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ABSTRACT In this paper, we examine the combined impacts of distance-dependent Rician fading channel
model and the absolute difference between the heights of base station (BS) and user equipment (UE) antennas
on the coverage probability and the area spectral efficiency in an interference-limited ultra-dense (UD)
small cell network (SCN). Exploiting distance dependent models for both path loss and multi-path fading,
we show that in interference-limited UD-SCNs, Rician fading with variant Rician K factor aggravates the
performance loss caused by the difference between the heights of the BS and UE antennas in comparison to
Rayleigh fading. In particular, we demonstrate that due to presence of the specular line-of-sight component
in the Rician fading, both the coverage probability and the area spectral efficiency experience a steeper
decline towards zero as the BS density increases. Our performance analysis has a prominent impact on the
deployment of UD-SCNs in the 5th-generation of mobile networks, as it indicates that the right modeling
of multi-path fading makes a significant difference when assessing the performance of UD-SCNs with
non-identical UE-BS antenna heights.

INDEX TERMS Stochastic geometry, homogeneous Poisson point process (HPPP), line-of-sight (LOS),
non-line-of-sight (NLOS), dense small cell networks (SCNs), coverage probability, area spectral efficiency
(ASE), Rician fading.

I. INTRODUCTION
According to recent reports [1], the global mobile traffic
is expected to grow eight-fold from 2015 to 2020 with the
data emanating from smart phones, tablets, and other tech-
nologies, reaching 30.6 billion gigabytes per month by 2020.
Therefore, new disruptive approaches are essential to support
the anticipated skyrocket in global mobile data traffic. Based
on Prof. Web study [2], the wireless network capacity has
increased around 1 million fold from 1950 to 2000, in which
an astounding 2700× gain was achieved through network
densification using reduced cell sizes. Consequently, further
network densification and in particular ultra-dense small cell
networks (SCNs) is regarded as one of the main approaches
to drive the 5th-generation (5G) of mobile communications,
while continuing to fuel the 4th-generation (4G) Long Term
Evolution (LTE) networks [3]–[5]. According to [6], [7], an
ultra-dense SCN refers to a cellular network with traffic vol-

ume per area greater than 700 Gbps/km2 or user equipment
(UE) density greater than 0.2 UEs/m2 which implies that
base station (BS) density is larger that UE density [8], [9].
Featuring dense orthogonal deployment of small cell BSs
with the macrocell tier, an ultra-dense SCN exploits an exten-
sive spatial reuse of the spectrum to boost the coverage of
cellular networks and provide more capacity through offload-
ing from macrocells in public places with a large number of
UEs such as airports and shopping malls as well as indoor
environments, where there is a degradation in link margin and
throughput due to absorption loss by walls [10]–[12].

A. BACKGROUND
Previously, the common understanding on SCNs was that
the coverage probability performance is independent of the
small cell BS density in interference-limited fully-loaded
wireless networks, and thus the area spectral efficiency (ASE)
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performance in bps/Hz/km2 would linearly increase with the
small cell BS density [13]–[15]. The intuition behind the
conclusion that the small cell BS density does NOT matter,
was that the increase in the interference power caused by
the deployment of more small cell BSs is exactly counterbal-
anced by the increase in the signal power due to the closer
proximity between transmitters and receivers [16], [17].
However, it is important to note that such conclusion was
based on considerable simplifications on the propagation
environment, which should be re-examined when evaluating
dense and ultra-dense (UD)-SCNs, as they are fundamentally
different from sparse ones in various aspects.

In our recent works, we presented a distance-based piece-
wise path loss model that benefits from probabilistic LOS
and NLOS transmissions, and thus is able to differentiate
LOS and NLOS transmissions [18], [19]. Assuming Rayleigh
fading, our theoretical analysis and simulation results showed
that in dense SCNs, depending on the SINR threshold the
ASE will suffer from a slow growth or even a small decrease
as the density of small cell BSs exceeds a certain thresh-
old [18]. The intuition behind this slow growth/decrease is
that in dense SCNs many interference signals transit from
NLOS to LOS transmission, which causes the interference
power to increase faster than the signal power. This indicates
that the small cell BS density has a prominent impact on
the signal to interference relationship [20]–[22] and demon-
strates that the small cell BS density actually DOES matter.
Moving towards an UD-SCN, the ASE restarts to grow lin-
early with the small cell BS density, as both the signal and
interference signals become LOS dominated.

B. CONTRIBUTIONS
The authors in [24] have exploited our piecewise path loss
model with probabilistic LOS and NLOS transmissions, and
have examined how the heights of the small cell BS and UE
antennas impact the performance of UD-SCNs based on the
assumption that multi-path fading for both LOS and NLOS
transmissions is Rayleigh fading.

However, it is well understood that the multi-path fading
in LOS transmissions does not follow Rayleigh distribution
and so their assumption that the multi-path fading for both
the LOS and NLOS transmissions is Rayleigh distributed
is not entirely accurate. Therefore, it is vital to investigate
how a more accurate multi-path fading model for UD-SCNs
can impact the performance of UD-SCNs that consist of
BSs that are deployed at heights different to that of average
UE’s height. To answer this question, we analyse the per-
formance of an interference-limited UD-SCN with different
BS and UE antenna heights under distance-dependent Rician
fading with a variant Rician K factor - as a more realistic
multi-path facing model that is able to capture the impact of
LOS path strength as network densifies - to understand the
combined impacts of LOS/NLOS transmission, multi-path
fading, and antenna height difference on the performance of
the system in terms of both coverage probability and ASE.
Using stochastic geometry, our theoretical analysis as well

as simulation results show that Rician fading exacerbates the
performance degradation caused by the difference in heights
of UE and BS antennas in comparison to Rayleigh fading,
thus posing a serious question on the prevalent conviction of
lampposts as candidate locations for UD-SCNs deployment.
To the best of our knowledge, this is the first paper that offers
a simultaneous analysis of the performance of UD-SCNs i)
with non-identical UE-BS antenna heights, ii) incorporating
a piecewise distance-based path loss model that considers
both LOS and NLOS transmissions, iii) assuming a distance-
dependent Rician multi-path fading model that exploits a
variant Rician K factor based on the UE-BS distance.

The contributions of this paper are:

• We present the full derivations for the analytical results
on both the coverage probability and the ASE, consider-
ing the absolute difference between the heights of small
cell BS and UE antennas assuming a Rician fading chan-
nel with a distance dependant Rician K factor. We also
derive numerically tractable integral-form expressions
for the coverage probability and the ASE for a general
3GPP path loss model with a linear LOS probability
function that incorporates both LOS and NLOS trans-
missions.

• We present the full proof of our theoretical finding,
which highlights the impact of multi-path fading on the
performance of UD-SCNs. Our finding demonstrates
that when there is a difference between the absolute
heights of the small cell BS and UE antennas, the Rician
multi-path fading with variant Rician K factor causes a
more steep decline towards zero than a Rayleigh one in
both coverage probability and the ASE.

The remainder of this paper is structured as follows.
In Section II, the system model is presented. In Section III,
the main analytical results on the coverage probability and
the ASE taking into account the distance-dependent Rician
fading channel are discussed. In Section IV, the numerical
results are presented. Finally, in Section V, the conclusions
are drawn.

II. SYSTEM MODEL
Stochastic geometry is a useful tool to study the performance
of cellular systems [25], [26]. In this paper, our focus is on
the downlink (DL) of cellular networks.

A. BS DISTRIBUTION
We assume that small cell BSs form a Homogeneous Poisson
point process (HPPP) 8 of intensity λ BSs/km2.

B. USER DISTRIBUTION
We assume that UEs form another stationary HPPP with an
intensity of λUE UEs/km2, which is independent from the
small cell BSs distribution. Note that λUE is considered to
be sufficiently larger than λ, so that each BS has at least one
associated UE in its coverage. We also assume that a typical
UE is located at the origin based on Slivnyak’s theorem,
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which is a common assumption in the analysis using stochas-
tic geometry.

C. ANTENNA RADIATION PATTERN
Each BS and the typical UE are equipped with an isotropic
antenna, and the difference between the heights of UE and BS
antennas is denoted by L.

D. PATH LOSS
We denote the two dimensional (2D) distance between an
arbitrary BS and the typical UE located at the origin by r
in km. Then, we present a three dimensional (3D) distance
between the BS and the typical UE located at the origin by w,
which is expressed as

w =
√
r2 + L2 (1)

and considering the practical LOS/NLOS transmissions, we
propose a piecewise path loss model with respect to distance
w in the following.

The path loss function ζ (w) is divided intoN pieces where
each piece is represented by ζn (w) as shown in (2). Moreover,
ζLn (w) and ζNLn (w) represent the n-th piece of path loss
function for the LOS transmission and the n-th piece of path
loss function for theNLOS transmission, respectively, and are
modelled as

ζn (w) =

{
ζLn (w) = ALnw

−αLn , for LOS

ζNLn (w) = ANLn w−α
NL
n , for NLOS

(2)

where n ∈ {1, 2, . . . ,N } and ALn and ANLn refer to the path
losses at a reference distance of w = 1 km for the LOS and
the NLOS cases in ζn (w), respectively, and αLn and αNLn are
the path loss exponents for the LOS and the NLOS cases in
ζn (r), respectively. Typical values of reference path losses
and path loss exponents, which are obtained from field tests,
can be found in [27], [28].

Similar to the path loss, the LOS probability function
PrL(w) can also be expressed as a piecewise function where
PrLn (w) , n ∈ {1, 2, . . . ,N } denotes the n-th piece of LOS
probability function corresponding to a BS and a UE that are
separated by distance w from each other.

E. USER ASSOCIATION STRATEGY (UAS)
The UE is associated with the BS with the smallest path loss,
regardless whether it is LOS or NLOS. Note that when the
link between UE and BS is NLOS, we say that it is blocked.
Otherwise, the communication is regarded as LOS.

F. MULTI-PATH FADING
Themulti-path fading between an arbitrary BS and the typical
UE is modelled as a practical distance dependant Rician
fading channel [30] which considers a smooth transition from
Rician fading to Rayleigh fading as the UE-to-BS distance
increases. More specifically, the variant Rician K factor is
defined as the ratio of the power in the specular LOS com-
ponent to the power in all scattered NLOS components and

varies according to the distance between UE and BS and
hence it is able to capture the impact of the strength of the
LOS path on multi-path fading. For the LOS case, we use
a variant distance dependant Rician K factor where K (w) =
13−0.03w (dB), withw being the 3D distance between the BS
and UE in meter [31]. For the NLOS case, the Rician K factor
is set to −∞ dB. Note that we denote K (w) by K hereafter,
but it is critical not to interpret K as a constant value.

III. ANALYSIS BASED ON THE PROPOSED
PATH LOSS MODEL
In this section, we present our main results on the coverage
probability and the ASE.

A. THE COVERAGE PROBABILITY
One metric that is used to evaluate the system’s performance
is the signal-to-interference-plus-noise-ratio (SINR) cover-
age probability. If the UE’s received SINR is larger than a
predefined threshold γ , the UE is considered in coverage or
receiving its required service, which is defined as

Pcov(λ, γ ) = Pr [SINR > γ ] (3)

and the SINR is computed as

SINR =
Ptζ (w) h
Ir + N0

(4)

where Pt is the transmission power of each BS, h is the
Rician distributed channel gain between the typical UE and its
serving BS denoted by bo and N0 is the additive white Gaus-
sian noise (AWGN) power at the typical UE. The aggregated
interference from all non-serving BSs is denoted by Ir , and is
defined as

Ir =
∑

i: bi∈8\bo

Ptβigi (5)

where bi, βi and gi refer to the i-th interfering BS, the corre-
sponding path loss and Rician fading channel gain between
the UE and the i-th interfering BS, respectively.
To compute the area spectral efficiency (ASE), we need to

derive the probability density function (PDF) of the SINR at
the UE, which for a specific value of λ is defined as

f0 (λ, γ ) =
∂ (1− Pcov(λ, γ ))

∂γ
(6)

and thus the ASE can be expressed as

AASE (λ, γ0) = λ
∫
∞

γ0

log2 (1+ γ ) f0 (λ, γ ) dγ (7)

where γ0 denotes the minimum working SINR for the con-
sidered SCN.

To obtain Pcov(λ, γ ), we present Theorem 1 in the follow-
ing. Note that for the tractability of analysis in this paper,
we consider an interference-limited scenario and hence in
coverage probability derivations, we concentrate on signal-
to-interference-ratio (SIR) rather than SINR.
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Theorem 1: Considering the path loss model in (2),
Pcov(λ, γ ) can be computed as

Pcov(λ, γ ) =
N∑
n=1

(
T Ln + T

NL
n

)
(8)

where T Ln =
∫√d2n−L2√

d2n−1−L
2
Pr

[
Pt ζLn

(√
r2+L2

)
h

Ir
> γ

]
f LR,n (r) dr,

TNLn =
∫√d2n−L2√

d2n−1−L
2
Pr

[
Pt ζNLn

(√
r2+L2

)
h

Ir
> γ

]
f NLR,n (r) dr,

where d0 = 0, dN = ∞, and f
path
R,n (r) with path ∈ {L,NL}

refers to the piecewise PDF of the distance to the serving BS.
Proof: See Appendix A.

B. RICIAN CRASH THEOREM
In the following, we present Theorem 2 to theoretically dis-
cuss how Rician fading affects the performance loss due to
the difference between the absolute heights of the BS and UE
antennas.
Theorem 2: In an UD-SCN, if L > 0 and γ, γ0 < ∞,

for λmax < λ, AASERician(λ, γ0) < AASERayleigh(λ, γ0) where λmax
refers to the BS density that achieves maximum coverage
probability.

Proof: As the density of small cell BSs λ increases,
the 2D distance between the typical user and its serving BS
diminishes. Moreover, in practical SCNs L < d1 - where d1
determines the decreasing slope of the linear LOS probability
function PrL(r) - and thus the first piece of either the LOS path
loss function or the NLOS path loss function will be sufficient
to characterise the 2D distance. This is backed up by the fact
that the small cell radius rc is related to small cell BS density
through rc = 1

√
πλ

. Therefore, based on the limits Theory, we

can show that limλ→∞ Pcov(λ, γ ) = limλ→∞
{
T L
1 + T

NL
1

}
,

where the terms T L
1 and TNL

1 deliver the coverage probability
components based on the signal coming from either the first
piece LOS path or the first piece NLOS path, respectively.

In the computation of limλ→∞ Pcov(λ, γ ), it is realized that
limλ→∞ f NLR,1 = 0, and thus limλ→∞ TNL

1 = 0. To elaborate
this, we note that PrL(w) is a monotonically decreasing func-
tion of w, and assuming a non-zero difference between the
heights of the BS andUE antennas (L 6= 0), then limr→0 r2 =

arg{ζL
(√

r22 + L
2

)
ζNL1 (L)} 1= rmin

2 , and thus it can be stated

that exp
(
−
∫ r2
0 PrL

(√
u2 + L2

)
2πλudu

)
in (23) is upper

bounded by exp
(
−PrL

(√(
rmin
2

)2
+ L2

)
πλ

(
rmin
2

)2)
. This

affirms that as λ → ∞, the first piece LOS path loss

function, i.e., ζL1 (w) = AL1
(√

r2 + L2
)−αL1

, is sufficient to
characterise both the signal and interference links, and so is
the main contributor to the coverage probability. As a result,
limλ→∞ Pcov(λ, γ ) = limλ→∞ T L

1 .
In order to compute limλ→∞ T L

1 , we use Fig. 1, which
illustrates a SCN consisting of two small cell BSs and can be

FIGURE 1. Illustration of antenna height impact in a small cell network
with two small cell BSs.

expanded to an UD-SCN where λ → ∞. As can be seen in
the figure, the distance between UE and its serving and inter-
fering BSs are represented by r and τ r , respectively, where
(1 < τ <∞). Considering the first piece LOS path loss func-

tion, we can show that as r → 0, Pr

[
PζL1

(√
r2+L2

)
h

Ir
> γ

]
<

exp
(
−

PrL(L)(τ 2−1)
1+ 1

γ

)
, z, and since τ can take a large value,

then z will be very small. Thus, based on T L
1 definition,

limλ→∞ Pcov(λ, γ ) = limλ→∞ T L
1 = 0. Moreover, we show

that when λ → ∞, the limit of the SIR, defined by ζ =(√
τ 2r2+L2

)αL1(√
r2+L2

)αL1 is

ζ̄ = lim
λ→∞

ζ = lim
r→0

ζ =

{
1, (L > 0)

τα
L
1 , (L = 0) .

(9)

It is realized from (9) that as r → 0, the signal-link
distance

√
r2 + L2 in the denominator of SIR formula is

lower bounded by L, and thus when L 6= 0, there will
be a substantial decline in ζ̄ which cannot be overcome by
densification. This occurs because the non-zero difference
between the heights of the BS and the UE antennas (L 6= 0)
poses a cap on the signal-link distance, which restrains the
signal power while the power of the aggregated interference
signal grows as the network densifies. Under these circum-
stances, network densification enhances the aggregated inter-
ference while the signal power remains constant. This leads to
the Rician Crash, which accelerates the UE’s service outage
experience in comparison to Rayleigh-based one.

To better understand the reasoning of the Rician Crash
theorem, we present Lemma 1 to investigate the probability
that the coverage probability opportunistically beats the SINR
threshold.
Lemma 1: In an UD-SCN, for a given SINR threshold γ0,

when the BS density λ is large enough, the Rayleigh fading
offers a better coverage probability than the Rician one.

Proof: We denote the average SINR by µ. Therefore,
we can express the coverage probability in (3) as

Pr [hµ > γ ] = Pr
[
h >

γ

µ

]
= FH (h) = FH (

γ

µ
) (10)

VOLUME 6, 2018 9963



A. H. Jafari et al.: Performance Analysis of Dense SCN With Practical Antenna Heights Under Rician Fading

whereFH (h) represents the complementary cumulative distri-
bution function (CCDF) of h. Based on (27), and depending
on the distribution of h being Rayleigh or Rician, (10) can be
reformulated as

Pr [hµ > γ ] =


exp

(
−
γ

µ

) ∞∑
k=0

k∑
m=0

exp(−K )K km!
(k
m

)
(k!)2

×

(
γ

µ

)k−m
, Rician fading

exp
(
−
γ
µ

)
, Rayleigh fading

Moreover, we use ζ and δ to represent the ratio and the
difference between the coverage probability under Rayleigh
and Rician fading as

ζ = exp(−K )
∞∑
k=0

k∑
m=0

K k

k!(k − m)!

(
γ

µ

)k−m
(11)

δ = exp
(
−
γ

µ

)(
1− exp(−K )

×

∞∑
k=0

k∑
m=0

K k

k!(k − m)!

(
γ

µ

)k−m)
(12)

For a given SINR threshold γ0, it can be seen from (11) that
as the BS density increases and the network moves towards
an UD-SCN, the specular LOS fading dominates and in turn
the Rician K factor increases. Therefore, in an UD-SCN, the
term exp(−K ) in (11) exponentially decays and converges to
zero under Rician fading, so that the network performance
is drastically degraded in comparison to that with Rayleigh
fading. From another perspective, we can also observe that,
based on the Stirling’s approximation and as k → ∞, k!
grows faster than K k , and thus K k

k!(k−m)! < 1. Therefore, when
the SINRs are low, i.e., when the BS density is high and the
coverage probability is low (δ > 0), the Rician fading offers
a worse network performance than the Rayleigh one.

FIGURE 2. Probability of beating the SINR threshold of γ = 0 dB for
different Rician K factor.

To corroborate the above result, Fig. 2 compares the prob-
ability that the coverage probability opportunistically beats
the SINR threshold of γ0 = 0dB for both Rician fading with
different Rician K factors as well as Rayleigh fading. Note
that the Rician K factors of 13, 10, 7, and 5 dB correspond
to 3D distances of 0 m, 100 m, 200 m, and 266.6 m between
UE and BS, respectively. This has to be emphasized that as
discussed in Section II, the distance-dependent Rician fading
model with a variant Rician K factor adjusts the dominance
of the LOS path based on distance between UE and BS. It can
be seen that when the BS density is low, which corresponds
to the high SINR regime (3 dB ∼ 10 dB), Rician fading has
a better chance to satisfy the SINR threshold requirement
in comparison to Rayleigh fading, which leads to a better
coverage probability performance. However, in the low SINR
regime (−10 dB∼−3 dB), which corresponds to a high BS
density, and thus UD-SCN, the Rician K factor is larger
(LOS fading dominates) and hence the Rician fading has a
lower chance to reach the SINR threshold requirement in
comparison to Rayleigh fading. As a result, it can be expected
that Rician fading more sharply drags down both the cover-
age probability and ASE performance to zero than Rayleigh
fading.

To support the above discussion, Fig. 3 compares the CDF
and PDF of Rician fading with different Rician K factors
to that of Rayleigh fading. It is seen that while Rayleigh
fading has a larger variance around the mean, Rician fading
has a more deterministic behaviour due to dominant LOS
component with a smaller variance around its mean. The
higher the density of BSs in the network, the larger the Rician
K factor, the stronger the LOS component, and the smaller the
variance.

C. STUDY OF A 3GPP SPECIAL CASE
We consider the following 3GPP path loss function used
in [27]

ζ (w) =

{
ALw−α

L
, with probability PrL (w)

ANLw−α
NL
, with probability

(
1− PrL (w)

)
(13)

which for sake of simplicity and without any loss of gen-
erality uses a linear LOS probability [28] function, PrL (w),
defined as

PrL (w) =

 1−
w
d1
,

0,

0 < w ≤ d1
w > d1

(14)

where the steepness of PrL (r) is defined by the parameter d1.
According to Theorem 1 and considering the mentioned

3GPP case, Pcov (λ, γ ) can be computed as Pcov (λ, γ ) =
2∑

n=1

(
T L
n + T

NL
n
)
, where ζL1 (w) = ζL2 (w) = ALw−α

L
,

ζNL1 (w) = ζNL2 (w) = ANLw−α
NL
, PrL1 (w) = 1 − w

d1
, and

PrL2 (w) = 0. In the following, we compute T L
1 , which can then

be easily extended to {T Pathn } in order to obtain Pcov(λ, γ ).
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FIGURE 3. Comparison of CDF and PDF of Rician and Rayleigh fadings.
(a) CDF. (b) PDF.

In order to help with the tractability of our analysis, we
try to approximate the 3D distance w =

√
r2 + L2. In this

regard, we derive the lower bound of w as

wLB

=



w ≥ L, tight when r is very small, i.e., 0 ≤ r ≤ v1,

w ≥
r + L
√
2
, tight when r is relatively small, i.e.,

v1 ≤ r ≤ v2,
w ≥ r, tight when r is relatively large, i.e., r > v2.

(15)

where v1 =
(√

(2)− 1
)
L and v2 =

(√
(2)+ 1

)
L. Having

computed the lower bound, we approximate w as L, r+L√
2
and

r for the ranges of r discussed in (15), respectively.
According to Theorem 1 and based on the above approx-

imation, T L
1 for the range of 0 < r ≤

√
d21 − L

2 can be

computed as

T L
1 =

∫ √
d21−L

2

0

∞∑
k=0

k∑
m=0

J (m, k) γ k−m(−1)k−m

×

∂k−mL L
Ir (

γ

Pt ζLn
(√

r2+L2
) )

∂γ k−m
f LR,1(r)dr (16)

where ζL1 (w) = ALw−α
L
and L L

Ir refers to the Laplace
transform of Ir at s for the LOS transmission. Moreover, from
Theorem 1, f LR,1(r) can be obtained as

f LR,1(r)

= exp

(
−

∫ r1

0
λ

√
u2 + L2

d1
2πudu

)

× exp

(
−

∫ r

0
λ

(
1−

√
u2 + L2

d1

)
2πudu

)

×

(
1−

√
r2 + L2

d1

)
2πrλ,

(
0 < r ≤

√
d21 − L

2

)
= exp

(
−
2πλ
3d1

((
r21 + L

2
) 3

2
− L3

))
× exp

(
−πλr2 +

2πλ
3d1

((
r21 + L

2
) 3

2
− L3

))
×

(
1−

√
r2 + L2

d1

)
2πrλ,

(
0 < r ≤

√
d21 − L

2

)
(17)

where r1 =

√(
ANL
AL

) 2
αNL

(
r2 + L2

) αL

αNL − L2.
Breaking the integration interval into different segments,

we calculate the definite integrals Q1 =
∫ b
a (1 − 11)udu

and Q2 =
∫ b
a (1 − 12)u

√
u2 + L2du where 11 =

(eK sPtApath)−1
(√

u2+L2
)αpath

1+(sPtApath)−1
(√

u2+L2
)αpath

−K (sPtApath)−1
(√

u2+L2
)αpath and12 =

(eK sPtApath)−1
(√

u2+L2
)αpath

1+(sPtApath)−1
(√

u2+L2
)αpath

−K (sPtApath)−1
(√

u2+L2
)αpath for dif-

ferent segments of [0 ≤ a; b ≤ v1], [v1 ≤ a; b ≤ v2],
[v2 ≤ a; b < ∞], and [v2 ≤ a; b = +∞] which are
presented in Appendix B.

IV. SIMULATION AND DISCUSSION
In this section, we use numerical results to study the per-
formance of UD-SCNs with non-identical antenna heights
under Rician fading channel and validate the accuracy of our
analysis. To analyse in detail the impact of the Rician Crash
theorem in UD-SCNs, we consider four different cases:

• Case 1: Both serving and interfering BSs are subject to
Rician fading,

• Case 2: Serving BS is subject to Rician fading, while
interfering BSs are subject to Rayleigh fading,
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• Case 3: Serving BS is subject to Rayleigh fading, while
interfering BSs are subject to Rician fading,

• Case 4: Both serving and interfering BSs are subject to
Rayleigh fading.

Note that case 1 is more realistic and that the other cases
are presented here in order to aid the discussion. Also note
that in the legend of Figs. 4 and 5, the first and second terms
refer to the channel model between the UE and its serving and
interfering BSs, respectively.

FIGURE 4. The coverage probability versus BS density with antenna
height difference of L = 8.5m.

We adopt the following parameters in our numerical anal-
ysis based on [27], [29]. We assume the LOS and NLOS path
loss exponents of αL = 2.09 and αNL = 3.75. Moreover,
AL, ANL, and d1 are assumed to be 10−10.38, 10−14.54, and 0.3
km, respectively. The transmit and noise power are also equal
to Pt = 24 dBm and N0 = −95 dBm. Unless mentioned
otherwise, we also assume antenna height differences of L =
0 (identical UE and BS antenna heights) and L = 8.5m.

A. THE COVERAGE PROBABILITY PERFORMANCE
Fig. 4 shows the coverage probability versus the BS density
for the four cases discussed above, where the UE and BS
antennas are not at the same height (L = 8.5m). First of
all and before proceeding with the analysis of numerical
results, it is important to note that the theoretical analysis
results match the simulation results, and thus we only discuss
theoretical results hereafter.

With regard to the general coverage probability trends,
Fig. 4 also shows that for all four discussed cases, the cover-
age probability initially increases with the BS density, as the
network is light up with coverage. However, once the BS den-
sity exceeds a certain threshold, in this case

(
λ0 = 20 Bss

km2

)
,

the difference between the heights of UE and BS antennas
causes a cap on the signal power, which prompts the coverage
probability to decline and eventually converge to zero, as was
explained in Rician Crash Theorem. Comparing the coverage
probability of the four different cases presented above, it can

be seen that the multi-path fading model (as discussed in
Lemma 1) does have an impact on the coverage probability,
when there is a difference in the heights of the UE and the BS
antennas.

When the coverage probability achieves its maximum
at λ1, meaning that the UE SINRs are large, the case with
Rician fading for the serving links and Rayleigh fading for
the interference links achieves the best performance. This is
in line with Lemma 1, which showed that Rician fading has
a better chance to satisfy the SINR threshold requirement
in comparison to Rayleigh fading in the high SINR regime
between 3 dB and 10 dB. To further support this claim note
that, as it was shown in Fig. 3, Rician fading results in
a more deterministic multi-path fading due to its specular
dominant LOS component with a lower variance around the
mean, while Rayleigh fading has a larger variance around the
mean with a large tail towards the negative values, resulting
in fadings of up to −20dB, The first phenomena helps to
maintain a good carrier signal for most UEs, while the second
one helps to opportunistically mitigate the interference.

When the coverage probability is low, which refers to
low SINR regime, it is important to note that there is a
cross over at around

(
λ1 = 700 Bss

km2

)
between the coverage

probabilities of the cases that have Rician and Rayleigh
fading to model the serving links. This is also in line with
Lemma 1, which showed that Rician fading has a lower
chance to reach the SINR threshold requirement in compar-
ison to Rayleigh fading in the low SINR regime between
−3 dB and −10 dB. The cases with Rayleigh fading offer
a better performance here because Rayleigh fading benefits
from more channel fluctuations than Rician fading, and thus
achieves an opportunistic carrier signal power gain, which
is only visible at low UE SINRs. In such regime, the case
with Rayleigh fading for both the serving and the interfer-
ence links achieves the best performance, since as explained
before the Rayleigh interference is in average smaller than the
Rician one.

B. THE ASE PERFORMANCE
Fig. 5 shows the ASE performance for the above four differ-
ent cases. It is important to mention that we only focus on the
theoretical results and so the ASE results are obtained from
the coverage probability presented in (7). The ASE perfor-
mance also follows a similar trend as the coverage probability.
For all the four cases, we can see that as far as the BS density
is lower than λ1, the ASE linearly increases with the BS
density because the coverage holes are mitigated. Densifying
the network beyond λ1 causes the ASE to experience a slower
growth pace or even a decrease. This occurs due to coverage
probability degradation triggered by the transition of a large
number of interfering signals from NLOS to LOS [18], [23].
Then, when the BS density is large, as in an UD-SCN, we
observe a severe degradation in ASE performance due the UE
and BS antenna height difference, and that such degradation
greatly depends on the multi-path fading model.
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FIGURE 5. The area spectral efficiency versus BS density with antenna
height difference of L = 8.5m.

Comparing the ASE results that correspond to the dis-
cussed four cases, we can also realise the same behaviour
as for the coverage probability. When the BS density is λ1
and the coverage probability achieves its maximum, the cases
with Rician fading at the serving links provide the best per-
formance because Rician fading has a better chance to meet
the SINR threshold. However, when the UE SINR starts to
degrade due to the difference between UE and BS antenna
heights, the cases with Rayleigh fading are more robust and
provide a better performance since Rayleigh fading benefits
from a higher chance to meet the SINR threshold, as was
derived in Lemma 1 and shown in Fig. 2. Accordingly, when
the multi-path channel between the UE and its associated
BS is Rician fading, the ASE declines more rapidly towards
zero. As network becomes denser and the LOS component
becomes more dominant, the Rician K factor is reinforced
causing the Rician fading to face a more severe exponential
decay. To further explain this, we must note that due to the
large Rician K factor in UD-SCN (where the channel is even
prone to single LOS tap), Rician fading causes less fluctua-
tions in the channel in comparison to Rayleigh fading, which
prevents to benefit from the opportunistic channel gains.
Rayleigh fading instead provides such opportunistic SINR
gains at the cell-edge, which leads to an enhanced ASE. As
a result, the Rician fading causes a more severe performance
degradation as discussed by Rician Crash theorem.

Finally, Fig. 6 compares the impact of identical and non-
identical UE-BS antenna heights on the ASE performance
under Rician fading. Note that in non-identical case, the
height difference is 8.5m. It can be perceived that when both
UE and BS have same antenna heights (L = 0), the ASE
linearly increases as the network moves towards an UD-
SCN [23]. In contrary, based on the Rician Crash theorem,
when (L 6= 0), Rician fading causes the ASE to severely drop
to zero. This suggests that operators should lower the small
cell BS height close to the average UE antenna height when
deploying UD-SCNs.

FIGURE 6. Comparison of the area spectral efficiency with different
antenna heights under Rician fading.

C. DISCUSSION ON THE VALUE OF THEORETICAL
ANALYSIS
While theoretical derivations do not have straightforward and
compact expressions, this has to be pointed out that computer
based simulations are nearly infeasible when looking at a
practical ultra-dense network with a tremendous number of
BSs, millions of them. The complexity of computer based
simulations quickly become prohibitive, with running times
of around a month for the discussed scenario in this paper. In
more details, the required time to perform the computer based
simulations for BS densities of λ ≥ 103 BSs/km2 is very long,
and it becomes almost infeasible for BS densities of λ ≥ 105

BSs/km2. For instance, for BS density of λ = 106 BSs/km2, it
takes a minimum of twenty seven days to plot smooth curves
using computer based simulations in comparison to five days
using the theoretical derivations. In contrast, the complexity
of the theoretical analysis remains independent of the BS
density, thanks to the numerical integration derived in this
paper, i.e., the complexity is not a function of the BS density
and so the results can be obtained much faster.

V. CONCLUSION
In this paper, we analysed the impact of Rician fading on
the coverage probability and ASE performance in UD-SCNs
where the BS and UE antennas are not of the same height.
Using a piecewise path loss model, we showed through ana-
lytical expressions as well as simulation results that due to
less channel fluctuations of Rician fading, it causes the ASE
to more rapidly slope down to zero in comparison to Rayleigh
fading. This indicates that multi-path fading plays a key role
in UD-SCNs with non-identical UE-BS antenna heights and
to avert its ruinous effect, the operators should deploy small
cell BSs close to the height of the average UE antenna.

APPENDIX A
To compute Pcov (λ, γ ), we need to calculate two parameters:
i) the joint distance PDFs for the corresponding events of the
typical UE being associated with a BS with either a LOS or
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NLOS path represented by Events BLn and BNLn , respectively,
and ii) the coverage probability that is conditioned on

(
r,BLn

)
and

(
r,BNLn

)
. Note that the joint distance PDF of r and Event

Bpathn with string variable path taking the values of {L,NL} to
represent LOS and NLOS paths is denoted by f pathR,n (r), where

f pathR,n (r) is subject to the following condition:

N∑
n=1

∫ √d2n−L2√
d2n−1−L

2
f LR,n(r)dr +

N∑
n=1

∫ √d2n−L2√
d2n−1−L

2
f NLR,n (r)dr = 1.

(18)

Also note that the coverage probability is the sum of the
probabilities associated with the Events BLn and BNLn , owing
to the fact that these two events are disjoint.

To compute f LR,n (r), we refer to its definition as f LR,n (r) =
fR,n|BLn

(
r|BLn

)
Pr[BLn ], where Pr[BLn ] = PrLn (

√
r2 + L2) and

fR,n|BLn
(
r|BLn

)
represents the joint event that corresponds to

the following independent sub-events.
• The serving BS b0 should be located at a 2D distance
r from the typical UE with the corresponding uncondi-
tional distance PDF of 2πrλ.

• There should not be any other LOS BS than the serving
BS b0 in event BLn that offers a better link to the UE. Its
probability is given as

pLn (r) = exp
(
−

∫ r

0
PrL

(√
u2 + L2

)
2πuλdu

)
. (19)

• There should not be any other NLOSBS than the serving
BS b0 in event BLn that offers a better link to the UE. Its
probability is given as

pNLn (r)=exp
(
−

∫ r1

0

(
1−PrL

(√
u2+L2

))
2πuλdu

)
(20)

where r1 = arg
r1

{
ζNL

(√
r21 + L

2

)
= ζLn

(√
r2 + L2

)}
to derive the 2D distance at which the NLOS BS and b0
offer the same signal level.

Assuming a 3D distance, we can show that

fR,n|BLn

(
r|BLn

)
= pNLn (r)pLn (r)2πrλ. (21)

Therefore, the piecewise PDF of the distance to the LOS
and NLOS serving BS can be derived as

f LR,n (r)

= exp
(
−

∫ r1

0

(
1− PrL

(√
u2 + L2

))
2πuλdu

)
× exp

(
−

∫ r

0
PrL

(√
u2 + L2

)
2πuλdu

)
PrLn

(√
r2+L2

)
× 2πuλ,

(√
d2n−1 − L

2 < r ≤
√
d2n − L2

)
(22)

and

f NLR,n (r) = exp
(
−

∫ r2

0
PrL

(√
u2 + L2

)
2πuλdu

)

× exp
(
−

∫ r

0

(
1− PrL

(√
u2 + L2

))
2πuλdu

)
×

(
1− PrLn

(√
r2 + L2

))
× 2πuλ,(√

d2n−1 − L
2 < r ≤

√
d2n − L2

)
(23)

where r1 = arg
r1

{
ζNL

(√
r21 + L

2

)
= ζLn

(√
r2 + L2

)}
and

r2 = arg
r2

{
ζL
(√

r22 + L
2

)
= ζNLn

(√
r2 + L2

)}
.

We can now move on to evaluate Pr
[
SINR > γ |

(
r,BLn

)]
and Pr

[
SINR > γ |

(
r,BNLn

)]
, which can be presented as

Pr

[
Pt ζLn

(√
r2+L2

)
h

Ir
> γ

]
and Pr

[
Pt ζNLn

(√
r2+L2

)
h

Ir
> γ

]
,

respectively. In the following, we only consider

Pr[
Pt ζLn

(√
r2+L2

)
h

Ir
> γ ], as Pr[

Pt ζNLn
(√

r2+L2
)
h

Ir
< γ ] can

be computed in the same manner.

Pr[
PtζLn

(√
r2 + L2

)
h

Ir
> γ ]

= E[Ir ]

{
Pr

h > γ Ir

PtζLn
(√

r2 + L2
)
}

= E[Ir ]

{
F̄H

 γ Ir

PtζLn
(√

r2 + L2
)
} (24)

where E[Ir ]{.} is the expectation operation over the random
variable Ir and F̄H (h) refers to the CCDF of random vari-
able h. Note that for the tractability of analysis, we have
considered an interference-limited scenario in our deriva-
tions. Moreover, the interference is normalized with respect
to PtζLn

(√
r2 + L2

)
, where the normalized interference is

defined as Irn =
Ir

Pt ζLn
(√

r2+L2
) . Therefore, (24) can be

expressed as Pr[ hIrn > γ ] = 1 − Pr[ hIrn < γ ] where
Pr[ hIrn < γ ] denotes the cumulative distribution func-
tion (CDF) of the normalized SIR, and thus Pr[ hIrn < γ ] can
be written as

Pr[
h
Irn

> γ ] = 1−
∫ ∫

h
y<γ

fH (h)fIrn (y) dh dy

= 1−
∫
∞

0
FH (γ y)fIrn (y) dy (25)

where fH (h) and FH (h) are the PDF and CDF of random
variable h, respectively [32], [33]. Since the random variable
h is Rician distributed, its PDF is given by

fH (h) =
(K + 1)

h̄
exp

(
−

(
K +

(K + 1)h

h̄

))
× I0(

√
4K (K + 1)h

h̄
) (26)

whereK is the RicianK factor, I0 is the zero-th order first kind
modified Bessel function and h̄ is expectation of h. Applying
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the series expansion from [34], [35], fH (h) can be expressed

as fH (h) = exp(−K −h)
∞∑
k=0

(Kh)k

(k!)2
and using the PDF of h, its

CDF can be derived as

Fh(h)

= exp(−K )
∞∑
k=0

×
K k

(k!)2

(
exp(−h)

k∑
m=0

(−1)2m+1 m!
(
k
m

)
hk−m + k!

)

= −

∞∑
k=0

k∑
m=0

exp(−h) J (m, k) hk−m +
∞∑
k=0

K k

k!
exp(−K )

= −

∞∑
k=0

k∑
m=0

exp(−h) J (m, k) hk−m + 1 (27)

where J (m, k) =
exp(−K )K km!(km)

(k!)2
and

∞∑
k=0

K k

k! = exp(K ) based

on the Taylor series combination. By replacing (27) in (25),
we derive

Pr[
h
Irn

> γ ] =
∞∑
k=0

k∑
m=0

J (m, k)
∫
∞

0
(yγ )k−me−yγ fIrn (y) dy

=

∞∑
k=0

k∑
m=0

J (m, k) γ k−mQ(γ, k − m) (28)

where Q(τ, n) =
∫
∞

0 yne−yτ fIrn (y)dy = (−1)n ∂
nLIrn (τ )
∂τ n

for
n = 0, 1, ..,∞ [32], [33]. Therefore,

Pr[
h
Irn

> γ ]=
∞∑
k=0

k∑
m=0

J (m, k) γ k−m(−1)k−m
∂k−mL L

Irn (γ )

∂γ k−m

(29)

Plugging Ir = Irn PtζLn
(√

r2 + L2
)
into (29), we can derive

Pr[
PtζLn

(√
r2 + L2

)
h

Ir
> γ ]

=

∞∑
k=0

k∑
m=0

J (m, k) γ k−m

×(−1)k−m
∂k−mL L

Ir (
γ

Pt ζLn
(√

r2+L2
) )

∂γ k−m
(30)

where L L
Ir (s) is the Laplace transform of RV Ir evaluated at

s subject to the condition corresponding to Event BL which
states that the UE is associated with a BS with LOS trans-
mission. Similarly, for the NLOS transmission, it is derived
as

Pr

PtζNLn

(√
r2 + L2

)
h

Ir
> γ



=

∞∑
k=0

k∑
m=0

J (m, k) γ k−m

× (−1)k−m
∂k−mL NL

Ir ( γ

Pt ζNLn
(√

r2+L2
) )

∂γ k−m
(31)

whereL NL
Ir (s) is the Laplace transform of RV Ir evaluated at

s subject to the condition corresponding to Event BNL that the
UE is associated with a BS with NLOS transmission. In the
following, we derive L L

Ir (s) as

L L
Ir (s) = E[Ir ]

{
exp (−sIr )|BL

}
= E[8,{βi},{gi}]

exp

−s ∑
i∈8/bo

Ptβi(w)gi

∣∣∣∣∣∣BL

(32)

and based on the path loss model, the user is subject to
interference from both LOS and NLOS paths. Therefore,
E[g]{exp(−sPtβ(w)g)|BL} in (32) must take into account the
interference from both the LOS and NLOS interfering BSs.
Note that the random variable g follows Rician distribution.
Therefore, L L

Ir (s) can be expressed as

L L
Ir (s)

= exp
(
−2πλ

∫
∞

r

(
1−

√
u2 + L2

d1

)

×

[
1− E[g]exp

(
−sPtAL

(√
u2 + L2

)−αL
g
)]

udu
)

× exp
(
−2πλ

∫
∞

r1

√
u2 + L2

d1[
1− E[g]exp

(
−sPtANL

(√
u2 + L2

)−αNL
g
)]

udu
)
(33)

For sake of presentation, the term sPtAL
(√

u2 + L2
)−αL

is
denoted by 3, and thus E[g]{exp(−3g)} can be computed as

E[g]exp(−3g)=
∫
∞

0
exp(−3g) exp(−K−g)

∞∑
k=0

(Kg)k

(k!)2
dg (34)

where exp(−K − g)
∞∑
k=0

(Kg)k

(k!)2
is the PDF of the random vari-

able g. According to Taylor series, it is realized that
∞∑
k=0

K k

k! =

exp(K ), and thus (34) can be written as

E[g]{exp(−3g)} =
∫
∞

0
exp(−3g)exp(−K − g)exp(Kg) dg

= exp(−K )
∫
∞

0
exp(−g(1+3− K )) dg

=
exp(−K )
1+3− K

(35)
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Plugging 3 = sPtAL
(√

u2 + L2
)−αL

into (35), 1 −

E[g]exp(−sPtAL
(√

u2 + L2
)−αL

g) can be written as

1− E[g]exp(−sPtAL
(√

u2 + L2
)−αL

g)

= 1−
(eK sPtAL)−1

(√
u2 + L2

)αL
1+ 01

(36)

where 01 = (sPtAL)−1
(√

u2 + L2
)αL
− K (sPtAL)−1(√

u2 + L2
)αL

. Similarly, 1 − E[g]{exp(−sPtANLu−α
NL
g)}

can be computed, and thus (33) is written as

L L
Ir (s) = exp

(
−2πλ

∫
∞

r

1−

(√
u2 + L2

)
d1



×

1−
(eK sPtAL)−1

(√
u2 + L2

)αL
1+ 01

 udu
)

× exp
(
−2πλ

∫
∞

r1

(√
u2 + L2

)
d1

×

1−
(eK sPtANL)−1

(√
u2 + L2

)αNL
1+ 02

 udu
)

(37)

where 02 = (sPtANL)−1
(√

u2 + L2
)αNL

− K (sPtANL)−1(√
u2 + L2

)αNL
and s =

γ
(√

r2+L2
)αL

PtAL
. By plugging (37) in

(30), we compute Pr[
Pt ζLn

(√
r2+L2

)
h

Ir
> γ ]. In a similar man-

ner, we can derive L NL
Ir (s), and obtain Pr[

Pt ζNLn
(√

r2+L2
)
h

Ir
>

γ ] and, therefore,

Pr[
PtζLn

(√
r2 + L2

)
h

Ir
> γ ]

=

∞∑
k=0

k∑
m=0

J (m, k) γ k−m

× (−1)k−m
∂k−mL L

Ir

(
γ

Pt ζLn
(√

r2+L2
)
)

∂γ k−m
(38)

and

Pr[
PtζNLn

(√
r2 + L2

)
h

Ir
> γ ] =

∞∑
k=0

k∑
m=0

J (m, k) γ k−m

× (−1)k−m
∂k−mL NL

Ir

(
γ

Pt ζNLn
(√

r2+L2
)
)

∂γ k−m
(39)

where L L
Ir (s) and L NL

Ir (s) refer to the Laplace transform
of RV Ir evaluated at s for LOS and NLOS transmissions,
respectively, and are derived as

L L
Ir (s)

= exp
(
−2πλ

∫
∞

r

1−

(√
u2 + L2

)
d1


×

(
1−

(eK sPtAL)−1
(√

u2 + L2
)αL

1+ 01

)
udu

)

× exp
(
−2πλ

∫
∞

r1

(√
u2 + L2

)
d1

×

(
1−

(eK sPtANL)−1
(√

u2 + L2
)αNL

1+ 02

)
udu

)
(40)

and

L NL
Ir (s) = exp

(
−2πλ

∫
∞

r2

1−

(√
u2 + L2

)
d1


×

(
1−

(eK sPtAL)−1
(√

u2 + L2
)αL

1+ 01

)
udu

)

× exp
(
−2πλ

∫
∞

r

(√
u2 + L2

)
d1

×

(
1−

(eK sPtANL)−1
(√

u2 + L2
)αNL

1+ 02

)
udu

)
.

(41)

APPENDIX B
In the following, we calculate the the definite integralsQ1 and
Q2 for the different segments.
Case 1: Assuming 0 ≤ a and b ≤ v1, we approximate√
u2 + L2 ≈ L. Therefore, Q1 and Q2 can be expressed as

Q1≈

∫ b

a

(
1−

(eK sPtApath)−1Lα
path

1+(sPtApath)−1Lα
path
−K (sPtApath)−1Lα

path

)
Ludu=

1
2

(
b2 − a2

)
+
a2 − b2

2

×
(eK sPtApath)−1Lα

path

1+ (sPtApath)−1Lα
path
− K (sPtApath)−1Lα

path

(42)

and

Q2 ≈

∫ b

a

(
1−

(eK sPtApath)−1Lα
path

1+(sPtApath)−1Lα
path
−K (sPtApath)−1Lα

path

)
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Q1 ≈

∫ b

a

(
1−

(eK sPtApath)−1
(
u+L
√
2

)αpath
1+ (sPtApath)−1

(
u+L
√
2

)αpath
− K (sPtApath)−1

(
u+L
√
2

)αpath
)

× udu
∫ b+L

a+L

(
1−

(eK sPtApath)−1
(

ū
√
2

)αpath
1+ (sPtApath)−1

(
ū
√
2

)αpath
− K (sPtApath)−1

(
ū
√
2

)αpath
)
(ū− L)dū

= ρ1

(
αpath, 1,

(
(sPtApath)−1
√
2

(1− K )
)
, b+L

)
−ρ1

(
αpath, 1,

(
(sPtApath)−1
√
2

(1−K )
)
, a+ L

)
−L

[
ρ1

(
αpath, 0,

(
(sPtApath)−1
√
2

(1− K )
)
, b+L

)
−ρ1

(
αpath, 0,

(
(sPtApath)−1
√
2

(1−K )
)
, a+L

)]

+ (sPtApath)−1
(
(1− K − exp(−K ))

(
1
√
2

)αpath)

×

[
ρ1

(
αpath, αpath + 1,

(
(sPtApath)−1
√
2

(1− K )
)
, b+ L

)
− ρ1

(
αpath, αpath + 1,

(
(sPtApath)−1
√
2

(1− K )
)
, a+ L

)]
+L(sPtApath)−1 (1− K − exp(−K ))

×

[
ρ1

(
αpath, αpath,

(
(sPtApath)−1
√
2

(1−K )
)
, b+L

)
−ρ1

(
αpath, αpath,

(
(sPtApath)−1
√
2

(1−K )
)
, a+L

)]
(44)

udu =
L
2

(
b2 − a2

)
+
L
(
a2 − b2

)
2

×
(eK sPtApath)−1Lα

path

1+ (sPtApath)−1Lα
path
− K (sPtApath)−1Lα

path

(43)

Case 2: Assuming v1 ≤ a and b ≤ v2, we approximate√
u2 + L2 ≈ u+L

√
2
. Therefore, Q1 and Q2 can be expressed as

given by (44) and (45), shown at the top of this page and the
next page, where the variable change of u+ L = ū is used to
ease the integrations. Note that ρ2(α, β, t, d) is defined as

ρ1(α, β, t, d)

=

∫ d

0

uβ

1+ tuα
du

=

[
dβ+1

β + 1

]
2F1

[
1,
β + 1
α
; 1+

β + 1
α
;−tdα

]
(46)

where 2F1 [., .; .; .] refers to the hyper-geometric function.
Case 3: Assuming v2 ≤ a and b < ∞, we approximate√
u2 + L2 ≈ u. Therefore, Q1 and Q2 can be expressed

as

Q1

≈

∫ b

a

(
1−

(eK sPtApath)−1uα
path

1+(sPtApath)−1uα
path
−K (sPtApath)−1uα

path

)
udu

= ρ1

(
αpath, 1, (sPtApath)−1(1− K ), b

)
− ρ1

(
αpath, 1, (sPtApath)−1(1− K ), a

)
+ (1− K − exp(−K ))

[
ρ1
(
αpath, 1, (sPtApath)−1

(1− K ), b
)
− ρ1

(
αpath, αpath + 1, (sPtApath)−1

(1− K ), a
)]

(47)

and

Q2

≈

∫ b

a

(
1−

(eK sPtApath)−1uα
path

1+(sPtApath)−1uα
path
−K (sPtApath)−1uα

path

)
u2du

= ρ1

(
αpath, 2, (sPtApath)−1(1− K ), b

)
−ρ1

(
αpath, 2, (sPtApath)−1(1− K ), a

)
+ (1− K − exp(−K ))

[
ρ1
(
αpath, αpath + 2,

(sPtApath)−1(1− K ), b
)
− ρ1

(
αpath, αpath + 2,

(sPtApath)−1(1− K ), a
)]

(48)
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Q2 ≈

∫ b

a

(
1−

(eK sPtApath)−1
(
u+L
√
2

)αpath
1+ (sPtApath)−1

(
u+L
√
2

)αpath
− K (sPtApath)−1

(
u+L
√
2

)αpath
)

u
u+ L
√
2

du =
∫ b+L

a+L

(
1−

(eK sPtApath)−1
(

ū
√
2

)αpath
1+ (sPtApath)−1

(
ū
√
2

)αpath
− K (sPtApath)−1

(
ū
√
2

)αpath
)

(ū− L)ū
√
2

dū =
1
√
2

[
ρ1

(
αpath, 2,

(
(sPtApath)−1
√
2

(1− K )
)
, b+ L

)
− ρ1

(
αpath, 2,

(
(sPtApath)−1
√
2

(1− K )
)
, a+ L

)]
−

L
√
2

[
ρ1

(
αpath, 1,

(
(sPtApath)−1
√
2

(1− K )
)
, b+ L

)
− ρ1

(
αpath, 1,

(
(sPtApath)−1
√
2

(1− K )
)
, a+ L

)]
+ (sPtApath)−1

(
(1− K − exp(−K ))

√
2

(
1
√
2

)αpath)
×

[
ρ1

(
αpath, αpath + 2,

(
(sPtApath)−1
√
2

(1− K )
)
, b+ L

)
− ρ1

(
αpath, αpath + 2,

(
(sPtApath)−1
√
2

(1− K )
)
, a+ L

)]
+ fracL(sPtApath)−1 (1− K − exp(−K ))

√
2

×

[
ρ1

(
αpath, αpath + 1,

(
(sPtApath)−1
√
2

(1− K )
)
, b+ L

)
−ρ1

(
αpath, αpath + 1,

(
(sPtApath)−1
√
2

(1− K )
)
, a+ L

)]
(45)

Case 4: Assuming v2 ≤ a and b = +∞, we approximate
Q1 and Q2 as

Q1

≈

∫
+∞

a

(
1−

(eK sPtApath)−1uα
path

1+(sPtApath)−1uα
path
−K (sPtApath)−1uα

path

)
udu

= ρ2

(
αpath, 1, (sPtApath)−1(1− K ), a

)
+

(
(sPtApath)−1(1− K − exp(−K ))

)
× ρ2

(
αpath, αpath + 1, (sPtApath)−1(1− K ), a

)
(49)

Q2

≈

∫
+∞

a

(
1−

(eK sPtApath)−1uα
path

1+(sPtApath)−1uα
path
−K (sPtApath)−1uα

path

)
u2du

= ρ2

(
αpath, 2, (sPtApath)−1(1− K ), a

)
+

(
(sPtApath)−1(1− K − exp(−K ))

)
× ρ2

(
αpath, αpath + 2, (sPtApath)−1(1− K ), a

)
(50)

where ρ2(α, β, t, d) is defined as

ρ2(α, β, t, d)

=

∫
∞

d

uβ

1+ tuα
du

=

[
d−(α−β−1)

t(α − β − 1)

]
2

×F1

[
1, 1−

β + 1
α
; 2−

β + 1
α
;−

1
tdα

]
(51)

subject to (α > β + 1).
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