
Received September 4, 2017, accepted October 15, 2017, date of publication October 26, 2017, date of current version March 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2765698

Input-Domain Software Testing for Failure
Probability Estimation of Safety-Critical
Applications in Consideration of Past Input
Sequence
HEE EUN KIM 1, HAN SEONG SON2, BO GYUNG KIM3, JAEHYUN CHO4,
SUNG MIN SHIN4, AND HYUN GOOK KANG5
1Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
2Joongbu University, Chungnam 32713, South Korea
3Korea Institute of Nuclear Safety, Daejeon 34142, South Korea
4Korea Atomic Energy Research Institute, Daejeon 34057, South Korea
5Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Corresponding author: Hee Eun Kim (heeeun.kim@kaist.ac.kr)

This work was supported in part by the project of Evaluation of Human Error Probabilities and Safety Software Reliabilities in Digital
Environment under Grant L16S092000, in part by the Central Research Institute, Korea Hydro and Nuclear Power company, and in part by
the Nuclear Research & Development Program of the National Research Foundation of Korea through the Ministry of Science and ICT
(MSIT) under Grant 2017M2A8A4015291.

ABSTRACT Software failure probability quantification is an important aspect of digital system reliability
assessment. Several quantification methods currently available in the software reliability field have char-
acteristics unsuitable for application to safety-critical software. In this paper, a software test framework
in consideration of input trajectory is developed, and a software failure probability quantification method
is also suggested. The test input cases consist of the states and present inputs, where input trajectory is
represented by the state. To obtain the input domain, which represents realistic plant behavior, digital system
characteristics and plant dynamics are considered. This allows software failure probability to be estimated
by using the result of each representative test case, thus reducing testing efforts. The proposed framework
was applied to a nuclear power plant reactor protection system as an example to show its effectiveness.
The method provides a practical and relatively simple way to test software and estimate software failure
probability.

INDEX TERMS Safety, safety-critical software, software reliability, software safety, software testing.

I. INTRODUCTION
Nuclear power plants (NPPs) employ several safety systems
to protect the public from the release of radioactive material
in case of an accident. These safety systems are manipulated
by the instrumentation and control (I&C) systems, which pro-
vide the control and monitoring functions of the various and
diverse components and equipment that are essential to main-
tain safe operation. Existing I&C systems are currently being
replaced with microprocessor-based digital systems because
of the obsolescence of analog-based I&C equipment and a
lack of vendor support. It is true that digital systems provide
better performance such as improved accuracy, computation
capabilities, and data handling, as well as the potential for
improved capabilities such as fault tolerant techniques [1].

Nevertheless, the use of digital I&C systems has triggered a
big challenge in terms of incorporating their characteristics
into the probabilistic safety assessment (PSA) model tradi-
tionally used for evaluating the safety level of NPPs.

Various unique features of digital I&C systems to be mod-
eled in the PSA of digital systems were identified by Kang
and Sung [2]. Among them, estimation of software failure
probability is an important factor, and a sensitivity study
on the digital reactor protection system (RPS) showed the
relationship of system unavailability and software failure
probability. A report on operating and maintenance experi-
ence described how software error caused a significant num-
ber of digital system failures during 1990–1993 [3], where
30 failures were caused by software error compared to 9 from

8440
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5375-5819

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

random component failure. The report also stated the possi-
bility of common-mode or common-cause software failure,
which can lead to significant safety threats.

In response, several software reliability quantification
methods have been developed that can be adopted in the
nuclear field. The software reliability growth method [4]
models the decreasing failure rate of software following
the identification and removal of faults during the develop-
ment process to satisfy design and regulatory requirements.
By applying a software reliability model and estimating its
parameters using software failure data, assessment and pre-
diction by extrapolation can be achieved. In regards to safety-
critical software though, it is developed under a strict ver-
ification and validation (V&V) process so rarely produces
appropriate failure data, and moreover the estimation result
is highly sensitive to the data [5]. Furthermore, any software
modification may introduce other faults which are not clearly
modeled. The Bayesian belief network is another promising
method for the quantification of software reliability; it models
and integrates several aspects that affect the reliability of a
software, such as design features, requirements, and V&V
quality [6]. Several studies successfully applied the method
to safety-critical software [7], [8], but the qualitative nature
of the method prevents highly accurate results without con-
sistency of expert judgment. Test-based methods can also be
applied to software reliability quantification, which utilize the
results of software testing. Tests are performed with sample
test cases representing actual data to simulate the software
demands, with results demonstrating whether the expected
output is produced or not. Test-based methods are divided
into two main categories: white-box and black-box testing.
White-box tests consider the internal structure of a software,
such as nodes and paths, to cover every part of the software.
Popstojanova and Trivedi provided a comprehensive inves-
tigation of white-box based software reliability models and
categorized them as state-based models, path-based models,
and additive approaches [9]. Black-box tests do not con-
sider internal structure, but rather test random samples from
the software input space with results statistically analyzed.
May et al. provided a method of generating a simulated
sample from operational distribution [10]. Miller suggested a
software failure probability estimationmethod for life-critical
applications by binning the domain and estimating the failure
probability of each bin using the Bayesian method [11].

The failure of software generally comes from design or cod-
ing faults, so the behavior of a software for a given input is
deterministic. However, when the input is selected at random,
the output also appears to be random. That is, the random
nature of software failure can be explained by the uncertainty
of the input sequences [11]. Finelli introduced the concept of
an error crystal, which represents regions of the input space
that cause a program to produce errors [12]; an input entering
the error crystal leads to failure. In case of real-time control
applications, a series of contiguous inputs might produce
consecutive errors. On the other hand, by considering the
operational profile, the failure probability of a software can

be assessed from test results. Lyu [13] defined operational
profiles and described their development and use in testing.
An operational profile consists of disjoint operations that
the software can execute along with the probability with
which the operations will occur. The operations themselves
are partitions of the software input space and are defined as a
group of runs that typically involve similar processing. Here,
a run represents the smallest division of software processing
that is started by external demand.

Since the behavior of software is deterministic, the soft-
ware will behave in the same way for a given set of inputs
and internal state. Whereas thorough testing of the possible
input space can assure the reliability of software, exhaustive
testing is generally considered impossible on account of sys-
tem complexity [14]. If the input space or domain can be
specified, then test-based reliability estimation would lead to
another promising method of software reliability estimation.
Kang et al. suggested a test-based software reliability quan-
tification method for an RPS that considers input pro-
files by reflecting digital system characteristics and plant
dynamics [15]. By following this previous study, the input
set covering all possible input spaces can be developed for
real-time safety applications; however, it is assumed that the
software responds only to its input, so it has a limitation in
consideration of input trajectory which might activate the
design faults [16]. Failures can be attributed to erroneous
internal states, and the previous input sequence may change
the internal state of a software during its processing [17], [18].
Therefore, the method proposed by Kang et al. needs to be
extended by considering input trajectory which may change
the internal state.

The objective of this study is to take previous input
sequences into consideration to generate test cases by adopt-
ing the concept of the software internal state. Since the test
cases reflect the effect of past input sequences, the software
can be verified through testing. In addition, by considering the
operational profile, the test set covers all possible demands
for exhaustive testing. Since the test set covers all possible
cases, the software failure probability can also be assessed
from the test results. The proposed method integrates white-
box and black-box testing as it considers the internal structure
of the code as well as the operational profile. The result of the
suggested method can be utilized as a reference for regulators
and as input data for PSAs.

II. TEST SETS REGARDING SOFTWARE STATE
In this section, state variables are defined to reflect the state
of a running software. The method of building test cases that
include state variables is also described.

A. STATES OF REAL-TIME SAFETY-CRITICAL SYSTEMS
A finite state machine (FSM) is a mathematical model to
design a logic device that has a limited or finite number of
possible states. A typical FSM is defined as having six fea-
tures: inputs from the outside, outputs to the outside, the state
of the system stored in the memory elements, initial state,

VOLUME 6, 2018 8441

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

a next-state decoder and output decoder where the next state
and output are calculated as a function of inputs and current
state. As a result, the state captures the essential properties of
the history of the inputs and is used to determine the current
output as well as the next state of the system. In other words,
past inputs affect the behavior of the software in the form of
the state, which is a combination of values of stored variables.
The state transition is a physical change of the values in the
memory. For example, let us assume that a vending machine
dispenses a drink for 1 dollar. The memory of the vending
machine stores the amount of money put into the coin slot;
inputs can be 10-cent or 50-cent coins, and output is whether
the drink is dispensed or not. The ‘‘50-cent state’’ can be
reached from a 50-cent coin or five 10-cent coins, according
to its next-state decoder. When an input of a 50-cent coin is
given as an input to the ‘‘50-cent state’’, the state changes
to 100 cents and the output will be a drink, according to its
output decoder. A drink is served regardless of the type and
the sequence of the coins, as output is only related to the
present state and input.

A real-time safety-critical system can be modeled as an
FSM because it has a limited number of states. A pro-
grammable logic controller program, typically employed in
real-time safety-critical applications, periodically and indefi-
nitely reads inputs, computes new internal states, and updates
outputs in each scan cycle. From a safety point of view, testing
needs to focus not on spurious operation but on safety signal
generation failure, thus the possible number of states does
not explode as that of general computers. In case of real-time
safety-critical applications, variables for safety functions are
saved in the designated memory address; these states change
according to the input sequence, representing the past input
sequence of the real-time safety-critical system.

B. DEVELOPMENT OF TEST SETS REGARDING
SOFTWARE STATE
A test set is defined as a collection of test cases composed
of inputs and expected results. In this study, the state of
a software represents the past test input sequence. As the
sequence of inputs to real-time safety-critical software con-
tinually changes the state every scan, the last state represents
the effect of all past input sequences. Therefore, the state
stored in the memory is included in order to generate a test
set that considers input history.

Data from the previous cycle stored in the memory needs
to be loaded into the current cycle, and only data stored in
memory can affect the state and output of the next cycle.
Therefore, state variables can be defined as stored variables
in the memory, which are loaded every scan. Temporary
variables used in one cycle will not be treated as internal
state variables, because they are stored and loaded in one scan
cycle but do not affect the next cycle. By inspecting the source
code of the software, the list of state variables and input
variables can be obtained. As a result, the test set consists of
state variables, input variables, and corresponding expected
output. The following subsections describe the characteristics

FIGURE 1. (a) Test case representing multi-dimensional space. (b), (c) Test
cases which represent state i and i + 1, respectively, and corresponding
possible range of inputs.

of the test set that should be considered to identify each test
case.

1) MULTI-DIMENSIONAL TEST INPUT SPACE
As the test set is a combination of input variables, state
variables, and expected output, it is constructed from a multi-
dimensional test input space. Figure 1 (a) shows a con-
ceptual test set consisting of an input variable and three
state variables. The empty boxes of Fig. 1 represent the
range of a variable, from zero to 2k−1 where k is the res-
olution of the digital system. Combinations of values of
each variable construct the test set. Therefore, the number
of test cases is 2nk , where n is the number of variables
in the test input space. However, testing all these cases is
almost impossible considering the long test time; for exam-
ple, the number of two 16-bit test cases is greater than
4 billion, which would take more than 100 years if a test takes
1 second.

As some variables are related to each other though,
the number of test cases can be less than 2nk . The com-
binations of state variables represent the state of a plant,
but some combinations do not appear in the real world. For
example, we can expect that the next input will be a value
around the present input value; testing therefore should be
performed only for cases that can feasibly be entered as
inputs. Possible combinations of variables derived from the
operational profiles need to be tested for software reliability
quantification. The state and corresponding range of each
variable can be obtained by considering plant dynamics, dig-
ital system characteristics, and the relationships among the
variables. Then the possible range of inputs for each state can
be obtained. Figure 1 (b) and (c) conceptually describe states
i and i+ 1, respectively, as sets of state variable values. State
i with probability pi is represented as combination of specific
values, marked in color, among the possible values of each
state variable, and the corresponding possible range of input
is also marked in color. The probability of each possible j-th
input for state i can be represented as qj|i. Figure 1 (c) shows
a different combination of values for state variables and a
different range of corresponding possible input. Different
values of state variables represent the different states, and
the possible input range is also different according to the
state.

8442 VOLUME 6, 2018

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

2) PAIRED VARIABLES AND INDEPENDENT VARIABLES
As described above, the next state of a program is deter-
mined according to the present state and input. That is to say,
the value of each state variable is determined by the value
of the present state variables and input variables. Therefore,
if an input variable determines the next value of several state
variables, the values of these state variables are correlated
to each other. These variables can be referred to as paired
variables, and the values of a pair need to be identified
together. Since the values of state variables are correlated,
the range of each variable should be identified one by one
from a variable of which distribution is known. Otherwise,
state variables can be referred to as independent variables.
The range of independent state variables can be determined
by reflecting failure data or software design specification, etc.

C. PARTITIONED SAMPLING SPACE
From a safety point of view, testing needs to focus on safety
signal generation for a given safety signal demand. The set
of input variables and state variables represents the particular
plant dynamics that generate safety signal demands in real
operation, so the number of test cases can be limited. The test
set should cover all possible safety signal demand situations,
but the total test space should comprise the limited cases
representing real operation. The probabilities of test cases are
different as the probabilities that the actual state represented
by the test case will occur are different.

These test cases are partitioned sampling spaces,
as described in previous studies [11], [15], and represent
different situations. The total failure probability (θt) of a
software is expressed as the weighted sum of each partitioned
sampling space, so the equation in the previous study can be
extended as follows

θ̂t =
∑

(pi × qj|i)θ̂j|i, (1)

where pi is the probability of state i, qj|i is the probability of
input j for state i, and θ̂j|i is the corresponding software failure
probability. For a partitioned sampling space expressed by i
and j, the probability can be obtained by calculating pi× qj|i,
and expected failure probability θ̂j|i can be obtained from the
test result. The steps for calculating pi×qj|i will be described
in Section III.

III. DETERMINING PROBABILITIES OF TEST CASES FOR
QUANTIFICATION OF SOFTWARE FAILURE PROBABILITY
A. PROBABILITY OF A TEST CASE
As described in the previous section, if the probability of the
states and corresponding input variables is identified, the total
failure probability of software can be assessed. We denote the
probability of a state i as pi, and the conditional probability of
the j-th input of state i as qj|i (Fig. 1 (b)), and then the prob-
ability of a test case is the product of the two probabilities,
pi × qj|i.

Probability pi can be calculated bymultiplying each proba-
bility of paired variables and independent variables, since the

FIGURE 2. State variables representing state i .

pairs and the independent variables are independent of each
other. Therefore, possible variable pairs and their probabili-
ties, as well as the range of each independent variable and its
probability, need to be identified. When there are u pairs of
paired state variables and several independent state variables,
pi could be presented as

pi = r1,m × . . . ę× £ru,n × r(u+1),l × . . . (2)

The probability of the m-th case of the first state variable pair
is expressed as r1,m, and the probabilities of the next variable
pairs are multiplied in succession until the probability of the
n-th case of the u-th pair is multiplied. Then the probabil-
ity of the l-th case of independent state variable r(u+1),l is
multiplied in succession to calculate pi. Figure 2 shows a
conceptual state i consisting of three state variables, two of
which are paired variables. Possible state space consists of
combinations of m-th and n-th cases of the pair and indepen-
dent variables. Among 2k × 2k possible value combinations
for the pair, only a portion of value pairs could actually exist,
and the probability of the m-th value pair is r1,m. The sum of
the probabilities of the possible value pair,

∑
m r1,m, is one.

Similarly, the sum of the probability of the possible indepen-
dent variable

∑
n r2,n is also one. The probability of paired

variable ru,n cannot be simply expressed as a multiplication
of each state variable included in the pair; the possible state
variable pairs need to be identified from the possible states
of a program. The process of obtaining the possible state
variable pairs is described below.

B. OBTAINING THE PROBABILITY OF EACH VARIABLE
1) OBTAINING PROFILE OF INDEPENDENT VARIABLES
As independent variables are not related to the values of
other variables, their distribution can be obtained by utilizing
available data regardless of the other variables. By referring to
plant operation strategy, design specification, plant dynamics,
and so on, the possible range of variables can be obtained.
For example, modes which bypass safety signal generation
do not have to be tested from a safety viewpoint. Thus
the bypass variable representing not-bypassed is included in
the test set, with a probability of one. The probabilities of
independent variables can be multiplied to the other prob-
abilities of independent variables and pairs, as presented
in Eq. 2.

2) OBTAINING PROFILE OF PAIRED VARIABLES
Distributions of paired variables need to be considered
together, which can be obtained from plant dynamics,

VOLUME 6, 2018 8443

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

simulation results, and so on. If the variables are related as
input–output of a block, the range of one variable can be
identified from that of the other variable. Since the function
block diagram (FBD) program has no feedback loop, if the
value of an output of a block is known, then the possible range
of inputs of the block can be determined. From the known
distributions, other distributions of variables can be obtained
in sequence.

FIGURE 3. Conceptual diagram of the procedure for obtaining the profile
of paired variables.

This procedure is conceptually depicted in Fig. 3, which
illustrates a variable pair with three state variables. The pro-
cess begins with variable 1 of which the distribution is known,
with the range of other variables identified one at a time.
For example, if variable 1 has a value of xa, the possible
range of variable 2 is limited to yb and y(b+1). The conditional
probability of variable 2 having value yb when the value
of variable 1 is xa is pyb|xa , which can be obtained from
available data. Similarly, depending onwhether variable 2 has
a value of yb or y(b+1), the possible values of variable 3 can
be obtained. The conditional probabilities of variable 3, with
variables 1 and 2 having xa and yb, is pzc|xayb , which can also
be obtained from available data. As this is the process to cal-
culate the probability ru,n from Eq. 2, the probability pxaybzc
of a pair with values of pxayb can be expressed as Eq. 3 as a
succession of multiplication of conditional probabilities,

ru,n = pxaybzc = pzc|xaybpxayb = pzc|xaybpyb|xapxa . (3)

This process should be repeated starting from the first
possible value of variable 1 to the last possible value of
variables 1, 2, and 3. If there is insufficient data to obtain a
distribution of a variable, test cases with all possible values
need to be tested to obtain conservative results. In this case,
the probability of each variable and each test case cannot
be obtained. For example, if the conditional probability of
variable 3 cannot be obtained, test cases with xa, yb, and all
possible values of variable 3 need to be tested. In this case,
the sum of probabilities of these test cases pxayb can be utilized
for failure probability quantification, which is described in
Eq. 4. Similarly, if data is not available for variables 2 and 3,
test cases with xa and all possible values of variables 2 and
3 need to be tested, which is described in Eq. 5. The genera-
tion of test cases needs to be repeated for the possible range

of values of variables 1 and 2, and probabilities of pxa and pyb .

Pr {all test cases with value xa, yb for variables 1, 2}

=

∑
c
pzc|xayb = pxayb (4)

Pr {all test cases with value xa for variable 1}

=

∑
b
pyb|xapxa (5)

C. TEST AND FAILURE PROBABILITY QUANTIFICATION
PROCEDURE
The test step starts with obtaining a scenario which gener-
ates signal demand to the target software. Then input and
state variables need to be verified to construct a test set by
inspecting software code. The value and probability of each
test set variable can be obtained by analyzing software design,
plant dynamics, operation method, etc. It is recommended
that obtained test cases be tested as per their probability, from
high to low.When testing is processedwithout error, the prob-
ability of a test case θ̂j|i is updated from 1 to 0, because the
test case is verified as an error-free portion. The total failure
probability θt can also be updated. For safety software, if a
failure is observed, it should be debugged and the test should
be restarted from the first test case, and the result of the former
version of the software should be disregarded. The overall
procedure is depicted in Fig. 4, where w is the number of test
cases.

FIGURE 4. Overall software failure probability quantification procedure.

As previously mentioned, as the state represents the previ-
ous input sequence, the test input does not have to include
lengthy past input sequences. Therefore, the test process
can be simplified and the time required for testing can be
decreased. Besides, for different scenarios that might lead
to the same state, each related input sequence does not
need to be individually tested. Several scenarios can be
replaced with a representative case, considering the determin-
istic nature of software, so the number of test cases can be
reduced.

IV. CASE STUDY
As a case study, the suggested method was applied to a target
safety-critical software. Test cases and the probability of each

8444 VOLUME 6, 2018

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

case were identified. The results of testing from the obtained
test cases can be utilized for software failure probability
quantification.

A. TARGET SYSTEM
Among the safety-critical applications in NPPs, a fully digi-
talized RPS, developed under the Korea Nuclear Instrumen-
tation & Control Systems project (KNICS), was selected as a
target system. The RPS generates trip signals when the plant
deviates from normal conditions. Bistable processors (BPs)
compare process variables with their trip setpoint (TSP),
and coincidence processors perform two-out-of-four voting
logic to determine whether the system generates a trip signal.
Among the software modules, 19 modules for trip signals are
defined in the BP. These trip logics can be categorized into
several types, for example fixed TSP, variable TSP by manual
reset, and variable TSP by automatic rate-limiting. Among
the 19 trip signals, ‘‘PZR_PR_Lo Trip’’ (pressurizer pressure
low trip) was chosen as the target logic, which has a variable
TSP and operator bypass function. This trip logic is relatively
more complex than the other logics, making it a good example
to demonstrate the advantage of the suggested method. [19]

FIGURE 5. Configuration of the low pressurizer pressure trip (variable
TSP).

Figure 5 shows the configuration of the low pressur-
izer pressure trip. It generates a trip signal if the pressure
decreases below the TSP. When the plant is in full power
mode, the TSP is fixed to 1762 psi. The TSP ranges between
1762∼ 300 psi during shut-down and start-up processes. The
operator should manually decrease the TSP while the pres-
sure slowly decreases during the shut-down process. When
the pre-trip alarm occurs, where the pre-trip setpoint is set
to 100 psi above the TSP, the operator has to push the reset
button after which the TSP decreases 400 psi below the cur-
rent pressure. Further decrease is not permitted within 10 s,
and bypass is permitted under 400 psi. When the plant starts
up, the TSP is automatically set to 400 psi below the current
pressure, and bypass is canceled from 500 psi.

The design requirement of the KNICS RPS limits the
scan time to less than 50 ms. As the scan time increases,

the deviation of process variables increase, therefore we will
assume 50 ms of scan time to find the maximum num-
ber of states. Process variables from the measuring instru-
ments are analog signals that are converted into digital sig-
nals by a 12-bit analog-digital-converter, in the case of the
OPR1000 NPP. A total of 212 digital values represent the
input span of the target system, and we can derive the scale of
one digital value. In the target logic, one step of digital value
increase or decrease corresponds to a change of 0.703 psi.

B. STATES AND VARIABLES OF THE TARGET SYSTEM
By inspecting the source code of PZR-PR-Lo-Trip logic,
we obtained three state variables: TSP, Previous-pressure, and
Reset-delay-time, and five input variables: Current-pressure,
Bypass-from-MCR, Bypass-from-RSR (remote shutdown
room), Reset-from-MCR (main control room), and Reset-
from-RSR. As the target is trip logic, the result of a test case
should be ‘‘trip’’. Current-pressure is a process parameter
obtained from the plant, with a value that cannot exceed a cer-
tain degree from Previous-pressure, because transition within
the scan time is limited. TSP is calculated from Current-
pressure and Previous-pressure, which is stored in the mem-
ory. Since the Previous-pressure and TSP are determined
by using Current-pressure, these two variables are paired
state variables. The Reset-delay-time is a counter which has
to remember its previous value, so it is also a state vari-
able. The value of this variable depends on the time differ-
ence between the accident and operator order. The timing
of the accident and operator action are independent, so the
Reset-delay-time variable does not depend on input vari-
able (current pressure) or corresponding paired state vari-
ables. The remaining four variables represent whether the
operator generates bypass or reset. Therefore, they do not
determine the values of any other variables in this set, thus
are independent of each other. All variables are summarized
in Table 1. State variables are marked with italics.

TABLE 1. Variables in PZR-PR-Lo-Trip logic.

A combination of state variables represents a certain state
of running software. When the plant operates in full power
mode, the TSP is fixed and the operator does not generate
the reset signal, so the state can be characterized by changing
Previous-pressure and other fixed variables during full power
mode. By testing cases from this mode, almost all of the
fault-free portion is covered because most pressure-drop-
accidents and following trip signal generation demands occur

VOLUME 6, 2018 8445

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

during full power mode. The TSP changes during the start-
up process but the reset timer does not change, therefore
the corresponding state is characterized by changing TSP
and corresponding Previous-pressure. While the plant is in
a shut-down process, the operator pushes the reset button, so
changing Reset-delay-time needs to be considered with the
corresponding state represented by TSP, Previous-pressure,
and Reset-delay-time. In this case, Reset-delay-time is inde-
pendent of TSP and Previous-pressure. For all three cases,
the possible values of the paired input variables are deter-
mined by the current state. The value of Current-pressure
should be slightly below the TSP, and smaller than Previous-
pressure by the amount of transition during scan time. Test
cases are composed of possible variations of these variables.

C. THE PROBABILITIES OF EACH TEST CASE
The range of independent variables can be obtained irrespec-
tive of other variables. In the target logic, Reset-delay-time
counts up to 10 s. Since the scan time is 50 ms, this variable
may have digital values from 0 to 200. Bypass-from-MCR
and Bypass-from-RSR are Boolean type variables, so they are
either 1 or 0. If an operator gives a bypass order, the system
should not generate a trip signal, so these cases do not have
to be examined. Accordingly, the values of Bypass-from-
MCR and Bypass-from-RSR are always ‘‘not bypassed’’.
Reset-from-MCR and Reset-from-RSR are also Boolean type
variables and are either 1 or 0 depending on the situation.
Previous and current input values can be obtained in the
same manner as described in the previous work [15]. For a
given resolution and scan time interval, the possible range of
Current-pressure and Previous-pressure can be obtained.

TABLE 2. Categorization of the LOCAs and their frequencies at full power
operation, start-up, and shut-down modes.

The probability of the TSP and Previous-pressure pair is
denoted by rx1,m, and that of Reset-delay-time is denoted
by rx2,n where x denotes the three operation modes. The
probabilities can be obtained based on the plant operation
mode and their fraction of accident frequency. In this study,
a loss of coolant accident (LOCA) is analyzed as a represen-
tative pressure transient accident. The accident frequencies
are shown in Table 2, which were obtained from studies
by the United States Nuclear Regulatory Commission and
Lim [20], [21]. Since most LOCAs occur during full power
operation, various LOCAs with different sizes during full
power operation are analyzed. The fraction of test cases
are calculated based on the relative fraction of accidents.

The pressure drop data were obtained by performing thermal-
hydraulic simulation.

1) FULL POWER OPERATION
At full power operation, pressurizer pressure is controlled to
have constant values, and the TSP is set to its maximumvalue.
As described above, the state is characterized as Previous-
pressure and other variables with fixed values. In case of
small LOCA (accidents #1, #2, #3 in Table 2), the transition
of pressure is very slow, so the maximum Previous-pressure
is one digital value above the TSP. Although the transitions
of accidents #2 and #3 are faster than accident #1, they are
treated as the same value because of the resolution of the
digital system. As the size of the accident increases (#4, #5),
the transition quickens. In case of a large LOCA (#6),
Previous-pressure might have the maximum of five digital
values below the TSP depending on the scan timing. If uni-
form distribution can be assumed for the Previous-pressure—
that is, if the states are evenly distributed—frequency frac-
tion can be divided into the number of states to obtain the
probability of each state. Since the previous pressure is the
only state variable in the full power operation test case,
the probability of the m-th case of state variable pair rf 1,m
can easily be obtained. For example, in case of accident #6,
the probability of having one of the five digital values can
be calculated as rf 1,1_#6 = rf 1,2_#6 = . . . = rf 1,5_#6 =
(frequency fraction of accident#6)

5 . The independent variable Reset-
delay-time is fixed to its maximum value because the manual
reset signal will not be generated. Therefore the probability
of this independent state variable rf 2,1 is equal to one.
For each given state, we can obtain current pressure.

The pressure changes linearly during the short scan time,
so the current pressure is a transition within the scan time
from the previous pressure. It corresponds to four or five
digital values below the previous pressure, considering the
timing of the scan. Not every conditional probability can
be obtained, but the sum of the conditional probabilities
is 1,

∑
j qj|i = 1(1 ≤ j ≤ 2). Two test cases need to

be conducted with state i and corresponding two possible
inputs; then pi of the error-free portion can be obtained. For
each accident in Table 2, possible states (with probability
pi), corresponding input range (with probability pi×qj|i), and
the error-free portion covered by the case or a fraction of
the case (with probability of pi×

∑
qj|i) were obtained as

shown in Table 3. In this table, state i represents the value of
Previous-pressure being i-digital values above the TSP, and
input j represents the value of the input being j-digital values
below the TSP.

Table 3 can be condensed as Table 4 according to
the state and input. In this table, the probabilities of
the common states and the inputs of different accidents
are summed. For example, r1,1 was calculated as the
sum of the probabilities for each accident, rf 1,1 =∑

beobtained, butthesumoftheconditionallimits6x=1 rf 1,1_#x .
A set of state and inputs in Table 4 represents one test case.

8446 VOLUME 6, 2018

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

TABLE 3. Possible states and inputs for the full-power mode, according
to the accident type.

TABLE 4. Test cases for full-power mode according to the state and input.

Software failure probabilities (1 −
∑
pi) are also shown,

assuming the test is successfully finished. By testing a case
set with state 1 and input 1, 96.67% of the input space can be
covered. There are 15 test cases, corresponding to 96.68% of
total input space, so software failure probability converges to
3.316E-02. The remainder (3.316E-02) will be covered in the
LOCA of shut-down and start-up processes.

2) START-UP PROCESS
To estimate pi, the probability of changing TSP and cor-
responding Previous-pressure should be identified. TSP
changes during specific plant operational states (POS), so the
frequencies of LOCA for each POS were applied from Lim’s
study [21]. During refueling and refilling of the reactor
coolant system, the trip signal should be bypassed so the
LOCAs during these POSs do not have to be considered.

FIGURE 6. Profile of TSP during the (a) shut-down and (b) start-up
processes.

When the pressure remains low, the TSP is set to 300 psi.
When the pressure goes up, the TSP also increases, with
2080 digital values along the steady increase of TSP from
300 psi to 1762 psi. At the end of the start-up process,
pressure remains high and the TSP is at 1762 psi. Based
on the frequency of LOCA for each POS, the frequency
fraction of LOCA for each TSP can be derived. If we assume
that the pressure increases linearly, the probabilities of TSP
between 300 psi and 1762 psi are the same. The lower graph
in Fig. 6 shows the relative frequencies during the start-
up process. A LOCA accident during start-up accounts for
1.449.E-02 among all LOCA accidents, as shown in Table 2,
so the LOCA frequency for each TSP can be calculated.
In this case, thermal-hydraulic simulation was done for large
LOCA, assuming the worst case.

For each TSP, the range of previous pressure and cor-
responding input needs to be obtained to determine the
possible states. In this case, obtaining detailed simula-
tion results for all possible states is not realistic; there-
fore, a boundary of state variables was conservatively set.
The maximum deviation does not exceed five digital val-
ues because the pressure drop of low pressure is less than
that of full-power operation pressure. It can therefore be
assumed that there are at most five states for each TSP.
As described above, even though each probability of a state
ru1,m = Pr {possible previous possible previous pressure
at TSP∗|TSP∗} cannot be exactly estimated, the sum of prob-
abilities of the states with the same TSPs can be obtained as
the probability of that TSP. If additional simulation results
can be obtained, the maximum deviation and number of cor-
responding states would decrease. In this study, the number
of states decreased to 8971 by utilizing additional simulation
results. Representative test cases are presented in Table 5. The
independent variable Reset-delay-time always has its maxi-
mum value, so the probability of independent state variable
ru2,1 again equals 1 and the state probability accordingly is
pi = ru1,m × ru2,1 = ru1,m, (6 ≤ i ≤ 8976). Current pressure
can be obtained in the samemanner as in the previous section.

Table 5 lists some possible states (with probabil-
ity pi), corresponding possible inputs (with probabil-
ity pi×

∑
qj|i), the sum of error-free fraction with the

VOLUME 6, 2018 8447

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

TABLE 5. Test cases and software failure probability for start-up process.

same TSP (with probability
∑
pi), and the software

failure probability (with probability 1 −
∑
pi). Here,

input j also means the j-th count from its TSP, so the
j-th count of two different TSPs is not the same input.
Based on the TSP profile during the start-up process
as shown in Fig. 6, and the frequency of LOCA, each
sum of probabilities of states (

∑
pi) with the same TSPs

was calculated. During the start-up process, the most
frequent TSP is 300 psi and 1762 psi, so test cases
with these TSPs take up most of the probability. Test-
ing all the test sets for the start-up process reveals∑

beobtained, butthesumoftheconditionallimits8976i=6 pi =

1.449E− 02 of fault-free portion.

3) SHUT-DOWN PROCESS
The shut-down process test set is represented by the TSP,
Previous-pressure, and Reset-delay-time variables which
need to be obtained to estimate pi. In this case as well, the
frequency of LOCA for each POS was considered. When
the shut-down process is started, pressure remains high with
the TSP at 1762 psi, and it is fixed at 300 psi at the end
of the process. While draining the reactor coolant system and
refueling, the trip signal should be bypassed so the LOCA
during this period does not have to be considered. If we
assume that the pressure decreases linearly, the distribution
of the TSP during pressure decrease can be obtained. The
TSP changes depending on the operator’s order, so it does
not decrease gradually. There are six possible TSPs: 1762,
1462, 1162, 862, 562, and 300 psi, if the operator immediately
resets the TSP. However, if the operator does not reset it
immediately, TSP is set to a relatively lower value because
current pressure decreases continuously. The upper graph
of Fig. 6 shows the possible distribution of TSP during the
shut-down process, assuming uniform distribution between
the resets as the exact distribution of human action was
not available. The probabilities of the distribution need to be

improved by reflecting more accurate data on the operator
response to the alarm. Since the proportion of LOCA acci-
dents during the shut-down process is 1.867.E-02, the acci-
dent probability for each TSP can be calculated.

Similar to the start-up process, the probability of the
paired variable rd1,l = Pr{possible previous pressure at
TSP∗|TSP∗}×Pr

{
TSP∗

}
cannot be exactly calculated either,

but again in this case, the sum of the probabilities of the states
with the same TSPs can be obtained as the probability of
that TSP. All possible states, corresponding possible inputs,
and their probabilities can be obtained in a manner similar to
that described in subsection 2) start-up process. In this case,
the profile of the Reset-delay-time variable, which usually
has a maximum value except for 10 s, should be considered.
For example, if the pressure decreases with a rate described
in Fig. 5 (2250psi/6h), the probabilities of Reset-delay-time
for each state are rd2,n = 1.691E − 0.5(0 ≤ n ≤ 199) and
rd2,200 = 9.966.E− 01. To estimate pi, rd2,n is multiplied to
pi = rd1,m × rd2,n, (8977 ≤ i ≤).

TABLE 6. Test cases and software failure probability for shut-down
process with a TSP of 1762 psi.

TABLE 7. Test cases and software failure probability for shut-down
process with a TSP of 300 psi.

Tables 6 and 7 describe all possible states, correspond-
ing possible inputs, the sum of error-free fractions (with
probability

∑
pi), and the software failure probability (with

probability 1−
∑
pi) for 1762 psi and 300 psi, respectively.

For certain TSPs, the Reset-delay-timer and previous input
form a state, with corresponding input presented. Here, input
j also means the j-th digital value below its TSP, and p.input i
means the i-th digital value above its TSP. In case of 1762 psi,
the reset button is not pushed, so the value of Reset-delay-
timer is fixed to 200. Test cases can be identified for all TSPs

8448 VOLUME 6, 2018

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

in the same way. As seen in Tables 6 and 7, test cases with
a reset counter value of 200 are more frequent than the other
cases.

D. DISCUSSION
In order to verify software integrity, all developed test cases
should be tested. If an error occurs during the test, the soft-
ware should be debugged and the test set should be performed
again. If there are many changes during debugging such that
the variables of the program change, a new test set should be
obtained by repeating the same process.

TABLE 8. High-probability test cases, error-free portion, and software
failure probability.

A total of 3,831,421 exhaustive test cases were identi-
fied, a part of which are listed in Table 8 in order of their
probability. The number of test cases can be reduced if
additional data is provided; with insufficient data, test cases
were chosen with all possible values to obtain conservative
results. For example, based on detailed thermal-hydraulic
simulation, certain ranges of parameters related to the start-
up and shut-down processes can be identified to be physically
implausible, thereby reducing the number of test cases.
As expected, the probabilities of test cases for full-power
operation are much greater than the others because most
accidents happen at full power. Software failure probabilities
are presented in Table 8 with the assumption that each test is
completed with a successful result.

As described above, the developed test cases can be tested
starting from the highly probable cases in order to efficiently
obtain a certain amount of failure probability. For example,
to obtain 1.E-3 and 1.E-4 of software failure probability,
at least 29 and 3156 test cases should be tested, respectively.
This number is considerably smaller than that of test cases

from other test-based quantification methods; consider that
if the Bernoulli process is applied, 3.E3 and 3.E4 successful
tests are required to obtain the same 1.E-3 and 1.E-4 of
software failure probability with a confidence level of 0.95.
Again, the number of required test cases may be reduced
based on their probability of occurrence, as some cases have
a much higher probability than others.

This method allows for relatively less test cases to satisfy
certain software failure rate goals. However, to accomplish
exhaustive testing, 6,179,415 test cases need to be verified
without omission. The large number of test cases requires a
long time to fully complete, even though the required effort
for one test case has been reduced. If the test cases are tested
from the highly probable cases and the testing is finished
after accomplishing the failure probability goal, most cases
of shut-down and startup with low probabilities will not be
verified.

V. CONCLUSION
In this study, a software test framework in consideration of
the input sequence was suggested. This framework provides
a relatively simple way of generating test cases that considers
the structure of the software and actual operational profile.
The total effort required for testing can be reduced through
the suggested method since several scenarios can be com-
bined into a representative test case. In addition, the proposed
method contains state variables which further reduce testing
time as there is no need to test long input sequences. By per-
forming testing with this test set, it can be verified that there
is no error in the software logic. The testing results can be
utilized for software failure probability quantification since
the test set is exhaustive. If a certain degree of software failure
probability is required, test cases with high probability can
be tested first. From the case study in this work, to obtain a
software failure probability of 10−3, less than 100 test cases
are required.

Despite these reductions in testing effort, the number of
required test cases for zero failure probability is still very
large, thus requiring a long time to exhaustively perform test-
ing. This problemmight be resolved by test automation, or by
using processor simulators. The test cases in the case study
example here were developed for the most complicated type
of logic among the various RPS software logics. Other simple
logics generate less number of test cases because they have
less variables, so this method will be useful in these cases.
This study also can be extended to obtain test cases consid-
ering several software modules. Since safety instrumentation
systems usually include logic solvers, the suggested method
is applicable to other safety instrumentation system in various
facilities.

The proposed framework focuses on the verification of the
correctness of the logic when demand arrives. Other causes of
errors should be investigated and understood further to com-
pletely model software failure. For example, testing cannot
reveal faults in the requirements, and the suggested software
failure quantification process cannot reflect the quality of

VOLUME 6, 2018 8449

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

development. The software running environment also needs
to be considered, such as interactions with hardware, the envi-
ronmental impact of the entire system, and the effect of other
software. External causes of error such as wrong input from
the operator or noise also need to be considered.

NOMENCLATURE
NPP Nuclear Power Plants
I&C Instrumentation and Control
PSA Probabilistic Safety Assessment
RPS Reactor Protection System
V&V Verification and Validation
FSM Finite State Machine
FBD Function Block Diagram
KNICS Korea Nuclear Instrumentation &

Control Systems project
BP Bistable Processors
TSP Trip SetPoint
LOCA Loss of Coolant Accident
POS Plant Operational States

REFERENCES
[1] National Research Council, Digital Instrumentation and Control Systems

in Nuclear Power Plants: Safety and Reliability Issues. Washington, DC,
USA: Academic, 1997.

[2] H. G. Kang and T. Sung, ‘‘An analysis of safety-critical digital systems for
risk-informed design,’’ Rel. Eng. Syst. Safe, vol. 78, no. 3, pp. 307–314,
2002.

[3] H. Ragheb, ‘‘Operating and maintenance experience with computer-based
systems in nuclear power plants,’’ in Proc. Int. Workshop Tech. Support
Licensing Issues Comput.-Based Syst. Important Safety. Münich, Gemany,
1996, p. 9.

[4] IEEE Recommended Practice on Software Reliability, IEEE Standard
1633-2016, 2016.

[5] M. C. Kim, S. C. Jang, and J. Ha, ‘‘Possibilities and limitations of applying
software reliability growth models to safety critical software,’’ Nucl. Eng.
Technol., vol. 39, no. 2, pp. 145–148, 2007.

[6] N. Fenton, M. Neil, and D. Marquez, ‘‘Using Bayesian networks to predict
software defects and reliability,’’ in Proc. Inst. Mech. Eng., O, J. Risk Rel.,
vol. 222, pp. 701–712, Dec. 2008.

[7] H. Eom, H. Son, H. Kang, and J. Ha, ‘‘A study of the quantitative
reliability estimation of safety-critical software for probabilistic safety
assessment,’’ in Proc. 4th ANS NPIC&HMIT, Columbus, OH, USA, 2004,
pp. 13–32.

[8] H. Eom, G. Park, H. Kang, and S. Jang, ‘‘Reliability assessment of a safety-
critical software by using generalized Bayesian nets,’’ in Proc. 6th ANS
NPIC&HMIT, 2009.

[9] K. Goševa-Popstojanova and K. S. Trivedi, ‘‘Architecture-based approach
to reliability assessment of software systems,’’ Perform Eval., vol. 45,
no. 7, pp. 179–204, 2001.

[10] J. May, G. Hughes, and A. D. Lunn, ‘‘Reliability estimation from appro-
priate testing of plant protection software,’’ Softw. Eng. J., vol. 10, no. 6,
pp. 206–218, Nov. 1995.

[11] K. W. Miller et al., ‘‘Estimating the probability of failure when testing
reveals no failures,’’ IEEE Trans. Softw. Eng., vol. 18, no. 1, pp. 33–43,
Jan. 1992.

[12] G. B. Finelli, ‘‘NASA software failure characterization experiments,’’ Rel.
Eng. Syst. Safe, vol. 32, nos. 1–2, pp. 155–169, 1991.

[13] M. R. Lyu, ‘‘The operational profile,’’ in Handbook of Software
Engineering and Knowledge Engineering. Los Alamitos, CA, USA:
McGraw-Hill, 1996, pp. 167–216. [Online]. Available:
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

[14] Software and Systems Engineering Software Testing Part 1: Concepts
and Definitions, IEEE Standard ISO/IEC/IEEE 29119-1:2013(E), 2013,
pp. 1–64.

[15] H. G. Kang, H. G. Lim, H. J. Lee, M. C. Kim, and S. C. Jang, ‘‘Input-
profile-based software failure probability quantification for safety signal
generation systems,’’ Rel. Eng. Syst. Safe, vol. 94, no. 10, pp. 1542–1546,
2009.

[16] J. C. Laprie and K. Kanoun, ‘‘Software reliability and system reliability,’’
in Handbook for Software Reliability Engineering. New York, NY, USA:
McGraw-Hill, 1996, pp. 27–69.

[17] P. Rook, ‘‘Software fault tolerance,’’ in Software Reliability Handbook.
New York, NY, USA: Elsevier, 1990, pp. 83–110.

[18] J. A. McDermid, ‘‘Fault-tolerant systems structuring concepts,’’ in Soft-
ware Engineer’s Reference Book. New York, NY, USA: Elsevier, 2013,
p. 61.

[19] G. Y. Park, K. Y. Koh, E. Jee, P. H. Seong, K.-C. Kwon, and D. H. Lee,
‘‘Fault tree analysis of KNICSRPS software,’’Nucl. Eng. Technol., vol. 40,
no. 5, pp. 397–408, 2008.

[20] R. Tregoning, L. Abramson, and P. Scott, ‘‘Estimating Loss-of-Coolant
Accident (LOCA) frequencies through the elicitation process,’’
U.S. Nucl. Regulatory Commission, Rockville, MD, USA,
Tech. Rep. NUREG-1829, 2005.

[21] L. W. Sang, L. J. Sung, and H. J. Kyu, ‘‘A study on the low power and
shutdown PSA during the standard design phase,’’ in Proc. 7th Korea-
Japan PSA Workshop.

HEE EUN KIM received the B.S. degree in electri-
cal engineering and the M.S. degree in nuclear and
quantum engineering from the Korea Advanced
Institute of Science and Technology, Daejeon,
South Korea, in 2011 and 2013, respectively,
where she is currently pursuing the Ph.D. degree
in nuclear engineering.

Her research interests include probabilistic
safety assessment, and the safety and cyber
security of nuclear power plant digital instrumen-

tation and control systems.

HAN SEONG SON received the Ph.D. degree in
nuclear engineering from KAIST in 2000. He has
been an Assistant Professor with Joongbu Univer-
sity since 2008.

His research interests include software engi-
neering, software reliability, and cyber security,
among others.

BO GYUNG KIM received the Ph.D. degree in
nuclear engineering from KAIST in 2016. She has
been a Senior Researcher with the Korea Institute
of Nuclear Safety since 2016.

Her research interests include probabilistic
safety assessment and accident sequences of
nuclear power plants, among others.

JAEHYUN CHO received the B.S. degree in
nuclear engineering and the Ph.D. degree in energy
system engineering from Seoul National Univer-
sity, Seoul, South Korea, in 2008 and 2013, respec-
tively. He is currently with KAERI as a Senior
Researcher.

His research interests include digital instrumen-
tation and control, severe accident probabilistic
safety assessment, and passive system reliability.

8450 VOLUME 6, 2018

H. E. Kim et al.: Input-Domain Software Testing for Failure Probability Estimation of Safety-Critical Applications

SUNG MIN SHIN was born in South Korea
in 1984. He received the B.S. degree in mecha-
tronics engineering from the Korea Univer-
sity of Technology and Education, Cheonan,
South Korea, in 2010, and the M.S. degree in
mechanical engineering and the Ph.D. degree in
nuclear and quantum engineering from KAIST,
Daejeon, South Korea, in 2012 and 2016, respec-
tively.

He is currently a Senior Researcher with the
Korea Atomic Energy Research Institute. His research interests include the
field of safety component monitoring, probabilistic safety assessment, and
digital instrumentation and control.

HYUN GOOK KANG received the Ph.D. degree
in nuclear engineering from KAIST in 1999.

After receiving his Ph.D. degree, he was with
KAERI as a Senior Researcher for more than ten
years. A nuclear engineering expert, he is currently
working as an Associate Professor with Rensselaer
Polytechnic Institute.

His research interests include interconnected
specialties that lie in innovations of the risk assess-
ment of safety-critical systems, intrinsically safe

nuclear power, intelligence of control and protection, and the design and
evaluation of emergency procedures.

VOLUME 6, 2018 8451

	INTRODUCTION
	TEST SETS REGARDING SOFTWARE STATE
	STATES OF REAL-TIME SAFETY-CRITICAL SYSTEMS
	DEVELOPMENT OF TEST SETS REGARDING SOFTWARE STATE
	MULTI-DIMENSIONAL TEST INPUT SPACE
	PAIRED VARIABLES AND INDEPENDENT VARIABLES

	PARTITIONED SAMPLING SPACE

	DETERMINING PROBABILITIES OF TEST CASES FOR QUANTIFICATION OF SOFTWARE FAILURE PROBABILITY
	PROBABILITY OF A TEST CASE
	OBTAINING THE PROBABILITY OF EACH VARIABLE
	OBTAINING PROFILE OF INDEPENDENT VARIABLES
	OBTAINING PROFILE OF PAIRED VARIABLES

	TEST AND FAILURE PROBABILITY QUANTIFICATION PROCEDURE

	CASE STUDY
	TARGET SYSTEM
	STATES AND VARIABLES OF THE TARGET SYSTEM
	THE PROBABILITIES OF EACH TEST CASE
	FULL POWER OPERATION
	START-UP PROCESS
	SHUT-DOWN PROCESS

	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	HEE EUN KIM
	HAN SEONG SON
	BO GYUNG KIM
	JAEHYUN CHO
	SUNG MIN SHIN
	HYUN GOOK KANG

