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ABSTRACT In this paper, a novel approach to fault detection for nonlinear processes is proposed. It is
based on a manifold learning called modified kernel semi-supervised local linear embedding. Local linear
embedding (LLE) is widely applied to fault detection of complex industrial process. However, the LLE only
preserves the local structure information of the sample, which ignores the global characteristics of the original
data. The main contributions of the presented approach are as follows: 1) in order to utilize labeled data, the
semi-supervised learning is introduced into LLE; 2) the regularization term is added to the calculation of
local reconstruction weights matrix to strengthen the anti-noise ability in nonlinear processing; and 3) in
order to extract the global and local characteristic of the observation data, the kernel principal component
analysis objective function is integrated with the objective function of LLE. Experimental results on the
production process of fused magnesia verify the performance of the proposed method.

INDEX TERMS Fault detection, LLE, KPCA, semi-supervised learning.

I. INTRODUCTION
Complex industrial processes are typically subject to
disturbances of manual or machine operation. Therefore, it is
critical to maintain excellent sensitivity to faults in industrial
processes. Currently, the fault detection of cyber-physical
system (CPS) has received extensive attention. The cyber-
physical system is a multi-dimensional complex system of
integrated computing, network and physical world [1]. Such
systems commonly exist in both industrial processes and peo-
ple’s daily lives. Fault diagnosis technology is an important
method to improve the system reliability and reduce accident
risk. A variety of methods for traditional fault diagnosis
have been proposed. These traditional methods are, Princi-
pal Component analysis (PCA) [2], Independent Component
Analysis (ICA) [3], Partial Least Squares (PLS) [4], [5], and
Fisher’s Discriminate Analysis (FDA) [6], etc.

Recently, manifold learning is applied the field of
fault diagnosis, which has been a hot research topic.
Roweis and Saul [7] proposed that the local linear embed-
ding manifold learning algorithm is widely utilized. It is
mainly employed in a variety of fields, such as data mining,
image processing, fault diagnosis and pattern recognition [8].
To tackle the problems of LLE for data mining, image pro-
cessing and fault diagnosis, some initiatory efforts have been
recently taken to develop various improved versions of LLE

by means of modifying the formula in LLE. Donoho [9]
proposed a local linear embedding algorithm based on Hes-
sian matrix, the local neighborhood in Euclidean space as a
Riemannian manifold, embedding feature vector convert
eigenvalue problem of Hessian matrix. Xiao Jian proposed
a self-organizing local linear embedding algorithm for noise
manifold learning and pattern recognition. The expanded
LLE has become the most promising technology [10]. In the
expanded algorithm of LLE [11], [14], Tsagaroulis [13] pro-
posed kernel locally linear embedding algorithm for quality
control. The proposed control chart is available in the detec-
tion of outliers, and its control limits are obtained from the
analysis of the kernel matrix in the Hilbert feature space.
By describing the concept of supervision [12], the labeled
training data can be used to guide the traditional LLE to
search the k neighboring points around each sample point in
the SLLE [17]. Li proposed a feature extractionmethod based
on Gabor wavelet and supervised local linear embedding.
Liang proposed a fault recognition method based on super-
vised incremental locally linear embedding [18]. However,
the cost is great for all labeled training data, and it is not
easy to implement in industrial processes. Semi-supervised
learning can increase the accuracy of the detection and the
rationality of the projection points of the low dimensional
mapping by using some labeled data and a large number of
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inexpensive unlabeled samples. Therefore, the combination
of semi-supervised learning and LLE has become the focus of
research [19]–[23].

To overcome the insufficient of LLE, in this paper
a novel modified kernel semi-supervised LLE method
is proposed and applied for fault detection in industrial
process. Great efforts were made to improve the algo-
rithm. On one hand, the distance matrix is adjusted by
the semi-supervised learning method, making the weight
matrix more accurate. On the other hand, in order to
strengthen the anti-noise ability in nonlinear data process-
ing, the regularization term is added to the calculation of
local reconstruction weights matrix. Ultimately, the kernel
LLE (KLLE) algorithm only preserves the local structure
information of the sample, but it ignores the global charac-
teristics of the original data [15], [16]. Therefore, the KPCA
is adopted into the processing of projection matrix objective
function. Taking advantage of KPCA to extract global fea-
tures, the global and local information of sample data can be
extracted completely [24], [25].

The remainder of this article is organized as follows.
The LLE method is shown in Section 2. The proposed
MK-SSLLE method is presented in Section 3. The process
monitoring framework based on MK-SSLLE is developed
to realize fault detection in Section 4. The experimental
results are shown in Section 5. The conclusion is drawn
in Section 6.

II. REVIEWS OF LLE
Given input dataset X = [xi, . . . , xn] and the output dataset
Y = [y1, . . . , yn].

(1) Find the k nearest neighbors for each sample point xi
based on the Euclidean distance.

(2) Compute the reconstruction weights matrix Wij by the
k nearest neighbors for each sample point xi.

According to the following minimum reconstruction error
to acquire weights matrix Wij.

min εi (W) =
n∑
i=1

∥∥∥∥∥∥xi −
n∑
j=1

Wijxj

∥∥∥∥∥∥
2

s.t.


n∑
j=1

Wij = 1

Wij = 0, xj /∈ N
(
xj
)
, j = 1, . . . , k

(1)

(3) Compute the low-dimensional embedding.
The low-dimensional embedding yi may be derived by

minimizing the following cost error.

min ε (Y) =
n∑
i=1

∥∥∥∥∥∥yi −
n∑
j=1

Wijyj

∥∥∥∥∥∥
2

s.t. YTY = In (2)

The structure of nonlinear manifolds is learned by LLE.
In Fig. 1, such as, the input to LLE consists of N =

2000 data points sampled from the S-curve manifold. The
dimensionality reduction consequence by LLE in Fig. 1(c).

FIGURE 1. (a) S-curve manifold in three-dimensional space, (b) 2000 data
points sampled from the S-curve manifold, and (c) dimensionality
reduction consequence by LLE from three-dimensional space to
two-dimensional space, and (d) dimensionality reduction consequence
by PCA.

The dimensionality reduction consequence by PCA
in Fig. 1(d). LLE is able to preserve the structure of nonlinear
manifolds from Fig. 1(c). For maintaining the structure of
local manifold, the reduced dimension result of PCA is not
effective from Fig. 1(d).

In this paper, the advantages of these two methods are
effectively integrated, so the performance of fault detection
is improved.

480 VOLUME 6, 2018



Y. Zhang et al.: Fault Detection Based on MK-SSLLE

√
S(i)

√
S(j) =

√√√√√1
k

k∑
p=1

∥∥∥8 (xi)−8
(
xip
)∥∥∥2

√√√√√1
k

k∑
q=1

∥∥∥8 (
xj
)
−8

(
xiq
)∥∥∥2

=

√√√√√ 1
k2

k∑
p=1

(
Kii −Kipi −Kpii +Kpipi

) k∑
q=1

(
Kjj −Kjqj −Kqij +Kqiqi

)
⇒ =

√
1

III. MODIFIED KERNEL SEMI-SUPERVISED
LOCALLY LINEAR EMBEDDING
In an industrial big data pool, there are a variety of modal
normal data and a large number of unlabeled normal data. By
studying the characteristics of multi-mode data and unlabeled
data, the detection accuracy has been improved.

Assume that the standardized process data is X =

(XL ,XU ) ∈ Rm×n, where the dataset XL = [x1, x2, . . . , xl]
as labeled data, the number of class labels is c, the number
of samples for each class is Ni, i = (1, 2, · · · , c). The dataset
XU = [xl+1, xl+2, . . . , xl+u] as unlabeled data. In the orig-
inal dataset X, the input dataset X = [x1, x2, · · · , xn] ∈
Rm×n is mapped to a high dimensional feature space 8(X) =
[8 (x1) ,8 (x2) , · · · ,8 (xn)], where n is the number of sam-
ples, n = l + u, m is the dimension of measurement
variables.

(1) It is modified in the first step of KLLE algorithm.
Firstly, in order to obtain more accurate reconstructed weight
matrix, the weighted distance is employed to solve the neigh-
borhood of the sample points.

Weighted distance as follows,

z(8(xi),8(xj)) =

√∥∥8(xi)−8(xj)
∥∥2

√
S(i)

√
S(j)

(3)

Where S(i) denotes the mean of distance sum of the point
8 (xi) to each point in their nearest neighbors. The S(j)
denotes the mean of distance sum of the point 8

(
xj
)
to each

point in their nearest neighbors.
Let

S(i) =
1
k

k∑
p=1

∥∥∥8 (xi)−8
(
xip
)∥∥∥2,

S(j) =
1
k

k∑
q=1

∥∥∥8 (
xj
)
−8

(
xjq
)∥∥∥2

Where8
(
xip
)
(p = 1, 2, . . . , k) is the pth neighboring points

of 8 (xi), 8
(
xiq
)
(q = 1, 2, . . . , k) is the qth neighboring

points of 8
(
xj
)
. The formula of

√
S(i)

√
S(j) is shown at the

top of this page. Where K
(
xi, xj

)
= 8T (xi)8

(
xj
)
.

The new weighted distance can be defined as:

z(8(xi),8(xj)) =

√
Kii − 2Kij +Kjj
√
1

(4)

For the sake of making full use of multiple classes data, the
approach proposed in this paper combines the sample class
information to compute the nearest neighbor of the sample
points.

Zij

=


z(8(xi),8(xj))− rz(8(xi),8(xj)) xi, xj same class
z(8(xi),8(xj))+ rz(8(xi),8(xj))

xi, xj different class
z(8(xi),8(xj)) others

(5)

Where, r is the adjustment factor, which is used to adjust
the likelihood of labeled samples and unlabeled samples
in the LLE method when they are chosen as nearest
neighbors.

A new neighborhood is reconstructed by improved dis-
tance formula. Then the second and third steps of the algo-
rithm is computed.

(2) Compute the reconstruction weights matrix Wij.
Because of introducing the regularization constraint

λ ‖w‖2, the noise sensitivity is reduced. The new reconstruc-
tion error is obtained by cost function:

min e (W) =
n∑
i=1

(

∥∥∥∥∥∥8 (xi)−
k∑
j=i

Wij8
(
xj
)∥∥∥∥∥∥

2

+ λ

k∑
j=i

W2
ij)

s.t.


k∑
j=i

Wij = 1

Wij = 0, 8
(
xj
)
/∈ Nk (8 (xi)) , i = 1, 2, . . . , n

(6)

(3) The sample points are mapped to low dimensional space.
In the interest of acquire the local and global information

of the data space, the global idea of KPCA is introduced
into the objective function. Suppose that F is a projection
matrix mapped to low dimensional space. The optimization
objective function of the KPCA can be expressed by the
maximal variance of the projection coordinates [26], [27]. Let
low-dimensional coordinates V (X) = FT8 (X).

max JKPCA = max
1
n
V (X)V (X)T (7)
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The projection matrix is found through the new minimized
objective function:

min (αe (V (x))− (1− α) JKPCA)

= α

n∑
i=1

∥∥∥∥∥∥V (xi)−
n∑
j=1

WijV
(
xj
)∥∥∥∥∥∥

2

− (1− α)FTC8F

= α

n∑
i=1

∥∥∥∥∥∥FT8 (xi)−
n∑
j=1

WijFT8
(
xj
)∥∥∥∥∥∥

2

− (1− α)FT
(
1
n

n∑
i=1

8 (xi)8T (xi)

)
F

= trace(α
(
FT8 (X)M8T (X)F

)
−

1− α
n

FT8 (X)8T (X)F)

s.t. FTF = I (8)

Where M =MT
= (I−W)T (I−W).

It is derived by Lagrange multiplier method:

L = trace(α
(
FT8 (X)M8T (X)F

)
−

1− α
n

FT8 (X)8T (X)F)− λ
(
FTF− I

)
∂L
∂F
= α8 (X)M8T (X)F+ α

(
8 (X)M8T (X)

)T
F

−
1− α
n

8 (X)8T (X)F

−
1− α
n

(
8 (X)8T (X)

)T
F− 2λF

= 0
∂L
∂λ
= FTF− I = 0 (9)

Let F = 8 (X)T,T = [t1, t2, . . . , tm] ∈ Rn is the coefficient
matrix.

The above formula can be converted to,

α8 (X)M8T (X)8 (X)T−
1− α
n

8 (X)8T (X)8 (X)T

= λ8 (X)T (10)

The above formula is left multiplied 8′T (X) as follow:

α8T (X)8 (X)M8T (X)8 (X)T

−
1− α
n

8T (X)8 (X)8T (X)8 (X)T

= λ8T (X)8 (X)T (11)

The new generalized characteristic equation as follow:

αKMKT−
1− α
n

KKT = λKT (12)

The matrix T is achieved by solving the generalized eigen-
value equation. Therefore the coordinates of low dimensional

space is obtained by (11). This parameter α is determined by
prior knowledge.

V(x) = FT8 (x)

= TT8T (x)8 (x)

= TTK (x, x) (13)

The T 2 and SPE statistics are defined and the correspond-
ing control limits are as follows,

T 2
= tT3−1t ≤

A(n2 − 1)
n(n− A)

FA,n−A;α (14)

SPE = ‖x‖2 ≤ gχ2
h;α (15)

Where, FA,n−A;α is the F distribution with confidence levels
of α, and the gχ2

h;α conforms to χ2 distribution with scale
factor g, degree of freedom h and confidence level α.

IV. PROCESS MONITORING METHOD
BASED ON MK-SSLLE
The process monitoring method based on MK-SSLLE is
divided into two stages: off-line modeling and on-line fault
monitoring. In the off-line modeling stage, the MK-SSLLE
method is used to establish the model of normal operating
conditions. The monitoring statistics are T 2 statistics and
SPE statistics.
Assume that the on-line standardized process data

is 8 (xo). Therefore, the coordinates of low dimensional
space as follow:

Ho = FT8 (Xo)

= TT8T (X)8 (Xo)

= TTK (X,Xo) (16)

The T 2 statistics as follow:

T 2
o = HT

o3−1Ho

=

(
FT8 (Xo)

)T
3−1FT8 (Xo)

= 8T (Xo)8 (X)T3−1TT8T (X)8 (Xo)

= K (Xo,X)T3−1TTK (X,Xo)

= KXo,XT3−1TTKX,Xo (17)

Where

3 =
1

n− 1
VT (x)V (x)

=
1

n− 1
8T (x)FFT8 (x) .

The SPE statistics as follow:

SPEo =
∥∥∥8̃ (Xnew)

∥∥∥2 = ∥∥∥(8T (Xo)−HT
o F

T
)∥∥∥2

=

∥∥∥8T (Xo)
(
I−8 (X)TTT8T (X)

)∥∥∥2
=

∥∥∥(I−8 (X)TTT8T (X)
)

8 (Xo)

∥∥∥2
= 8T (Xo)(I− 28(X)TTT8T (X)

+8(X)TTT8T (X)8(X)TTT8T (X))8(Xo)
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= K (Xo,Xo)− 2K (Xo,X)TTTK (X,Xo)

+K (Xo,X)TTTK (X,X)TTTK (X,Xo)

= KXo,Xo − 2KXo,X +KX,XoTT
TKX,XTTTKX,Xo

(18)
The specific steps of offline modeling as follows:
(1) Standardized processing for the data sets X.
(2) By introducing the kernel function, the data sets X is

mapped to a high dimensional space F : X→ 8 (X).
(3) Calculate projection matrix F and coefficient matrix T

by MK-SSLLE algorithm.
(4) Determine the control limits of T 2 statistic and SPE

statistic.
The specific steps of online monitoring are as follows:
(1) Standardized processing for the new data sets xo.
(2) Compute new kernel functionKnew,Knew = K

(
xo, xj

)
,

where xj j = 1, 2, . . . , n.
(3) Compute the coordinates of low dimensional spaceHo.
(4) Calculate T 2 statistic and SPE statistic.
(5) If T 2 statistic and SPE statistic exceed their respective

control limits, the fault may occur, otherwise the new sample
is normal.

FIGURE 2. The flow chart of process monitoring based on MK-SSLLE
method.

Process monitoring flow chart for MK-SSLLE algorithm
as follow Fig. 2.

V. EXPERIMENTAL RESEARCH AND RESULT ANALYSIS
A. PRODUCTION PROCESS OF FUSED MAGNESIA
Electrical fused magnesia furnace (EFMF) is one of the main
equipment for the production of fused magnesia. The main

component of fusedmagnesia formagnesia, and themagnesia
is a kind of important refractory material. It has already
gotten extensive application in chemical industry, metallurgy,
aerospace and many other industrial fields in recent years.
Now the magnesia is produced mainly by the electrical smelt-
ing magnesium furnace equipment, and the raw materials
is mainly magnesite or light burned magnesium. The bulk
magnesite is selected as raw material in this paper.

It takes full advantage of the arc between the charge and
electrode to produce energy to melt the raw material. The
fused magnesium crystal with higher purity is obtained. The
composition of each part of the electrical smelting magne-
sium furnace equipment are shown in Fig. 3. The main equip-
ment of electric melting magnesium furnace is transformer,
electrode, lifting device, furnace shell and so on.

FIGURE 3. Diagram of electrical fused magnesium furnace.

The degree of automation of the electrical smelting mag-
nesium furnace is usually low in our country, and it is very
easy to produce fault and abnormal phenomenon. Therefore,
it is very necessary and significant to detect the abnormality
and fault in the working process.

B. SIMULATION RESULTS ANALYSIS
In order to solve the abnormal working conditions and faults
in the smelting process, the MK-SSLLE method is applied to
the fault detection in the production process.

Fault types are mainly fault 1 and fault 2. Fault 1 is defined
as follows. In the process of production, the gas pressure in
the furnace will be out of balance due to the emission of the
gas, when the current setting value is constant and the particle
size of the raw material is relatively large changes. This
phenomenon will cause the drastic fluctuations of electrodes
and molten pool liquid level, so that the melt is erupted out of
the furnace with gas. The furnace eruption working condition
is used as a fault 1 in this paper. Fault 2 is defined as follows.
As the furnace wall is overheated, the furnace wall melts.
After that the melt flows out of the furnace. This leak furnace
working conditions is used as a fault 2 in this paper.
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FIGURE 4. current Sample points for testing MK-SSLLE.

FIGURE 5. Performance with different k value based on MK-SSLLE.
(a) Fault 1. (b) Fault 2.

Multi-mode normal data are produced in the production
of Magnesium Oxide. For example, some mode categories,
manual feeding and automatic feeding switching, different
feed rates. There are six variables: A phase voltage and
current, B phase voltage and current and C phase voltage and
current. The training set and the test set select 360 samples,
respectively. Where, the training set contains 200 labeled
data and 160 unlabeled data. Three phase current as shown
in Fig. 4. The abscissa represents the moment, and the ordi-
nate represents the current.

In the process monitoring based on MK-SSLLE method,
k is an important parameter of the algorithm, which
directly affects the solution of the objective function in the
MK-SSLLE method. So far, there is no uniform method for
the selection of the nearest neighbor parameters. In this part,

FIGURE 6. Offline KLLE T 2 statistics.

FIGURE 7. Offline KLLE SPE statistics.

FIGURE 8. On-line KLLE T 2 statistics of fault 1.

two kinds of faults are taken as examples, and the relationship
between the k value of different parameters and the perfor-
mance of process monitoring is described.
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FIGURE 9. On-line KLLE SPE statistics of fault 1.

FIGURE 10. Offline MK-SSLLE T 2 statistics.

The Fig.5 shows that the optimal value of k is different for
different faults. However, as an actual process monitoring, it
is impossible to predict the fault type, so the parameter k is
approximate value.

In order to demonstrate the detection performance of
MK-SSLLE and compare other methods, in this section
T 2 and SPE statistics are used as the detection indicators.
The T 2 and SPE of the two methods are listed in Fig. 6-15.

As can be seen from Fig. 6-9, the fault can be detected
in time by SPE statistics, and the T 2 statistics could not be
accurate and reliable to detect the fault of two time periods.

The KLLE algorithm can’t preserve the global structure of
the data while considering the manifold structure between the
local nearest neighbor points.

As can be known from Fig.10-13, the fault 1 can be com-
pletely detected by the MK-SSLLE. Moreover, the proposed
method has superior detection performance over two time
periods.

According to the monitoring chart Fig.14 and Fig.15, the
fault 2 can also be detected in a timely by means of SPE
statistics and T 2 statistics.

FIGURE 11. Offline MK-SSLLE SPE statistics.

FIGURE 12. On-line MK-SSLLE T 2 statistics of fault 1.

FIGURE 13. On-line MK-SSLLE SPE statistic of fault 1.

Obviously, it can be demonstrated that the KLLE
method is false positives, and the proposed MK-SSLLE
method can detect faults accurately and timely. The global
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FIGURE 14. On-line MK-SSLLE T 2 statistics of fault 2.

FIGURE 15. On-line MK-SSLLE SPE statistic of fault 2.

TABLE 1. Indicators of different methods.

structure information and the local structure information of
the data are important information of the original sampling
data. As mentioned above, the MK-SSLLE algorithm can

extract the local manifold structure and global feature infor-
mation in the process of data dimension reduction. Further-
more, it can make full use of the prior information of a
small amount of labeled samples in the training samples,
and capture the most important information in the dataset.
Therefore, the MK-SSLLE algorithm exhibits an efficient
detection performance.

The accuracy rate, false alarm rate and missing alarm
rate of KLLE and MK-SSLLE for fused magnesia furnace
process monitoring as depicted in Table 1. The experimental
results indicate that the proposed method is feasible and the
method has an ascendant monitoring effect in the real-time
monitoring of the industrial production status of the fused
magnesia furnace.

VI. CONCLUSIONS
In this paper, a new EFMF monitoring approach based on
modified kernel semi-supervised local linear embedding is
presented. To begin with, the proposed method utilized par-
tial label information to adjust the distance matrix to obtain
nearest neighbors. Secondly, the method can fully extract the
global structure information and the local manifold informa-
tion for sample data. Finally, the proposed method has been
verified that the satisfactory results of the detection by the
experiment of electrical fused magnesia furnace.
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