i is incremented by
two with each iteration, and new scaling and wavelet function
values are computed. It should be mentioned that a normal
ECG signal consists of observable P waves, QRS complex
and T waves (See Fig. 2). In a normal sinus rhythm, the heart
rate for an adult ranges between 60-100 beats per minute.
All the main intervals on such an ECG recording are also
within normal ranges. Nevertheless, cardiac abnormalities
may also be observed in various datasets. These abnormal-
ities usually occurs when patients are suffering from specific
cardiovascular diseases, such as myocardial infraction, super
vascular arrhythmia, malignant ventricular arrhythmia, and
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other dangerous types of arrhythmia. Even normal subjects’
ECG signals may have some variations due to anxiety, stress,
and physical exercises. In these scenarios, the peak values
of some waves may not be detectable within one heartbeat
using the most common order of the Daubechies wavelet,
that is DB4. Hence, the intended main ECG features cannot
be extracted and computed. In such scenarios, it is found
that DB6 and DB9 are the best candidates among different
Daubechies scales to extract features from abnormal types
of ECG signals [28], [45]. This is because these Daubechies
scales keep certain details and squaring of the remaining
signal approximation which result in reliable detection of the
R peak points. Once the R peak points of an abnormal ECG
signal are detected (using the aforementioned DB scales),
other main peak values can be detected with respect to the
position of R. Based on the above discussion, the optimum
choice of the DB scales relies on the application and the type
of ECG signals need to be used. This means that if some of
the main features of an ECG signal cannot be extracted by
one order of the Daubechies wavelet transform, another scale
may provide more detail and accurate results. Thus, there will
be low chance that the efficiency of the ECG-based crypto-
graphic key generation approaches is affected. It should be
also mentioned accuracy and reliability is more efficient with
the higher Daubechies scales. While, the higher Daubechies
scales require more coefficients as well as processing time.

1) QRS COMPLEX AND R PEAK DETECTION
The detection of the R peak is the first step of feature extrac-
tion. In an ECG signal, the R peak has the highest ampli-
tude among all waves. The QRS complex detection involves
specifying the R peak of the heartbeat. Most of the energy of
the QRS complex lies between 3-40 Hz and the detection of
the QRS complex relies on modulus maxima of the Wavelet
Transform. This is due to the fact that modulus maxima and
zero crossings of the Wavelet Transform correspond to the
sharp edges of an ECG signal. The QRS complex generates
two modulus maxima with opposite signs having a zero
crossing between them. In a normal ECG signal, the Q and S
points occur about 0.1 second before and after the occurrence
of the R peaks, respectively. The left point denotes as the Q
point and the right point denotes the S point. The QRS width
can also be computed from the onset and the offset of the
QRS complex. The onset can be defined as the beginning of
the Q wave and the offset can be defined as the ending of the
S wave.

2) P AND T PEAKS DETECTION
The P wave generally comprises of modulus maxima pair
with opposite signs. The T wave also has similar character-
istics to the P wave. For the P and the T peak detections, the
lower and higher frequency ripples of the signal need to be
removed. To detect the P wave, this pair needs to be searched
within a window prior to the onset of the QRS complex.
The search window starts at about 200 ms before the onset
of the QRS complex and ends after the onset of the QRS

FIGURE 2. An ideal raw ECG signal and the filtered ECG signal with the
main fiducial points indicated.

complex. The zero crossing among the modulus maxima pair
corresponds to the peak points of the P wave. The extremum
of the signal after the zero crossings of each R peak is denoted
as T.

3) PR, RR, PP, QT, AND ST INTERVALS
The PR interval is specified as the interval between the onset
of the P wave and the onset of the R wave. The RR inter-
val is defined as the time elapsed between the adjacent R
peaks. Heartrate can be calculated as the reciprocal of the
RR interval, that is, the time difference between two R peak
points. The PP interval is specified as the interval between
the adjacent P waves due to atrial depolarization. The PP
interval is utilized to calculate the atrial rate. The ST interval
is denoted as the interval between the offset of the S-wave and
offset of the T-wave. The QT interval is computed by finding
the difference between the onset of the Q wave and the offset
of the T wave. These intervals are utilized as the main ECG
features in this article.

In [17], we presented two different ECG-based crypto-
graphic key generation approaches which use singular ECG
feature, that is IPI. Our first approach, IPI-PRNG, relied
on a pseudo-random number generator and consecutive IPI
sequences. The second approach, IPI-AES, relied upon the
AES block cipher in counter mode, using IPI as the seed
generator for the AES algorithm. It should be noted that, more
explanations and details regarding our IPI-PRNG and IPI-
AES approaches can be found in [17]. The following section
presents our proposed cryptographic key generation utilizing
several ECG features. The proposed approach extends our
previouswork by reducing the key generation execution times
yet providing high security levels. Our proposal is motivated
by the fact that to alleviate the key generation execution times,
while preserving high security levels, other main features of
an ECG signal in addition to IPI can be exploited.

C. GENERATING CRYPTOGRAPHIC KEYS UTILIZING
SEVERAL ECG FEATURES (SEF)
In this section, we present a new cryptographic key gen-
eration approach, called SEF, which employs other main
features of an ECG signal rather than using just singleton IPI.
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FIGURE 3. The normal distribution of PR, PP, QT, and ST intervals.

We describe and justify in more detail the selected features
to be used along with the IPI feature of the ECG signal for
generating cryptographic keys.

The SEF cryptographic key generation approach uses all of
the main ECG features from one heartbeat cycle. The utilized
features are PR, RR (also known as IPI), PP, QT and ST. The
major reason to use such features is that P, Q, R, S and T
waves are noticeable within an ECG signal rhythm for which
PR, RR, PP, QT and ST intervals are known as the main
and normal components of an ECG waveform [6]. In cardi-
ology, the PR interval is the period which extends from the
beginning of the onset of atrial depolarization (P wave) until
the beginning of the onset of ventricular depolarization (the
QRS complex). The PR interval is normally between 120 to
200 ms in duration. The PP interval is the distance between
consecutive P waves due to atrial depolarization. The PP
interval is utilized to calculate the atrial rate. In a normal ECG
signal, the PP interval and the RR interval are equivalent.
Thus, atrial rates and ventricular rates are not independently
separated.

In an abnormal ECG signal, for example, when there is
an atrioventricular dissociation due to complete heart block,
the atrial rate is different from the ventricular rate. This
causes for the PP interval to be shorter than the RR interval,
meaning that atrial rate is greater than the ventricular rate. The
normal PP interval is more than 180-190 ms in duration [6].
The QT interval is measured as the time between the initiation
of the Q wave and the termination of the T wave in the
heart’s electrical cycle. The QT interval demonstrates electri-
cal re-polarization and depolarization of the ventricles. The
QT interval is an important feature of the ECG in a sense that
it is a marker for the potential of ventricular tachyarrhythmias
as well as a risk factor for sudden death. Similar to the
RR interval, the QT interval relies on the heart rate. This
means that the faster the heart rate, the shorter the RR and
QT intervals. This variation can be corrected by normalizing
the QT interval according to the heart rate. It should be

mentioned that, specifying whether or not the QT interval is
normal is not totally a straightforward task as the duration
differs according to the patient’s heart rate. To allow for this,
the corrected QT interval (QTc) must be calculated using
Bazett’s equation [38]:

QTc =
QT
√
RR

(7)

where QT is the measured QT interval, QTc is the corrected
QT interval, and RR is the computed RR interval. The normal
corrected QT interval is below 0.46 for women and below
0.45 formen. In this article, for the sake of simplicity, we have
not considered the QT interval correction presented above.
Finally, the ST segment specifies the time that ventricles
pump the blood to the lungs and the body. The ST segment
connects the QRS complex and the T wave which also serve
as the base-line from which to measure the amplitudes of
the other waveforms. The normal ST segment has a duration
of 80-120 ms. In [17], we presented that the fluctuation
of the RR interval fits into the normal distribution which
indicates the randomness of RR intervals. This finding was
also supported by our measurement of entropy, the NIST
benchmark, and the Chi-square test presented in [4] and [7].
Likewise, in this section, we show that the distributions of
PR, PP, QT and ST intervals also fit into the normal dis-
tribution. Thus, these features can be utilized along with
RR interval for ECG-based cryptographic key generations.
The feasibility of using the PR, PP, QT, and ST intervals is
based on the fact that all these features should also fulfill
the property of randomness. We examined this property by
collecting 30 seconds ECG data of different subjects obtained
from the Physiobank database [46]. From the collected ECG
data, we have computed all of the consecutive ECG features
and plotted their histograms. As can be seen from Figure 3,
similar to the RR interval, the distribution of PR, PP, QT
and ST intervals also fit into the normal distribution. Hence,
these additional main ECG features also fulfill the property
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of randomness. This is an essential property to ensure that
the cryptographic keys which are generated from these ECG
intervals are random. Moreover, in [17], we extracted a fixed
number of 8 bits from each IPI. This was done using a
Pulse CodeModulation (PCM) [47] binary encoder. PCM is a
digital interpretation of an analog signal which takes samples
of the amplitude of the analog signal at certain intervals. The
sampled analog data then is quantized and represented as a
digital n-bit binary number. Bit 1, most significant bits, is
the first bit that specifies the polarity of the sample. Bit ‘‘0’’
represents negative polarity and bit ‘‘1’’ represents positive
polarity. Bits 2, 3, and 4 reveal the segment where the sample
data is placed. Bits 5, 6, 7, and 8, least significant bits, define
the quantized value of the sample inside one of the segments.

In this article, we enhance our approach by using a dynamic
technique which can specify the optimized number of bits
that can be extracted from each ECG feature. In this regard,
our comprehensive analyses have revealed that the alteration
range of each ECG feature differs whitin each dataset. This
is due to the fact that each ECG feature offers different
Standard Deviations (SDs) andmean values. These variations
are visible for the PR, PP, QT, and ST features as shown
in Figure 3. As a result, extracting a fixed number of bits
(e.g., 8 bits) per ECG feature is not an efficient and optimum
solution. Therefore, an efficient technique is required where
the number of binary values per ECG feature can be extracted
as optimum as possible while considering the variation range
of SDs and mean values per ECG feature. Based on the
discussion above, we utilize a dynamic technique in order
to specify the optimized number of bits which need to be
extracted from each ECG feature. The used technique enables
to extract optimal binary values and ensures the randomness
property as the binary sequences are produced based on the
real-time variation of the measured ECG signal [27]. The
utilized technique to determine the number of optimum bits
(M) can be defined as:

µ(FXi) =
1
N

N∑
i=1

xi (8)

SD(FXi) = σ (FXi) =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (9)

Cv =
σ (FXi)
µ(FXi)

(10)

M = d
ln (σ (FXi))

ln(2)
e + dCve (11)

where FXi represents a set of any one of the PR, PP, QT,
and ST features from one sampled ECG dataset in the ith
heartbeat, xi represents each value in the dataset, µ is the
mean value of the dataset,6 is the summation,N is defined as
the number of values in the dataset, σ indicates the standard
deviation of a dataset, and Cv is the coefficient of variation
which is defined as the ratio of the standard deviation to
the mean value. The main reason to use the ln function in
the equation (14) is that from the information theory point

of view, ln provides a solution for determining the number
of optimal bits needed in a code (even when the code is
not known). Since the SD and mean values of each main
feature within one ECG dataset are different, the number of
extracted optimum bits vary accordingly. In the jth heartbeat,
the efficient number of binary bits Bopt that can be extracted
efficiently from one ECG feature can be defined as:

Bopt = GET_BITS_FROM_FLSB(FXj, lsb,M ) (12)

FLSB is a function which extracts M bits from Least Signif-
icant Bits (LSB) of its input FXi. By exploiting the afore-
mentioned technique, optimumbinary values can be extracted
from the required main ECG features per heartbeat cycle. The
extracted binary values per heartbeat cycle then need to be
concatenated to form an m-bit binary sequence. Finally, to
generate an n-bit sequence using the SEF approach, binary
sequences which are produced from k consecutive heartbeats
are required to be concatenated.

Our study also reveals that the variation range of all of the
main ECG features differs in different ECG datasets. To give
an example, the number of optimum binary values which can
be extracted from the PR feature of Normal Sinus dataset is
not identical to the number of the binary values which can
be extracted from PR feature of the European ST-T dataset.
Table 1 presents the results of different subject groups which
we have investigated for this purpose. We have selected 10 of
the most-known ECG recording and cardiovascular disease
datasets from the open source Physiobank database [46].
In this regard, from each of the following 10 datasets, 5 sub-
jects are randomly chosen for this study. The last dataset,
that is, the motion artifact ECG, includes short duration ECG
signals recorded from one healthy 25-year-old male perform-
ing different physical activities. The selected datasets are:
(i) Motion Artifact Contaminated ECG Database, sampled
at 500 Hz per second with 16-bits resolution, (ii) Super
Vascular Arrhythmia (Arrhyth.) sampled at 125 Hz,
(iii) Malignant Ventricular Arrhyth. sampled at 250 Hz,
(iv) MIT-BIH Long-Term sampled at 360 Hz, (v) Atrial Fib-
rillation sampled at 250 Hz, (vi) MIT-BIH Arrhyth. sampled
at 360 Hz, (vii) Myocardial Infraction sampled at 125 Hz,
(viii) MIT-BIH Noise Stress sampled at 360 Hz, (viiii) Euro-
pean ST-T Database sampled at 250 Hz, and (x) Normal
Sinus sampled at 128 Hz. The main motivation to select
these datasets is the fact that they are among the most recog-
nized ECG recordings and prevalent cardiovascular diseases
according to Physiobank [46]. Moreover, no recognizable
ECG recording nor a specific patient having one of these
cardiovascular diseases is found among each dataset. Thus,
any bias that can help in the identification of a specific
subject cannot be found. It should be also mentioned that in a
motion artifact contaminated ECG database, there is no other
information than the subject’s age and gender available. Our
experiments to extract the ideal number of binary values from
all of the main ECG features of each ECG dataset are pre-
sented in Table 1. As can be deduced from our measurements,
the optimum number of binary values which can be extracted
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TABLE 1. Optimum binary sequences produced from main general
features of ECG signals of subjects with different heart health conditions.

from various features of one ECG dataset totally differs from
one dataset to another. This is due to the utilization of the
aforementioned technique (where the optimum number of
bits can be extracted from each main ECG feature) instead
of a fixed number of bits representation since each feature of
the ECG has different mean and SD values.

According to the above discussion, in the SEF key genera-
tion approach, depending on the length of the cryptographic
key n that needs to be generated, approximately d n16e con-
secutive ECG heartbeat cycles need to be detected. From the
detected heatbeats, all of the main ECG features (PR, RR,
PP, QT and ST) from a t-second segment of a patient’s ECG
data need to be computed. To achieve this goal, the following
tasks are required to be performed: (i) for a specified period
of time t, the main fiducial points or peaks of a sensed ECG
signal (P, Q, R, S, and T) should be extracted utilizing a
generic feature extraction function, (ii) from the detected
fiducial points, the required x consecutive ECG features (PR1,
RR1, PP1, QT1, ST1), (PR2, RR2, PP2, QT2, ST2), . . . , (PRx ,
RRx , PPx , QTx , STx) should be computed, (iii) from the
computed main ECG features, the amount of optimum binary
values per ECG feature needs to be calculated. This should
be done using an equation where the ideal binary values
per ECG feature, that is m1, m2, . . . ,mx , will be selected
based on their mean values and SDs, and (iv) the generated
mi-bit binary sequences from each ECG feature then need to
be concatenated in order to form an n-bit binary sequence.
The generated n-bit binary sequence is considered as themain
cryptographic key generated using this approach. It should
be mentioned that the produced n-bit binary sequence using
the SEF approach underlays the SEF-PRNG and SEF-AES
approaches presented in the following sections.

1) STRENGTHENING SEVERAL ECG FEATURE-BASED KEY
GENERATION THROUGH PRNG (SEF-PRNG)
Similar to the IPI-PRNG, the SEF-PRNG approach also
consists of two main phases: (i) generating an n-bit binary
sequence from each subject’s ECG data. To do this, as dis-
cussed previously, about d n16e heartbeat cycles of a patient’s
ECG data needs to be collected. From the collected data,
consecutive PR, RR, PP, QT, and ST features each of which

encoded into its optimum x-bit binary value (using the pre-
viously mentioned technique) need to be computed. After
that, the aforementioned steps in SEF approach need to be
performed in such a way that for each subject, an n-bit
binary sequence is generated. (ii) a Pseudo Random Num-
ber Generator (PRNG) is used to generate a random n-bit
binary sequence. To generate a random n-bit binary sequence,
the Fibonacci Linear Feedback Shift Register (LFSR) is
employed. We have utilized the Fibonacci LFSR function
of MATLAB similarly as we did in the IPI-PRNG approach
to produce a random n-bit binary sequence. Once the n-bit
random binary sequence is generated (using the Fibonacci
LFSR function), the main cryptographic key can be gener-
ated. If SEFn is the n-bit binary sequence generated from
ECG and and FLFSRn is the n-bit random binary sequence
generated using the Fibonacci LFSR, the main n-bit crypto-
graphic key is produced by XORing the outputs of phases (i)
and (ii).

2) STRENGTHENING SEVERAL ECG FEATURE-BASED KEY
GENERATION THROUGH AES (SEF-AES)
Similarly as IPI-AES, the SEF-AES approach also uses the
AES [19] block cipher in counter mode as the cryptographic
pseudo-random number generator to generate n-bit crypto-
graphic keys. In SEF-AES, to generate an n-bit cryptographic
key, two n-bit binary sequences need to be generated as the
main seeds of the AES algorithm. The first seed is considered
as input data (plaintext) of the AES and the second one
is considered as the encryption/decryption key. To generate
these two seeds, we exploit the SEF key generation approach
as the seed generator. To do this, d n8e consecutive heartbeat
cycles of a patient’s ECG signal need to be collected. From
the collected data, consecutive PR, RR, PP, QT and ST
features are encoded into their optimum x-bit binary values
The produced x-bit binary sequences from each heartbeat
cycle further need to be concatenated to form a 2n-bit binary
sequence. After that, the 2n-bit binary sequence needs be
divided into two n-bit binary sequences. The first sequence is
used as the input data (plaintext) and the second one is used
as the AES encryption key. At the final stage, the output of
the AES-n algorithm (ciphertext) is considered as the main
n-bit cryptographic key generated utilizing the subjects’ ECG
signals.

V. EXPERIMENTS AND RESULTS
In this section, we assess the security level and performance
of our proposed ECG-based cryptographic key generation
approaches in terms of distinctiveness, test of random-
ness, temporal variance, and key generation execution time.
We conduct our experiments on both normal and abnor-
mal ECG signals obtained from the publicly available and
widely used database, that is, Physiobank [46]. PhysioBank
comprises of databases of multi-parameter neural, cardiopul-
monary, and other biomedical signals from patients and
healthy subjects with a variety of conditions including sudden
cardiac death, irregular heartbeat (arrhythmia), congestive
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FIGURE 4. The distribution of hamming distance of any two 128-bit cryptographic keys generated using IPI-AES and SEF-AES approaches for subjects
with different heart health conditions. (a) The distribution of hamming distance between any two 128-bit cryptographic keys generated using IPI-AES
approach for subjects with different heart health conditions. (b) The distribution of hamming distance between any two 128-bit cryptographic keys
generated using SEF-AES approach for subjects with different heart health conditions.

heart failure, sleep apnea, and epilepsy. Our experiments are
carried out on both normal and abnormal ECG signals which
are obtained from 239 subjects studied by the Beth Israel
Hospital Laboratory in Boston and Physikalisch-Technische
Bundesanstalt (PTB), the National Metrology Institute of
Germany. The employed ECG signals include: (i) ECG sig-
nals of of 18 subjects (5 men, aged 26 to 45, and 13 women,
aged 20 to 50) with Normal Sinus Rhythm. The recordings
are digitized at 128 samples per second with resolution over
a 10 mV range. (ii) ECG signals of 48 subjects with Arrhyth-
mia (22 women of age 23 to 89 and 26 men of age 32 to
89) which they were recorded by a two-channel ambulatory
ECG system. The recordings are digitized at 360 samples per
second with 11-bit resolution over a 10 mV range per patient.
(iii) ECG signals of 25 subjects with Atrial Fibrillation. The
individual recordings are each 10 hours in duration, and
contain two ECG signals each digitized at 250 samples per
secondwith 12-bit resolution over a range of 10mV. (iv) ECG
signals of 148 subjects with Myocardial Infraction (89 men
aged 17 to 87 and 59 women aged 19 to 83). Each signal is
digitized at 1000 samples per second, with 16 bit resolution
over a range of 16 mV. We have captured 100 different sam-
ples of 5minute long ECG data for each subject and evaluated
the efficiency of our approach in terms of distinctiveness, test
of randomness and temporal variance. The collected ECG
signals are filtered using a low-pass filter with a 30 Hz
threshold frequency. Such a filter reduces the environmental
noise and provides a smoother signal for further analysis.
For our experiment, we have generated 128-bit cryptographic
keys using the aforementioned approaches. We have imple-
mented and analyzed our key generation approaches utilizing
MATLAB [48].

A. DISTINCTIVENESS
The first experiment is to determine whether the crypto-
graphic keys generated utilizing the presented approaches are
distinctive for different individuals. Distinctiveness indicates
that the generated keys should be significantly different for
different subjects, at any given time. Hamming Distance
(HD) is utilized as the main metric in order to evaluate the

difference between any two cryptographic keys of equal
length. For two sufficiently long binary sequences, the dis-
tribution of HD should be centered at half of the length of
the binary sequences. This indicates that these sequences are
randomly generated [5]. The reason is that any bit of a random
binary number should have equivalent probability to be zero
or one. Hence, the average of HD of a sufficiently large and
random set of n-bit binary sequences is anticipated to be
about n/2, provided that the binary sequence is distinctive.
For two different bits, i and j, which are extracted from
the same position of two independently generated crypto-
graphic keys (K), the probability P(Ki,Kj) can be represented
as [5]:

P(Ki,Kj) = 0.25 Ki = 1, 0 & Kj = 1, 0 (13)

HDd =
∑
P1 6=P2

(| ECGi,P1 − ECGi,P2 |)
| sig |2

(14)

To evaluate the distinctiveness of different keys generated
using the presented approaches, we use the average Hamming
Distance metric, as defined in Equation (17).
HDd is the computed Hamming Distance between the

cryptographic keys generated using ECG signals of different
subjects, | sig | is the length of the used physiological
signal set, i defines the ECG index, and P1 and P2 defines
the patient’s indexes. We have investigated the distinctive-
ness of the cryptographic keys generated utilizing our SEF,
IPI-PRNG, IPI-AES, SEF-PRNG, and SEF-AES approaches
and compared the results with the conventional IPI approach.
We have sampled the ECG signals of each subject over
100 random start-times. The average HD between the cryp-
tographic keys of the two different subjects generated at the
same start-time is then calculated.

The HDs between different subjects’ cryptographic keys
are calculated (See Figures 4a and 4b). The results of our dis-
tinctiveness calculations show that the average HD between
the cryptographic keys generated from the ECG signals
of two different subjects using IPI, SEF, IPI-PRNG, SEF-
PRNG, IPI-AES, and SEF-AES are 47.76% (≈ 62 bits),
48.13% (≈ 62 bits), 49.09% (≈ 63 bits), 49.41% (≈ 63 bits),
49.84% (≈ 64 bits), and 49.93% (≈ 64 bits), respectively.
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FIGURE 5. NIST pass rate comparison of different ECG-based cryptographic key generation approaches for subjects with different heart health
conditions. (a) NIST Tests, MIT-BIH Arrhythmia. (b) NIST Tests, MIT-BIH Arrhythmia. (c) NIST Tests, MIT-BIH Normal Sinus Rhythm. (d) NIST Tests,
MIT-BIH Normal Sinus Rhythm. (e) NIST Tests, MIT-BIH Atrial Fibrillation. (f) NIST Tests, MIT-BIH Atrial Fibrillation. (g) NIST Tests, PTB-Myocardial
Infarction. (h) NIST Tests, PTB-Myocardial Infarction.

B. TEST OF RANDOMNESS
Generating distinctive and long keys is not sufficient as it is
also necessary to ensure that the keys are sufficiently random
and cannot be predicted easily. Randomness is related to
Shannon entropy. Entropy is a measure of uncertainty for
many cryptographic purposes. The Shannon entropy equation
can be written as [49]:

H (r) = −
n∑
i=1

P(ECGi) log2 P(ECGi) (15)

r is an information source with n mutually exclusive events,
P(ECGi) is the probability of the ith event. According to this
evaluation metric, the randomness level of a binary sequence
increases when H (r) closes to 1.
We have evaluated the randomness of the 128-bit

cryptographic keys generated using the SEF, IPI-PRNG,
SEF-PRNG, IPI-AES, and SEF-AES approaches. Then,
we have compared our results with the conventional IPI
approach. The randomness of the generated keys is evalu-
ated from two perspectives: (i) Shannon entropy and (ii) the
pass rates of the NIST statistical benchmark. To evaluate
randomness from the Shannon entropy point of view, we have
computed the entropy of the keys generated from each sub-
ject’s ECG signal over 100 random start-times using IPI, SEF
IPI-PRNG, SEF-PRNG, IPI-AES, and SEF-AES approaches.
The randomness of the generated cryptographic keys are also
evaluated using the NIST benchmark. The NIST benchmark
is developed for cryptographic random and pseudo-random
number generator applications. The results of the NIST statis-
tical tests are pass rates (also called P-values) which indicate

the probability of randomness of the generated cryptographic
keys. If a P-value is less than the threshold, that is, 1% the
randomness hypothesis fails.

Five main tests proposed by NIST for evaluating random-
ness are utilized in this article. They are the frequency test
(F-Test), the runs test (R-Test), the frequency test within a
block (B-Test) and the test for the longest run of ones in
a block (L-Test). Description of the above-mentioned tests
can be found in more detail in [26] and they are briefly
summarized as follows: (i) The F-Test specifies whether the
number of 0s and 1s in the input sequence are approximately
the same as would be anticipated for a real random sequence.
(ii) The R-Test specifies if the number of runs of 0s and 1s
of different lengths is as anticipated for a random sequence.
Run, refers to an uninterrupted sequence of identical bits.
(iii) The B-Test specifies whether the frequency of 1s in an
N-bit block is approximatelyN/2, as would be expected under
an assumption of randomness. (iv) The L-Test specifies if the
length of the longest run of 1s in the tested sequence is con-
sistent with the length of the longest run of 1s that would be
anticipated in a random sequence. (v) The A-Test compares
the frequency of overlapping blocks of two adjacent lengths,
that is, l and l + 1 versus the expected result for a random
sequence.

As shown in Figures 5, in all approaches the entropy values
as well as the NIST pass rates are close to 1 signifying that
the distribution of 0s and 1s in the generated keys among
the 6 approaches are quite uniform. In addition, we find out
that the randomness of abnormal ECG signals is slightly
worse than the normal ones. This is due to the fact that for
some abnormal ECG signals their ECG feature patterns were
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TABLE 2. Execution time comparison of different ECG-based key generation approaches to produce 128-bit cryptographic keys.

irregular and sometimes hard to be detected. Compared to the
normal ECG signals, abnormal signals are more chaotic and
have larger variation resulting in less reliable ECG features.
For normal ECG signals, the IPI and SEF approaches have
in average the entropy of about 0.98, the IPI-PRNG and
SEF-PRNG approaches, have in average the entropy of about
0.99, and the IPI-AES and SEF-AES approaches offer the
entropy of∼ 1. The results of the test of randomness revealed
that there is no significant difference between the results of
entropy nor the NIST pass rates of any two different cryp-
tographic keys generated using the strengthened IPI-based
and the SEF approaches. The cryptographic keys generated
using the IPI-PRNG, SEF-PRNG, IPI-AES and SEF-AES
approaches provide better randomness in terms of entropy
as well as NIST pass rates compared to the IPI approach
and the SEF approaches. We have found out that the crypto-
graphic keys which are generated utilizing the strengthened
ECG features (IPI or SEF) offer better results in terms of
randomness, that is ∼ 1 entropy, as well as in terms of NIST
pass rates than just utilizing singleton ECG features. A high
level of randomness prevents the cryptographic keys from
being easily predicted by any malicious activity. As a result,
cryptographic keys generated using our proposed approaches
meet the design goal of randomness.

C. TEMPORAL VARIANCE
Being different for the same subject at different time inter-
vals is another main requirement of a binary sequence to be
used as a cryptographic key. Temporal variance measures the
resemblance between two cryptographic keys that are gener-
ated using a bio-signal (i.e., the ECG signal in this context)
of the same subject at different time intervals. The analysis of
the temporal variance also indicates that medical data of one
subject which is encrypted using a robust cryptographic key
cannot be decrypted effortlessly using a non-real time ECG
signal from the same subject.

We evaluated the temporal variance of different 128-bit
cryptographic keys which are generated using the IPI, SEF,
IPI-PRNG, SEF-PRNG, IPI-AES and SEF-AES approaches.
This is to ensure that a new measurement of a subject’s ECG
will not lead to the same key. We have sampled ECG signals

of each subject over 100 random start-times. The average
HDs between the keys of the same subject generated at dif-
ferent start-times are then calculated. To compute temporal
variance, the average HD between cryptographic keys that
are generated utilizing the ECG signal of the same subject
at different start-times is computed.

The HD equation being utilized for computing the tempo-
ral variance of the generated keys can be written as [5]:

HDs =
∑
P1=P2

(| ECGt1i,P1 − ECG
t2
i,P2
|)(

| sig |
2

) (16)

HDs is the hamming distance computed between the cryp-
tographic keys generated from the ECG signal of the same
subject at different time intervals. t1 and t2 define different
start-times.

The results of our experiment show that the average HD
between the cryptographic keys which are generated via
the ECG signal of the same subject at different time inter-
vals using IPI, SEF, IPI-PRNG, SEF-PRNG, IPI-AES and
SEF-AES are 47.71% (≈ 62 bits), 48.02% (≈ 62 bits),
48.96% (≈ 63 bits), 49.33% (≈ 63 bits), 49.79% (≈ 64 bits),
and 49.9% (≈ 64 bits), respectively. Similar to the com-
puted results presented in the distinctiveness section, when
employing strengthened ECG features (either IPI-based or
SEF approach), the distribution of HDs of any two binary
sequences generated from the ECG signal of the same subject
does not change significantly. The normalized distribution
of HDs of two cryptographic keys that are generated using
strengthened IPI-AES and SEF-AES approaches are centered
at 64. Similarly, the normalized distribution of HDs of two
cryptographic keys that are generated using strengthened IPI-
PRNG and SEF-SEF approaches are centered at 63. For IPI
and SEF approaches, the normalized distribution of HDs of
two cryptographic keys are centered at 62. The main reason
for such similarities between the HD results (with just negli-
gible percentage differences) is due to the fact that our main
goal is to alleviate the key generation execution time while
preserving the achieved high security level in terms of tem-
poral variance. The average HD between the cryptographic
keys of the same subject generated using the IPI-PRNG,
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SEF-PRNG, IPI-AES, and SEF-AES approaches present bet-
ter results compared to the IPI and SEF approaches. This
is because ECG feature based cryptographic key generation
approaches which are strengthened using the PRNG and AES
algorithms appear to better distinguish the same subject’s
cryptographic key. Particularly, ECG feature based crypto-
graphic key generation approaches which are strengthened
using the PRNG and AES algorithms can increase the secu-
rity level of the generated keys as the correct keys cannot
be easily obtained via a brute-force attack. Therefore, the
cryptographic keys which are generated using our proposed
approaches meet the design goal of temporal variance.

D. KEY GENERATION EXECUTION TIME
To investigate the feasibility and key generation execution
overhead of our approaches compared to the conventional
IPI approach, we have examined the execution time required
to generate 128-bit ECG-based cryptography keys. For this
purpose, we utilized different processors ranging from tiny
micro-controllers (e.g., STM32L0 with 32 MHz operat-
ing frequency) to reasonably powerful embedded micro-
processors (ARM Cortex-A7). The considered processors
are widely used in different medical domains depending on
the power-performance requirements. Our experiments are
carried out on ECG recordings obtained from the mentioned
MIT-BIH Arrhythmia dataset, sampled at 360 Hz.

Table 2 presents the computed key generation execution
times of our IPI-PRNG, IPI-AES, SEF, SEF-PRNG, and
SEF-AES approaches as well as the conventional IPI
approach. The execution times are presented in both single
iteration and total times. Single iteration execution time indi-
cates the time required to produce an x-bit binary sequence
from one heartbeat cycle. Total execution time means the
sum of single iteration execution times until successive iter-
ations of the operations yields the desired result, that is,
generates the desired 128-bit ECG-based cryptographic keys.
To give an example, considering a subject with the ECG
heartrate of 60 bpm, the specific STM32L0 microcontroller
requires about 187.4 ms, 225.2 ms and 278.9 ms execu-
tion times per iteration for the IPI, IPI-PRNG, and IPI-AES
approaches, respectively. These are the times these three
approaches require to produce an 8-bit binary sequence from
one ECG heartbeat cycle. As discussed earlier, to generate
128-bit ECG-based cryptographic keys, it is required for IPI,
IPI-PRNG and IPI-AES approaches to compute 16 heart-
beat cycles from a subject’s ECG signal. Thus, the total key
generation execution times of IPI, IPI-PRNG, and IPI-AES
approaches are computed as: 187.4 * 16 = 3 (s), 225.2 *
16 = 3.3 (s), and 278.9 * 16 = 4.5 (s), respectively. The
same microcontroller requires about 114.6 ms, 133.4 ms,
and 178.2 ms execution times for the SEF, SEF-PRNG, and
SEF-AES approaches to produce 16-bits binary sequences
from one ECG heartbeat cycle. However, as presented ear-
lier, to generate 128-bit ECG-based cryptographic keys, the
SEF, SEF-PRNG and SEF-AES approaches need to compute
8 heartbeat cycles from a subject’s ECG signal. As a result,

the total key generation execution times of SEF, SEF-PRNG,
and SEF-AES approaches are calculated as 114.6 * 8= 1 (s),
133.4 * 8 = 1.1 (s), and 178.2 * 8 = 1.5 (s), respectively,
which are considerably lower than their counterparts. The
key generation execution times of SEF, SEF-PRNG and
SEF-AES are in average 1.8 times times faster than IPI, IPI-
PRNG and IPI-AES approaches. This is due to the fact that
in IPI, IPI-PRNG and IPI-AES in total 8 bits can be extracted
from one ECG heartbeat cycle, while in SEF, SEF-PRNG
and SEF-AES approaches in total 16 bits can be extracted
from the same heartbeat cycle. Thus, by utilizing additional
ECG features, the latency of ECG-based key generation
approaches can be significantly reduced. As can be seen from
the results of distinctiveness, test of randomness, temporal
variance and execution time, there is a clear trade-off between
execution time and security level for different approaches.
the IPI-AES and SEF-AES approaches show higher security
levels in comparison to the SEF, IPI-PRNG, SEF-PRNG and
the conventional IPI approach. However, such a high security
level increases the execution time on average by 41.2% and
38.8% compared to the IPI-based and the SEF approaches,
respectively. In this context, the IPI-PRNG and SEF-PRNG
better balance the trade-off as they offer a higher security
level while imposing a much lower execution time overhead,
that is, on average 12.3% and 9.6% compared to the IPI-based
and the SEF approaches, respectively. It should be mentioned
that the efficiency of the proposed approaches highly depends
on the application domain in which the approaches are uti-
lized. As generating keys is performed in an on-demand way
and not in every message transaction, the delay imposed by
it might be more tolerable for some applications compared
to others. Therefore, the IPI-AES and SEF-AES approaches
can be a better alternative for applications where high security
level is demanded and the latency can be tolerated. Another
observation which can be made from Table 2 is the significant
difference in execution time for different processors. This is
mainly due to the difference in the processing power and
memory available for each processor. This can guide design-
ers and developers to adjust their demanded security level
with the available processing power or vice versa.

VI. CONCLUSIONS
We presented a low-latency approach for generating secure
ECG feature based cryptographic keys. Most existing key
generation approaches are not directly applicable to BANs.
The reason is that sensors used in BANs are extremely
resource-constrained and demand a low-latency key gen-
eration time as well as a high security level. To allevi-
ate these limitations, we proposed a robust key generation
approach employing several ECG features, called SEF. Our
SEF approach utilizes 4 main reference-free ECG features
comprising of PR, RR, PP, QT, and ST. A dynamic technique
is used to specify the optimum number of bits that can be
extracted from each main ECG feature. We consolidated and
strengthened the SEF approach with cryptographically secure
pseudo-random number generator techniques. The Fibonacci

440 VOLUME 6, 2018



S. Rahimi Moosavi et al.: Low-Latency Approach for Secure ECG Feature-Based Cryptographic Key Generation

linear feedback shift register and the AES algorithm are
implemented as pseudo-random generators to enhance the
security level of our approach. The security evaluation of the
generated keys was made in terms of distinctiveness, test of
randomness, temporal variance, as well as using the NIST
benchmark. Our approach is applied to normal and abnormal
ECG signals. The analyses showed that the strengthened key
generation approach offers a higher security level in com-
parison to existing approaches which rely only on single-
ton ECG features. Our analyses also reveal that the normal
ECG signals have slightly better randomness compared to
the abnormal ones. Cryptographic keys which are generated
from normal ECG signals using the SEF approach have in
average the entropy of about 0.98. Cryptographic keys that
are produced using the strengthened SEF approach offer the
entropy of ∼ 1. In addition, the reinforced key generation
approach has also better P-value NIST pass rates compared
to state-of-the-art approaches which rely only on singleton
ECG features.We also found out that our approach is approxi-
mately 1.8 times faster than existing IPI-based key generation
approaches. Future work includes investigating and analysis
of other physiological signals within a BAN. This is to real-
ize how the generated cryptographic keys can also be used
by other bio-sensors to provide intra-BAN communication
security.
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