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ABSTRACT Siphons, as a structural object of Petri nets (PNs), are closely related to deadlock-freedom
in PNs. Efficient siphon computation is of great importance in developing siphon-based deadlock control
strategies with good performance. This paper is concerned with the enumeration of minimal siphons in a
subclass of PNs called systems of sequential systems with shared resources (S4PR). First, a method with
polynomial complexity is proposed to decide whether a subset of resource places can generate a minimal
siphon. Next, by utilizing the technique of problem partitioning, we develop an approach to compute all
minimal siphons in S4PR. The proposed approach is illustrated by an example and its advantage is finally
demonstrated via a comparison with other approaches.

INDEX TERMS Petri nets, S4PR nets, minimal siphon enumeration, problem partitioning.

I. INTRODUCTION
PETRI nets (PNs) are a popular modelling tool of discrete
event systems (DESs) [4], [10]–[20], [34], [36], [43], [46],
[49], [51] to tackle problems like deadlock problems [3],
[13], [16]–[19], [22], [26], [28], [30], [40], [41], [44], fault
diagnosis [5], [6], [27] and process scheduling [24], [39], and
they enjoy applications in various real-world DES such as
flexible manufacturing systems [18], workflow systems [20],
microgrid systems [23], railway systems [11], and business
systems [47], [48]. A siphon is a structural object of PNs
and strongly related to the properties of deadlock-freedom
and liveness. The number of siphons in a PN grows expo-
nentially in the worst case with respect to the net size [21].
Consequently, the computational efficiency of siphon-based
deadlock control strategies [3], [12], [16], [22], [26], [28],
[41], [44] largely depends on that of siphon computation.

The computation of siphons can be classified into two
categories, i.e., one applicable to general nets [1], [2], [9],
[26], [29], [31], [35] and the other applicable to specific nets
only [7], [8], [17], [33], [40]–[42], [45]. In specific nets,
siphons possess their particular properties that are conducive
to proposing computation approaches with low complexity.
Hence, the approaches of siphon computation for specific
nets usually have higher efficiency than those for general nets.
In this work, we study the enumeration of minimal siphons in

a subclass of PNs named Systems of Sequential Systems with
Shared Resources (S4PR) [30].
Places in S4PR are divided into resource, activity and idle

places and minimal siphons are divided into ones with and
without resources. The number of minimal siphons without
resources is exactly the same as that of idle places in an S4PR
and they are easy to be computed. Thus, the difficulty of
minimal siphon computation in S4PR lies in the computation
of minimal siphons with resources. Due to the fact that each
resource-place subset in an S4PRmay yield a minimal siphon
and at most one minimal siphon [8], the key to minimal
siphon computation in S4PR is to answer the question: How
to decide whether a resource-place subset can yield a minimal
siphon.

For a subclass of S4PR named ‘‘Systems of Simple
Sequential Processes with Resources (S3PR)’’, our previ-
ous work [33] proposes a sufficient and necessary condi-
tion to decide if a subset of resource places corresponds
to a minimal siphon. Based on this condition, an approach
with high computational efficiency is developed [33] to
compute all the minimal siphons in S3PR. Barkaoui and
Lemaire [2] propose a characterization of minimal siphons
for general nets using graph theory. However, it is not efficient
when applied to S4PR. For another subclass of S4PR named
‘‘Extended Systems of Linear Simple Sequential Processwith
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Resources’’, a necessary but not sufficient condition for a
subset of resource places to generate a strict minimal siphon
is established byWang et al. [32] based on resource digraphs.
Cano et al. [8] present the concept of pruning graphs
and then propose a determination condition for a subset
of resource places to generate a minimal siphon in S4PR.
We observe that such a determination still turns to the def-
inition of minimal siphons. Motivated by their work, we
construct characteristic implicit resource-transition (CIRT)
nets in our previous work [37] and then propose a suf-
ficient and necessary condition to decide if a resource-
place subset can yield a minimal siphon. However, how to
enumerate all minimal siphons in S4PR is not presented
in [37]. In this work, it is answered. Firstly, we develop
a new method that is shown to be polynomial complex-
ity to decide whether a resource-place subset can yield a
minimal siphon in S4PR. Next, based on the determination
method and adopting the technique of problem partitioning,
we propose an approach that enumerates all minimal siphons
in S4PR.
The remainder of this paper is organized as follows.

Section II recalls necessary concepts and results in [37] and
develops a new method to decide whether a resource-place
subset can yield aminimal siphon in S4PR. The new approach
to enumerate minimal siphons in S4PR is presented in
Section III and Section IV shows the comparison between
the proposed approach and an existing one via an example.
Section V concludes this paper.

II. CONDITION FOR RESOURCE-PLACE SUBSET TO
GENERATE MINIMAL SIPHON
The basic concepts and notations related to PNs, siphons and
S4PR are reviewed in detail in Section II Preliminaries of
our prior work [37], and we thus do not repeat them in this
paper. More knowledge of PNs can be found in [25], [38],
and [50]. According to the definition of S4PR, any transition
in S4PR has one output activity place at most and one input
activity place at most. We thus use ta and at to denote the
unique output and input activity places of a transition t ,
respectively.

The net N in Fig. 1 is an S4PR. By the definition of S4PR,
the sets of idle places, resource places and activity places are
P0 = {p1, p6},PR = {r1, r2, r3} and PA = {p2 − p5, p7 −
p10}, respectively. Moreover, the sets of holders of r1, r2, r3
areH (r1) = {p5, p9},H (r2) = {p2−p4, p7, p10} andH (r3) =
{p8 − p10}, respectively. Besides, consider the transition t5.
We have at5 = p3 and ta5 = p5.
According to the work [8], minimal siphons in an S4PR are

divided into two types: the ones with and without resources.
The latter can be easily computed. Indeed, each minimal
siphon in an S4PR without resources consists of all places
in a subnet Ni [37, Definition 1.3], i.e., PAi ∪ {pi0}. In this
section, a method is proposed to decide whether a subset
of resource places can yield a minimal siphon in an S4PR.
We recall the following concepts and results from the
work [37] before proposing the method.

FIGURE 1. An S4PRN .

Definition 1 [37]: Given an elementary path π =

x1x2 . . . xn and a resource-place subset � in an S4PR, π is
said to be a pure activity path with respect to � if

1) ∀p ∈ ||π || ∩ P, p ∈ PA; and
2) ∀t ∈ (||π ||\{x1, xn}) ∩ T , (t• ∪• t) ∩� = ∅,

where ||π || represents the set of all nodes in π .
Consider the resource-place subset � = {r1, r2, r3} in

Fig. 1. We can see that the elementary path π1 = t2p3t3p4t4
is a pure activity path with respect to�, while the elementary
path π2 = t1p2t2p3t3p4t4 is not.
Definition 2 [37]: Given a resource-place subset �, a

transition t ∈ T and an activity place p ∈ PA in an S4PR,
p is said to be a restoring place of t with respect to �
if t is accessible from p via a pure activity path with respect
to�. P+(t, �) denotes the set of all restoring places of t with
respect to �.
Consider the resource-place subset � = {r1, r2, r3} in

Fig. 1 and the transition t4. We can see t4 is accessible from
the place p4 via the pure activity path π = p4t4 and from the
place p3 via the pure activity path π ′ = p3t3p4t4. Thus, both
p4 and p3 are restoring places of t4 with respect to � and we
have P+(t4, �) = {p3, p4}.
Definition 3 [37]: Given a resource-place subset � of

an S4PR, S� is defined as a place set such that
S� = � ∪ (∪t∈•�\�•P+(t, �)).
Theorem 1 [37]: Given a minimal siphon S with S ∩PR =

� 6= ∅ in an S4PR, S = S� = � ∪ (∪t∈•�\�•P+(t, �)).
Theorem 1 indicates that each minimal siphon contain-

ing resources in an S4PR is in the form of S� = � ∪

(∪t∈•�\�•P+(t, �)). However, given a resource-place subset
� of an S4PR, S� is not necessarily a minimal siphon.
Property 1 [37]: S� is a minimal siphon if |�| = 1.
Consider the S4PR in Fig. 1 again. Due to Definition 3,

S{r1} = {r1} ∪ (∪t∈{t6,t10}P
+(t, {r1})) = {r1, p5, p9}, S{r2} =

{r2} ∪ (∪t∈{t4,t5,t8,t11}P
+(t, {r2})) = {r2, p3, p4, p7, p10},

and S{r3} = {r3} ∪ P+(t11, {r3}) = {r3, p8, p9, p10}.
We can seeS{r1}, S{r2} and S{r3} are all minimal siphons by
Property 1.

In the following, we show how to determine whether
S� is a minimal siphon in the case that |�| ≥2. To achieve
this aim, some concepts are introduced first.
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Definition 4 [37]: Given a resource-place subset � of an
S4PR N = (P0 ∪ PA ∪ PR,T ,F),N� = (P�,T�,F�) is
said to be an�-induced implicit resource-transition (IRT) net
if

1) P� = �;
2) T� = �• ∩ H (�)•; and
3) F� = F�in ∪F�out , where F�in = (P�× T�)∩F and

F�out = {(t, r) ∈ T� × P�|at ∈ H (r)}.

Definition 5 [37]: Given a resource-place subset � of an
S4PR N and the �-induced IRT net N� = (P�,T�,F�in ∪
F�out ), an Arc labelling function is defined as 0: F�out →
2PA such that ∀(t, r) ∈ F�out , 0((t, r)) = P+(t, {r}).

Consider the resource-place subset � = {r1, r2, r3} of the
S4PR in Fig. 1. According to Definition 4, P� = {r1, r2, r3}.
Moreover, considering that t5 ∈ r•1 ∩ H (r2)•, we have
(r1, t5) ∈ F�in and (t5, r2) ∈ F�out . By Definition 5,
0((t5, r2)) = P+(t5, {r2}) = {p3}. Considering that t9 ∈
r•1 ∩ H (r3)•, we have (r1, t9) ∈ F�in, (t9, r3) ∈ F�out ,
and 0((t9, r3)) = P+(t9, {r3}) = {p8}. After other arcs are
determined in the similar way, the �-induced IRT net N� is
obtained with arcs being labelled, as shown in Fig. 2(a).

FIGURE 2. (a) The IRT net (b) the RIRT net and (c) the CIRT net of N
in Fig. 1 induced by � = {r1, r2, r3}.

Definition 6 [37]: Given a resource-place subset � of an
S4PR N , we call t ∈ T� an α-transition related to� if ∃t ′ ∈•

�\�• such that at ∈ P+(t ′, �) in N . Tα(�) denotes the set
of all α-transitions related to �.

For example, t5 is an α-transition related to the resource
subnet � = {r1, r2, r3} of the S4PR in Fig. 1. This is
because we can find t4 ∈• �\�• such that at5 ∈ P+(t4, �).
Furthermore, we have Tα(�) = {t5}.
Definition 7 [37]: Given a resource-place subset �

of an S4PR N , N r
� = (Pr�,T

r
�,F

r
�) is said to be

an �-induced reduced implicit resource-transition (RIRT)
net if

1) Pr� = �;
2) T r� = T�\Tα(�); and
3) F r� = F�∩ ((Pr� × T

r
�) ∪ (T

r
� × P

r
�)).

FIGURE 3. A PN.

According to the above definition, an �-induced RIRT net
is derived from an IRT net via deleting all α-transitions and
their related arcs.

The RIRT net N r
� of the S4PR in Fig. 1 induced by

the resource-place subset � = {r1, r2, r3} is presented in
Fig. 2(b). It is derived from the IRT net in Fig. 2(a) by deleting
α-transition t5 and its related arcs.
Definition 8 [37]: Let � be a resource-place subset of an

S4PR N and N r
� = (Pr�, T

r
�, F

r
�) be the �-induced RIRT

net. An arc (t, r) ∈ F r� is said to be a β-arc related to � if
∃(t ′, r) ∈ F r�, such that 0((t, r)) ⊂ 0((t

′, r)). Fβ (�) denotes
the set of all β-arcs related to�. A transition t ∈ T r� is said to
be a β-transition related to� if ∀(t, r) ∈ F r�, (t, r) ∈ Fβ (�).
Tβ (�) denotes the set of all β-transitions related to �.

Observe the RIRT net N r
� in Fig. 2(b). We can see the arc

(t9, r3) is a β-arc related to � = {r1, r2, r3} since there is the
arc (t10, r3) such that 0((t9, r3)) ⊂ 0((t10, r3)). Clearly, t9 is
a β-transition related to �. Furthermore, we have
Fβ (�) = {(t9, r3)} and Tβ (�) = {t9}.
Definition 9 [37]: Given a resource-place subset � of

an S4PR N , N ∗� = (P∗�,T
∗
�,F

∗
�) is said to be an

�-induced characteristic implicit resource-transition (CIRT)
net if

1) P∗� = �;
2) T ∗� = T r�\Tβ (�); and
3) F∗� = (F r�∩ ((P∗� × T

∗
�) ∪ (T

∗
� × P

∗
�)))\Fβ (�).

It can be seen that we can derive an �-induced CIRT net
from an IRT net via removing all α-transitions as well as their
related arcs, then β-transitions as well as their related arcs,
and finally β-arcs.

We can see that, by deleting the β-transition t9 as well as its
related arcs from the RIRT net in Fig. 2(b), the CIRT net N�∗

of the S4PR in Fig. 1 induced by the resource-place subset
� = {r1, r2, r3} is obtained, as shown in Fig. 2(c).
Property 2 [37]: Given an S4PR N , a resource-place

subset � such that |�| ≥ 2 and the �-induced CIRT
net N ∗�, S� is not a minimal siphon if N ∗� is not strongly
connected.

Consider the resource-place subset � = {r1, r2, r3} of the
S4PR in Fig. 1. S� is not a minimal siphon since the CIRT net
N ∗� shown in Fig. 2(c) is not strongly connected.
Definition 10: Let N =(P, T, F, W ) be a PN and P′ ⊆ P.

A transition t ∈ P′• ∩• (P\P′) such that •t ⊆ P′ is called a
particular output transition of P′.
Consider the PN in Fig. 3 and a place set P′ = {p1, p2}.

We can see that t3, t4 ∈ P′• ∩• (P\P′). By Definition 10, t3 is
a particular output transition of P′, while t4 is not.
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Now, we develop a function next, through which it can be
determined whether a resource-place subset � of an S4PR
such that |�| ≥ 2 can generate a minimal siphon.

Function Flag = Check(N ∗�)

Input: An �-induced CIRT net N ∗� = (�, T ∗�, F
∗
�);

Output: Flag. /∗Flag=True implies S� is a minimal
siphon and not otherwise. ∗/
1) Flag:=True;
2) Select a resource r in N ∗� and let C :={r};
3) Create an empty stack 1; /∗1 is used to store

sets of resources.∗/
4) PushStack(1, C);
5) While ∃t ∈ C• ∩• (�\C) such that •t ⊆ C do

/∗C has its particular output transitions.∗/
6) if ∃r ′ ∈ t•\C such that r ′ is not in any

resource set in 1 then
7) PushStack(1, {r ′}); /∗PushStack(1, {r ′})

pushes {r ′} onto the top of stack 1∗/
8) C :={r ′};
9) else
10) Let r ′ be a resource in a resource set in1 such

that r ′ ∈ t•\C ;
11) X :=PopStack(1,C ′), whereC ′ is the set in1

that r ′ belongs to. /∗Function PopStack pops resource
sets from C ′ to the one at the top of 1 out of 1 and
X stores the popped resources sets. ∗/

12) C ′′:=
⋃

C∈X X ;
13) PushStack(1, C ′′);
14) C :=C ′′;
15) end if
16) end while
17) if C 6= � then
18) Flag:=False;
19) end if
20) Output: Flag.

Theorem 2: Given an S4PR N , a resource-place sub-
set � such that |�| ≥ 2 and the �-induced CIRT net
N ∗�, S� = � ∪ (∪t∈•�\�•P+(t, �)) is a minimal siphon iff
Check(N ∗�) =True.
Proof: (=>) By contradiction, suppose that S� is not

minimal. There exists a siphon S∗ ⊂ S� such that S∗R ⊂ �,
where S∗R = S∗ ∩ PR. Let r ∈ �\S∗R. Since r ∈ � and
Check(N ∗�) =True, r has its particular output transition t and
r ′ ∈ t• inN ∗�. Due to [37, Property 3], r

′ /∈ S∗R since otherwise
S∗ 6⊂ S�. Similarly, ∃r ′′ ∈ r ′•• in N ∗� such that r ′′ /∈ S∗R.
Since Check(N ∗�) =True, all resources in � can be searched
via a particular output transition of a resource or a resource
set. It implies ∀r ∈ �, r /∈ S∗R. Hence, no siphon in S� can
be found with resource set being a proper subset of �. Thus,
S� is a minimal siphon.

(<=) By contradiction, suppose that Check(N ∗�) =False.
We thus have three cases. 1) N ∗� is not strongly connected;
2) a resource r in N ∗� has no particular output transitions;

FIGURE 4. An S4PR N .

FIGURE 5. The CIRT net N∗
�

w.r.t. the S4PR in Fig. 4 with � = {r1 − r5}.

3) there exists a strongly connected subnet of N ∗� whose
resource setC has no particular output transitions. For Case 1,
S� is not a minimal siphon by Property 2. For Cases 2 and 3,
there exists a siphon in S� without r or C , i.e., S� is not a
minimal siphon. As a result, Check(N ∗�) =True.
We illustrate Function Check by the following example.
Consider an S4PR N in Fig. 4 with P0 = {p10, p20, p30},

PR = {r1 − r5} and PA = {p11 − p15, p21 − p25, p31 − p34}.
Consider the resource-place subset � = {r1 − r5} of N . The
�-induced CIRT net N ∗� is obtained, as shown in Fig. 5. The
execution of Check(N ∗�) is as follows: First, r1 is selected
and C = {r1} is pushed onto 1. We can see that C has its
particular output transition t14 and r2 ∈ t•14\C is not in 1.
Hence, C is updated as C = {r2} and it is also pushed
onto1. Similarly, following {r2}′s particular output transition
t13, r3 is found and we push {r3} onto 1. Following {r3}′s
particular output transition t12, r2 is found. Note that r2 is
in1. According to Steps 11-13, we pop {r2} and {r3} out of1
and then push {r2, r3} onto 1. C is updated as C = {r2, r3}.
We can see that {r2, r3} has no particular output transitions
and it is not equal to �. Hence, Flag=False is outputted,
implying S� is not a minimal siphon, i.e., � cannot generate
a minimal siphon.

Let us observe Function Check. When Check(N ∗�) is per-
formed, we can see that the loop from Steps 5 to 16 is
executed at most 2(a − 1) times, where a is the number
of places in N ∗�. Trivially, the computational complexity of

4258 VOLUME 6, 2018



D. You et al.: Approach for Enumerating Minimal Siphons in a Subclass of Petri Nets

Function Check is not higher than O(a). Furthermore, we can
conclude that Function Check is of polynomial complexity
with respect to the size of inputted CIRT net.

III. ENUMERATION OF MINIMAL SIPHONS IN S4PR
In this section, the enumeration of all minimal siphons in
S4PR is studied. 50 and 51 are used to represent the sets
of all minimal siphons containing no resources and only
one resource in an S4PR, respectively. Clearly, it is easy
to compute 50 and 51. Given an S4PRN = (P0 ∪ PA ∪
PR,T ,F,W ), we have50 =

⋃
i∈{1,2,...,|P0|} {{p

i
0} ∪ PAi} and

51 =
⋃

r∈PR{S{r}} due to Property 1. As for computing
minimal siphonswithmore than one resource, we need to find
out resource-place subsets that can yield minimal siphons.
Due to Property 2, we intend to search all strongly connected
CIRT nets. In more detail, we hope to search them in the
PR-induced IRT net from large to small size by gradually
deleting transitions and places. However, we notice that
given two IRT nets N�1 and N�2 such that �1 ⊂ �2, it
can happen that an arc in N�2 is a β-arc but it becomes
a non-β-arc in N�1. Considering this fact, we find out all
strongly connected RIRT nets from the PR-induced IRT net
as ‘‘candidates’’ instead of strongly connected CIRT nets.
Note that IRT nets, RIRT nets and CIRT nets in this
section all refer to those with more than one resource by
default.

A. COMPUTATION OF STRONGLY CONNECTED
RIRT COMPONENTS
Definition 11: Let N ′ be an �-induced IRT net and 8 =
{N r
�1, N

r
�2, . . . ,N

r
�k} be the set of all strongly connected

RIRT nets in N ′. N r
�i is said to be a strongly connected RIRT

component of N ′ if 6 ∃N r
�j ∈ 8 such that �j ⊇ �i, where

i, j ∈ {1, 2, . . . , k} and i 6= j.
Suppose that N ′ is an�-induced IRT net with the set of all

strongly connected RIRT nets in N ′ being 8 = {N r
�1, N

r
�2,

N r
�3, N

r
�4}, where �1 = {r1, r2}, �2 = {r2, r3}, �3 = {r4,

r5} and�4 = {r1, r2, r3}. According to Definition 11, we can
see N r

�3 and N r
�4 are strongly connected RIRT components

of N ′.
An IRT net may contain more than one strongly connected

RIRT component. In what follows, we present a way to com-
pute all strongly connected RIRT components including a
resource set Rin in a given IRT net using Function FindSCRC,
where Function Do is called.

Function 8 = FindSCRC(N’, Rin)
Input: An IRT net N ′ and a resource set Rin.
Output: The set of all strongly connected RIRT compo-
nents including Rin in N ′, denoted by 8.
1) 8 := ∅; /∗8 is a global variable that can be updated

in Function Do. ∗/
2) Do (N’, Rin);
3) Output: 8;

Function Do (N’, Rin)
Input: A netN ′ and a resource set Rin.
1) 9:=Tarjan (N ′); /∗ Function Tarjan here returns the

set of all strongly connected components with more
than one place of a net. ∗/

2) for N ′′ = (P′′,T ′′,F ′′) ∈ 9 such that P′′ ⊇ Rindo
3) if N ′′ contains no α-transitions then /∗N ′′ is a

strongly connected RIRT component. ∗/
4) 8 : 8 ∪ {N ′′};
5) else
6) N ′′ := DeleteAlpha(N ′′); /∗ Function

DeleteAlpha returns a net by deleting α-transitions as
well as their related arcs from a net. ∗/

7) Do (N’’, Rin);
8) end if
9) end for

FIGURE 6. An S4PR N .

When α-transitions are deleted from a net as shown in
Step 6 of Function Do, the obtained net may be not strongly
connected. Besides, after Function Tarjan is applied to the
net, resulting in nets with smaller sizes, it is possible that
α-transitions emerge again in these obtained nets. Hence,
Function Do has to be recursively called when computing
strongly connected RIRT components. It is trivial to derive
the following proposition.
Proposition 1: Let N ′ be an �-induced IRT net and Rin be

a set of resources.8 = FindSCRC(N’, Rin) is the set of all
strongly connected RIRT components including Rin in N ′.

It can be seen that 8FindSCRC(N’, Rin) is the set of all
strongly connected RIRT components of N ′ in the case that
Rin = ∅ and it holds that |8 ≤ 1 when Rin 6= ∅.

Consider the S4PR N in Fig. 6. Its IRT net N� induced
by � = {r1 − r5} is shown in Fig. 7(a). We compute
the set of all strongly connected RIRT components in N�
by calling FindSCRC(N�,∅). It executes as follows: First,
Tarjan (N�) is called, outputting a strongly connected com-
ponent, i.e., the net N1 in Fig. 7(b). Due to the emergence of
α-transition t10, DeleteAlpha(N1) is then called, outputting
the net N2 in Fig. 7(c). Next, Function Tarjan is called again
to deal with N2, resulting in two strongly connected compo-
nents, i.e., N3 and N4 in Fig. 7(d) and (e). We can see that
α-transition t3 emerges in N3. Thus, DeleteAlpha(N3)

VOLUME 6, 2018 4259



D. You et al.: Approach for Enumerating Minimal Siphons in a Subclass of Petri Nets

FIGURE 7. (a) The IRT net induced by � = {r1 − r5} of N in Fig. 6; and
(b)-(e) Four nets generated during the execution of FindSCRC(N�,∅).

is called and the outputted net is then handled by
Function Tarjan, resulting in no nets. As for N4, it con-
tains no α-transitions. Therefore, we finally have 8 =

FindSCRC(N�,∅) = {N4}. In other words, the only strongly
connected RIRT component in N� is found out, that is N4.

B. COMPUTATION OF ALL MINIMAL SIPHONS
In this subsection, we propose an approach to enumerate all
minimal siphons in S4PR. 50 and 51 are easily computed.
We thus focus on computing minimal siphons with more than
one resource. Such a computation consists of two stages:

Stage 1: We compute all strongly connected RIRT nets.
Stage 2: For each obtained strongly connected RIRT net,

β-arcs and β-transitions as well as their related arcs are
deleted and then Function Check is used to determine if
the resource set of the obtained net can generate a minimal
siphon.

The following Function ComputeMiniSiphon computes all
minimal siphons in S4PR.
The computation in Stage 1, i.e., the computation of all

strongly connected RIRT nets, is performed based on problem
partitioning [9], [35]. It is executed as follows:

Firstly, an IRT net induced by all resources ofN is obtained
and the set of all strongly connected RIRT components in it
is computed using Function FindSCRC.
Secondly, problem partitioning is applied to each obtained

strongly connected RIRT components to compute its inner
strongly connected RIRT components, which is realized by
Function SonofNode. More specifically, let N ′ = (P′,T ′,F ′)
be a strongly connected RIRT component and Rin be a
resource set. Suppose that P′\Rin = {p1, p2, . . . , pk}. In this
case, the problem of computing all the inner strongly con-
nected RIRT components including Rin (except N ′) in N ′ is
partitioned into k sub-problems, i.e.,

1) Computing all strongly connected RIRT components in
N ′ excluding p1 but including Rin;

2) Computing all strongly connected RIRT components in
N ′ excluding p2 but includingRin ∪ {p1};

. . .

Function 5 =ComputeMiniSiphon (N )

Input: An S4PR N = (P0∪ PA ∪ PR, T , F, W).
Output: The set of all minimal-siphons 5.
1) 5:=50 ∪ 51; /∗5 is initialized as the set of all

minima-siphons containing at most one resource in
N . ∗/
/∗ Stage 1∗/

2) 2 := ∅; /∗2 denotes the set of all strongly con-
nected RIRT nets induced by resource-place subsets
of N , which is a global variable and can be updated
in functionSonofNode ∗/

3) Rin := ∅;
4) Compute the IRT net N�, where � = PR;
5) Let N� be the root node of a tree;
6) 8 := FindSCRC(N�, Rin);
7) if8 6= ∅ then
8) Create a node 8, Rin);
9) Add an arc from N� to the node (8,Rin);
10) 2 := 2 ∪8;
11) SonofNode (8, Rin);
12) end if

/∗ Stage 2∗/
13) for each N ′ ∈ 2 do
14) N ′ := DeleteBeta(N ′); /∗ Function DeleteBeta

returns a net by deleting β-arcs and β-transitions as
well as their related arcs in a net.∗/

15) if Check(N ′) =Truethen
16) 5 := 5 ∪ {S�}, where � is the set of all

resources of N ′;
17) end if
18) end for
19) Output: 5;
20) End.

k) Computing all strongly connected RIRT components in
N ′ excluding pk but including Rin ∪ {p1, p2, . . . , pk−1}.
The computation in the above sub-problems can be per-

formed by Function FindSCRC.
We can see that after problem partitioning is applied to each

newly obtained strongly connected RIRT component, all the
strongly connected RIRT nets of S4PR can be derived. Note
that Function SonofNode adopts depth-first search and a tree
is generated to show the procedure of problem partitioning.
Theorem 3: Let N be an S4PR. 5 =ComputeMini-

Siphon(N ) is the set of all minimal siphons of N .
Proof: Based on the above analysis, all strongly con-

nected RIRT nets of the S4PR are derived after Stage 1
of ComputeMiniSiphon(N ) is finished. In Stage 2, for each
strongly connected RIRT nets, β-arcs and β-transitions as
well as their related arcs are removed. Clearly, the obtained
nets are CIRT nets. Then, for each obtained CIRT net, Func-
tion Check is applied. According to Theorem 2, the outputted
5 consists of minimal siphons. Now, consider those RIRT
nets induced by resource-place subsets that are not strongly
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Function SonofNode (8, Rin)
Input: A set of strongly connected RIRT components 8
and a resource set Rin.
1) for N ′ = (P′,T ′,F ′) ∈ 8 do
2) R′in := Rin;
3) for p ∈ P′\Rindo
4) N ′ := DeletePlace(N ′, p); /∗ Function

DeletePlace returns a net by deleting a place and its
related arcs in a net. ∗/

5) 8′ := FindSCRC(N ′, R′in);
6) if8 6= ∅ then
7) Create a node (8, Rin’);
8) Add an arc labeled by ‘‘p’’ from N ′ to

the node (8, Rin’);
9) 2 := 2 ∪8;
10) SonofNode (8, Rin’);
11) end if
12) R′in := R′in ∪ {p};
13) end for
14) end for

connected. The CIRT nets induced by these resource-place
subsets are obviously not strongly connected. Observing
Function Check, we can see it outputs False when dealing
with these CIRT nets. In other words, any RIRT net that is not
strongly connected cannot correspond to a minimal siphon.
Consequently, it can be concluded that 5 consists only and
all minimal siphons of N .

C. ILLUSTRATIVE EXAMPLE
The example below is presented to illustrate the proposed
approach. Consider the S4PR net in Fig. 4 again. We apply
Function ComputeMiniSiphon to the net to compute all min-
imal siphons in it. First, we have50 = {S1, S2, S3} and
51 = {S4 − S8}, as shown in Table 1.

TABLE 1. Minimal siphons with no resources and one resource.

Next, we compute minimal siphons with two or more
resources. The procedure is as follows:

Stage 1: We compute all strongly connected RIRT nets and
generate a tree to show the procedure of problem partitioning.

1) We generate the IRT net induced by all resources of the
S4PR N , denoted as N�, as shown in Fig. 8. Let N� be the
root node of the tree.

2) Function FindSCRC is applied to N� with Rin = ∅.
Since N� is strongly connected and has no α-transitions, we
have 81 = FindSCRC(N�,∅) = {N1}, where N1 is exactly
the same as N�. Accordingly, we create a node (81,∅) and
add an arc from the root node to (81,∅).

TABLE 2. Minimal siphons with two or more resources.

FIGURE 8. The IRT net N� (N1) w.r.t. the S4PR in Fig. 4 with � = {r1 − r5}.

3) Function SonofNode is applied to 81 with
Rin = ∅.

Firstly, we delete r1 and its related arcs from N1. Function
FindSCRC is applied to the obtained net with Rin = ∅,
resulting in82 = {N21,N22}, whereN21 andN22 are shown in
Fig. 10. Accordingly, we create a node (82,∅) and add an arc
labeled ‘‘r1’’ from N1 to (82, ∅). Then, Function SonofNode
is applied to (82, ∅) to perform problem partitioning. Since
no inner strongly connected RIRT components ofN21 andN22
can be found, no son-nodes of node (82, ∅) are created. Next,
we delete r2 and its related arcs from N1 and Rin is expanded
as Rin = {r1}. By the similar way, the node (83, {r1}) is
created with an arc labeled ‘‘r2’’ from N1 to (83, {r1}). Then,
(84, {r1}) and (85, {r1, r2}) are similarly created one after
another according to depth-first search. Finally, a tree in Fig. 9
is generated and we obtain the set of all strongly connected
RIRT nets, i.e.,2 = {N1,N21,N22,N3−N5} shown in Fig. 8
and Fig. 10.

Stage 2: For each net in 2, we delete β-arcs and
β-transitions as well as their related arcs and then apply
Function Check to the obtained net. Consider N1. t22 is a
β-transition inN1 and thus it is removed, resulting in a netN1’
that is exactly the one in Fig. 5. Since Check(N1’)=False,
�1 = {r1 − r5} cannot generate a minimal siphon. Simi-
larly, we can see �21 = {r2, r3}, �22 = {r4, r5}, �3 =

{r1, r4, r5}, �4 = {r1, r5} can generate a minimal siphon
while �5 = {r1, r2, r4, r5} cannot since r2 has no particular
transitions in N5 after removing the β-transition.
Finally, all minimal siphons are computed, that is, 5 =

50 ∪ 51 ∪ 5x≥2, where5x≥2 denotes the set of minimal
siphons with two or more resources, as shown in Table 2.

IV. COMPARISON
Due to the fact that the number of siphons in a PN grows
exponentially in the worst case with respect to the net size,
all methods of siphon enumeration, including the proposed
one, are theoretically of exponential complexity with respect
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FIGURE 9. A tree generated w.r.t. the S4PR in Fig. 4.

FIGURE 10. Strongly connected RIRT nets N21, N22, N3, N4,N5.

to the net size. However, different methods differ greatly
in computational efficiency. In this section, we present a
comparison between the proposed method and the one in [33]
in terms of a subclass of S4PR.
S3PR is a well-known subclass of PNs and it is also a

subclass of S4PR. An S4PR N = (PA∪P0∪PR, T , F ,W ) can
be called an S3PR if 1) N is ordinary; and 2) ∀p ∈ PA, ••p ∩
PR = p•• ∩ PR 6= ∅ and |••p ∩ PR| = |p•• ∩ PR| = 1. There
are a large number of methods proposed to compute siphons
in S3PR, among which the one in [33] enjoys relatively good
performance. Clearly, the proposed method in this work is
applicable to S3PR. We present the following result first.
Proposition 2 [37]: Given an S4PR N such that
|
•t ∩ PR| ≤1, ∀t ∈ T and a resource-place subset � with
|�| ≥2, S� = � ∪ (∪t∈•�\�•P+(t , �)) is a minimal siphon
iff N ∗� is strongly connected.

Each transition in S3PR has no more than one input
resource. Thus, according to Proposition 2, the key to the
computation of all minimal siphons in S3PR with two or
more resources is to compute all strongly connected CIRT
nets. Note that there are no β-arcs in any S3PR. Hence,
all strongly connected CIRT nets are obtained once Stage 1
of the proposed method (Function ComputeMiniSiphon) is
finished. In other words, there is no need to call Func-
tions DeleteBeta and Check in Stage 2 when we deal
with S3PR.

FIGURE 11. An S3PR N .

Consider the S3PR N = (P0 ∪ PA ∪ PR, T , F) in Fig. 11.
This S3PR can be regarded as the combination of n (n ≥ 2)
modules with adjacent modules sharing one resource. Indeed,
the net in Module 1 is exactly the one in Fig. 6 that we
consider above and nets in Modules 2 to n have the same
structure that is shown in Fig. 12. Note that transitions and
places in different modules are distinguished by different
superscripts and Modules i-1 and i share a resource that is
named as r (i−1)1 and r (i)3 respectively in these two modules.
We can see that the structure of Module i (2≤ i ≤ n) is the
duplication of a part of Module 1.

We focus on the computation of minimal siphons with
more than one resource. First, the proposed method is applied
to the S3PR:
1) The IRT net of N induced by all resources is computed,

as shown in Fig. 13, denoted as N�.
2) FindSCRC (N�, .∅) is called.
First, Tarjan (N�) is called, outputting a net obtained

from the net in Fig. 13 by deleting places r (1)5 , r (2)5 . . . , r (n)5
and transitions t (1)12 , t

(2)
12 , . . . , t

(n)
12 , as well as their related

arcs. Then, α-transitions emerge that are t (1)10 , t
(2)
10 , . . . , t

(n)
10 .

Thus, after deleting them, Function Tarjan is called again,
resulting in n + 1 strongly connected components i.e., cir-
cuits c0 = r (1)3 t (1)9 r (1)4 t (1)6 and ci = r (i)1 t

(i)
3 r

(i)
2 t

(i)
2 , where
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FIGURE 12. The structure of Module i (2≤ i ≤ n) in Fig. 11.

FIGURE 13. The IRT net N� of the S3PR in Fig. 11 induced by � = PR .

1 ≤ i ≤ n. It can be seen that for each i ∈ {1, 2, . . . , n}, t (i)3
in ci is an α-transition. After deleting them, we finally
obtain a strongly connected RIRT component in N�, that is,
c0 = r (1)3 t (1)9 r (1)4 t (1)6 .
It is easy to see that c0 = r (1)3 t (1)9 r (1)4 t (1)6 is the only

strongly connected RIRT net in N�. As analyzed before,
c0 = r (1)3 t (1)9 r (1)4 t (1)6 is clearly the only strongly connected
CIRT net and the only minimal siphon with more than one
resource is thereby found, that is, S = {r (1)3 , r (1)4 , p(1)5 , p

(1)
7 }.

Next, we apply the method in [33] to the S3PR. Before
doing so, we recall its procedure: 1) Compute the resource
subnet generated by all resources of the S3PR; 2) Find out
all resource circuits; 3) Derive simple loop resource-place

subsets from resource circuits and resultant loop resource-
place subsets via composing simple ones; 4) Compute the
characteristic resource subnet for each loop resource-place
subset; 5) For each characteristic resource subnet, determine
whether it is strongly connected. If so, generate a minimal
siphon from the corresponding loop resource-place subset.
By these five steps, all minimal siphons in S3PR with more
than one resource can be computed.

Consider the S3PR in Fig. 11. We should point out that
the resource subnet generated by a resource-place subset of
S3PR is the same as the IRT net induced by the resource-place
subset. It implies that the resource subnet generated by all
resources of S3PR in Fig. 11 is exactly the net N� in Fig. 13.
Observing N�, we can see 2n+1 resource circuits have to be
found out and then 2n + 1 simple loop resource-place sub-
sets are computed. By composing simple loop resource-place
subsets, n+2n2 resultant ones are derived. As a result, n+2n2

characteristic resource subnets have to be computed and for
each of them, whether it is strongly connected is determined.
Finally, one strongly connected characteristic resource sub-
net is found out, which corresponds to the minimal siphon
S = {r (1)3 , r (1)4 , p(1)5 , p(1)7 }.
Clearly, the S3PR in Fig. 11 contains only one minimal

siphon with more than one resource no matter what n is equal
to. It can be seen that the method in [33] requires much
computation to find out this minimal siphon, whereas the
proposed one offers much higher computational efficiency
especially when n is large.

V. CONCLUSION
This work studies the computation of all minimal siphons
in S4PR. First, by checking structural features of CIRT
nets, we propose an efficient method to decide whether a
resource-place subset can yield a minimal siphon. Next,
based on the determination method, an approach involving
problem partitioning is developed to enumerate all mini-
mal siphons in S4PR. Our future work include: 1) Fur-
ther improve the efficiency of minimal siphon computation
in S4PR; 2) Develop deadlock control strategies based on the
proposed approach; and 3) Develop software to implement
the proposed approach, making it applicable to practical large
systems.
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