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ABSTRACT In visual tracking, a mature scale estimation method can greatly improve tracking performance
and provide accurate target information formodel training. However, many visual tracking approaches ignore
the scale estimation problem or adopt a heuristic and exhaustive scale-estimation strategy. In this paper,
we propose a novel correlation-filter based visual tracking approach that reveals the missing link between
scale estimation and the detection response. In contrast to many multi-scale visual trackers, which generate
samples at different scales using some pre-designed criteria and then select the sample with the maximal
classifier response, in this paper, we deduce a scale estimation equation based on detection responses; thus,
the scale of the target object can be estimated mathematically. To obtain a more stable estimated object scale,
a constraint function that considers the prior knowledge of visual tracking is proposed. Moreover, a hybrid
sample learning scheme is formulated to select pertinent training samples with higher learning weights
to train the appearance model. Our tracker operates under a framework of correlation filters to achieve
a high tracking speed. We demonstrate the efficiency and robustness of our proposed tracking algorithm
by comparing it with 14 other state-of-the-art trackers on all the video sequences in the object tracking
benchmark (OTB) 2013 dataset.

INDEX TERMS Visual tracking, adaptive scale estimation, sample learning, correlation-filter based
tracking.

I. INTRODUCTION
Visual tracking is a fundamental research topic in fields such
as computer vision and robotics, and it has experienced rapid
development in recent years [1]. In contrast to the trackers
proposed during the early stages of visual tracking research,
current trackingmethods increasingly employmachine learn-
ing approaches to continuously and adaptively learn the
appearance and posture of a target object. Furthermore, many
works have applied visual tracking methods to build object
tracking systems in the past decades, such as the FPGA-
based object tracking system [2], [3], vision-based tracking
for mobile robots [4], tracking with polarized stereo cam-
eras [5] and 3D object tracking from monocular images [6].
Although these learning-based trackers have greatly
improved the visual tracking performance, and numerous
visual tracking applications have been developed, many

problems remain to be solved, including scale adaptive track-
ing, sample selection and model training strategies [7].

Scale estimation is an essential component of a visual
tracking algorithm. Detection-based visual tracking involves
detecting an object across consecutive frames; therefore, the
tracking performance in previous frames greatly affects the
tracking performance in subsequent frames. A mature scale
estimation method can provide accurate target information
for both subsequent frames and for model training; thus,
a scale-adaptive visual tracking approach truly tracks the
target rather than tracking an image in a fixed-scale bounding
box. Many existing algorithms ignore the scale estimation
problem in visual tracking or adopt a heuristic and exhaustive
scale-estimation strategy by generating some different scale
samples and selecting the sample with the maximal similar-
ity to the appearance model or with the maximal classifier
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FIGURE 1. Examples of corrupt samples used for model training in a
visual tracking algorithm. In many visual tracking methods, the tracking
bounding box has a single scale. Thus, the box cannot adapt to the scale
variations of a target object and will integrate imprecise training samples
into model training. In addition, during the sample learning process of
many trackers, every training sample has the same learning weight. Thus,
the algorithm cannot assess the importance and reliability of different
training samples and will integrate corrupt samples into training.

response. Moreover, because these multi-scale samples are
produced by humans rather than by the model, they are gen-
erated discretely and may not meet the model’s needs. Such
practices greatly limit the precision of scale estimation.

Correlation-filter (CF) based trackers have attracted con-
siderable interest in the visual tracking field because, in
contrast to many existing trackers, they can achieve both
high performance and high tracking speed. These tracking
algorithms adopt the CF approach from the field of signal
processing and pose the convolution of two images as an
element-wise product in the Fourier domain. They also for-
mulate the objective function in the Fourier domain; thus,
the desired output of a linear classifier can be specified
immediately. Among CF based trackers, tracking with a
kernelized correlation filter (KCF) [8] is a typical method
that exploits the circulant structure and utilizes the kernel
trick to enhance the tracker. However, the KCF is a single-
scale tracking algorithm, which decreases its performance in
many situations, especially when the scale of the target object
changes frequently and substantially. In this paper, we focus
on how to adaptively estimate the target scale in CF based
visual tracking.

This paper proposes a novel visual tracking method that
reveals the missing link between target scale and detection
response under the CF framework. A scale estimation equa-
tion is deduced based on the classifier response in each frame.
Then, the adaptive target scale can be calculated mathemati-
cally rather than heuristically producing some samples with
pre-designed criteria. In addition, to consider the prior knowl-
edge of visual tracking and obtain a stable scale variable,
we design an iterative strategy with a constraint function
to update the scale variable and the bandwidth of the KCF.
Moreover, we formulate a hybrid sample learning scheme
to select the pertinent training samples with higher learning
weights for training the appearancemodel and discarding cor-
rupt samples. In contrast to many binary weight schemes, our
approach assigns a real-valued weight to a sample, which can

help determine sample importance. In addition, this hybrid
scheme has a small error tolerance; that is, this method
enables samples with small losses compared to the ground
truth data to be fully learned.

In Section II, we review the recent related work on visual
tracking. Section III introduces background information on
KCF. Section IV describes the main principles of our pro-
posed tracking algorithms, including the scale estimation
equation, scale updating approach and sample learning strate-
gies. In Section V, we present the results of experiments in
which our tracking algorithm is applied to the object tracking
benchmark (OTB) 2013 dataset and compare our tracker’s
performance with that of 14 other state-of-the-art tracking
algorithms.

II. RELATED WORK
Many advanced and sophisticated methods in signal pro-
cessing and machine learning have led to developments in
visual tracking and computer vision in the past decades.Many
outstanding works in visual tracking can be attributed to
signal processing techniques such as optical flow [9] and
motion estimation [10]–[13], AdaBoost [14], sparse repre-
sentation [15], Kalman filters [4], particle filters [16] and the
support vector machine [17].

Recently, correlation filters and deep learning have been
attracting great attention in the computer vision and visual
tracking fields [18], [19]. In this section, we review recent
related work on visual tracking, including the CF based
tracking methods, the deep learning based tracking methods,
the experimental datasets used for visual tracking and scale
estimation in visual tracking.

A. CORRELATION-FILTER BASED VISUAL TRACKING
CF based trackers adopt the correlation filter theory orig-
inally developed for signal processing. These trackers not
only achieve high accuracy but can also track at high speeds.
The KCF method [8] introduced the circulant matrix and
the kernel trick to CF based methods. L. Bertinetto et al. [20]
combined the strengths of the template and color-based mod-
els by proposing the Staple tracker, which uses comple-
mentary cues in a ridge regression framework. SRDCF [21]
employed a spatial regularization component to update the
correlation filter on larger image regions, which overcame
the limitations of traditional CF based trackers. C-COT [22]
used an implicit interpolation model that posed the learning
problem in the continuous spatial domain, which enabled
efficient integration of multi-resolution deep feature maps.
ECO [23] is an extended version of C-COT that proposed
using a factorized convolution operator to reduce the number
of parameters in the model as well as a compact generative
model of the training sample distribution to reduce the time
complexity. ACFN [24] adopted an attentional mechanism to
choose a subset of the associated correlation filters to increase
the robustness and computational efficiency. In CACF [25],
the authors proposed a framework that allows the explicit
incorporation of global context within CF trackers.
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B. DEEP LEARNING IN VISUAL TRACKING
In visual tracking, many works based on deep learning (DL)
have been proposed. Compared with non-DL methods, the
DLmethods have achieved large performance improvements.
The deep learning tracker (DLT) [26] was one of the first
trackers to integrate a convolutional neural network (CNN)
into visual tracking. The DLT used auxiliary natural images
to train a stacked denoising autoencoder offline and learned
generic image features that aremore robust against variations.
CF2 [27] analyzed features extracted from the different layers
of a CNN and combined the CNN with correlation filters.
MDNet [28] is based on the representations from a discrimi-
natively trainedCNN. This approach pre-trained aCNNusing
a large set of videos with tracking ground-truths to obtain a
generic target representation, and it achieved exceptionally
good performance. TCNN [29], which extended MDNet, is
an online visual tracking algorithm that manages multiple
target appearance models in a tree structure. SANet [30]
employed the self-structure information of a target to distin-
guish it from distractors. A recurrent neural network (RNN)
was used in this work to model object structure.

C. DATASET BUILDING
Building datasets that allow researchers to generate corre-
sponding benchmarks has recently become an emerging trend
in visual tracking. The work ofWu et al. [31], which included
a dataset containing 50 fully annotated video sequences, is
considered a milestone in this area. Moreover, this work
synthesized most of the existing open source tracking meth-
ods into one code library and evaluated the methods across
different metrics. The authors later extended this work to 100
video sequences [32]. NUS People and Rigid Objects (NUS-
PRO) [33] proposed a large-scale dataset containing 365
challenge image sequences of pedestrians and rigid objects
and analyzed the performances of 20 state-of-the-art tracking
approaches on that dataset.

D. SCALE ESTIMATION IN VISUAL TRACKING
Scale estimation is a key technique in visual tracking that can
significantly increase the success rate of trackers. Trackers
have considered various methods to estimate the scale of
the target. LCT [34] employed the HOG feature to build a
multi-scale target pyramid, which is a typical practice used
in visual tracking to estimate target scale. DSST [35] enabled
an adaptive scale by learning discriminative correlation filters
based on a scale pyramid representation. The limited cor-
relation filter network (CFN-) [24] used the active module
with the highest estimated validation score to determine the
position and scale of the target. RPT [36] computed the pos-
terior of each reliable patch and used those values to further
estimate the scale and location of the tracked target using a
scheme similar to Hough voting. STC [37], whose authors
have contributed many outstanding works on visual tracking
[16], [38], [39], took context information into consideration
based on a Bayesian framework and estimated the target scale

using a confidence map constructed from two consecutive
frames.

Most related works on scale estimation in visual tracking
use a generate-and-select technique or a pyramid model.
These multi-scale samples are produced by humans rather
than by the model; they are also generated discretely and may
not meet the model needs. Such practices limit the precision
of scale estimation.

Compared with STC, which is based on the Bayesian
framework, our work is based on correlation filters, and we
derive the scale estimation equation from the detection in
KCF. We develop a constraint function that considers the
prior knowledge of visual tracking to obtain a stable scale
variable. Moreover, we propose a hybrid sample learning
method that assigns different learning weights based on the
quadratic loss of samples. In addition, we analyze and illus-
trate the effects of the different bandwidths of a Gaussian ker-
nel on testing or training samples. In Section V, we compare
the performance of our tracker with that of STC.

III. BACKGROUND
In this section, we present some preliminary information con-
cerning the KCF tracker [8] used in our tracking algorithm.
In KCF, the goal of training is to find a classifier response
function g(p) = wTpwith a model parameterw for the image
patch p by minimizing the following objective function:

argmin
w

O(w) =
n∑
i=1

D(qi, g(pi,w))+ ξ ||w||2, (1)

where D(qi, g(pi,w)) is the quadratic loss over the samples
pi and their regression targets qi, g(pi,w) is the response
function of the classifier, and ξ = 10−4 is a constant to
prevent overfitting.

KCF employs the kernel trick to enable a more power-
ful, non-linear classifier. The model parameter w can be
expressed as a linear combination of the samples, i.e., w =∑

m amϕ(pm), where ϕ(pm) maps the inputs in a linear
space to a non-linear feature space. Thus, the parameter
under optimization is a rather than w. According to KCF
theory, the vector a of coefficients am can be learned as
follows:

â(p) =
q̂

k̂(p,p)+ ξ
, (2)

where each element of q is a regression target qi, ξ is the
constant that prevents overfitting in Eq. (1), ∧ is shorthand
for a discrete Fourier transform (DFT), and k(p,p) represents
a kernel correlation.

The circulant matrix and kernel can also be used during
detection to accelerate the tracker. The image patch p at the
target location of the previous frame is sampled as the base
sample for calculating the classifier response in the Fourier
domain with the model patch ρ and model parameter α:

ĝ(p) = α̂(p)� k̂(p, ρ), (3)
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FIGURE 2. The main components of the proposed algorithm. We indicate the tracking inputs and outputs in frame i − 1 to show the iterative
process of our proposed tracking algorithm. The updated width and height of the target object in frame i are widthi = widthi−1 · ςi and
heighti = heighti−1 · ςi , respectively.

where k(p, ρ) is the kernel correlation between the model
patch ρ and the test image patch p, and � represents the
element-wise product.

IV. OUR PROPOSED ALGORITHM
This section describes the main principles of our proposed
tracking algorithm. First, we introduce the scale estimation
equation, which is derived from the detection in KCF and
inspired by [37]. Second, to obtain a stable estimated object
scale, we propose a constraint function that considers the
prior knowledge of visual tracking and then design an iter-
ative scale-updating strategy. Third, we present the hybrid
sample learning scheme used in this paper. Finally, we intro-
duce the procedure used to update the model parameter and
model patch using the sample learning weights. Fig. 2 shows
the main components of our tracker, and the proposed algo-
rithm is summarized in Algorithm 1.

A. SCALE ESTIMATION
In this subsection, we deduce the relationship between the
scale variable and the detection response under the KCF
framework. Based on KCF, the image patch p centered at
the target location of the previous frame is sampled as the
base sample for calculating the classifier response with the
model patch ρ and model parameter α, and the detection can

be formulated in time domain as follows :

g(p) = α(p)⊗ kγ (p, ρ), (4)

where ⊗ represents convolution and kγ (p, ρ) is a Gaussian
kernel correlation between the testing patch p and the model
patch ρ with bandwidth γ . It is defined as follows:

kγ (p, ρ)=exp(−
1
γ 2 (‖p‖

2
+ ‖ρ‖2 − 2F−1(p̂′ � ρ̂))), (5)

where p′ is the complex-conjugate of p andF−1 is the inverse
Fourier transform.

For convenience, we assume that the target is centered
at (0,0) and that the image patch feature is a raw pixel.
Based on the definition of convolution (i.e., α(z) ⊗ k(z) =∫
∞

−∞
α(τ )k(z− τ )dτ ), Eq. (4) can be represented as follows:

α(0, 0)⊗ kγ (0, 0) =
∫ ∫

�x,y

α(x, y)kγ (−x,−y)dxdy, (6)

where (x, y) denotes the coordinates of the pixels in the image
patch and �x,y is the region of the image patch.
When the scale changes with a scale ratio s, i.e., (sx, sy) =

(x ′, y′), Eq. (6) can be rewritten as follows:

αi(0, 0)⊗ kγii (0, 0)

=

∫ ∫
�x′,y′

αi(
x ′

s
,
y′

s
)kγii (−

x ′

s
,−

y′

s
)
1
s2
dx ′dy′
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Algorithm 1 Our Proposed Tracking Algorithm
Input:

Image of frame i and previous object location oi−1
Object scale ςi−1 and Gaussian kernel bandwidth γ
Model patch ρi and model parameter αi

Output:
Object location oi
Object scale ςi and updated Gaussian kernel bandwidth
γ

Model patch ρi+1 and model parameter αi+1
1: while i <= n do
2: Track the target object by calculating the classifier

response to the testing image patch pi extracted from
frame i and centered at oi−1 in the Fourier domain

ĝ(pi) = α̂i � k̂γ (pi, ρi)

Then, set oi with the maximal classifier response g∗i as
the target location;

3: Estimate the scale variable si via Eq. (10) using g∗i−1
and g∗i , and update the target scale ςi and the band-
width γ in the Gaussian kernel correlation (Eq. (5))
via Algorithm 2;

4: Obtain the learning weight ei of the training image
patch via the hybrid sample learning scheme;

5: Update ρi+1 and αi+1 via Eq. (13).
6: end while

≈

∫ ∫
�x′,y′

αi+1(x ′, y′)k
γi
i (−

x ′

s
,−

y′

s
)
1
s2
dx ′dy′

=

∫ ∫
�x′,y′

αi+1(x ′, y′)k
sγi
i (−x ′,−y′)

1
s2
dx ′dy′

≈

∫ ∫
�x′,y′

αi+1(x ′, y′)k
sγi
i+1(−x

′,−y′)
1
s2
dx ′dy′. (7)

In the above deduction, we employ two assumptions.
In visual tracking, because target object attributes such
as appearance and posture typically change only slightly
between adjacent frames, the target features extracted
from two adjacent frames are very similar. Based on this
visual tracking characteristic, we propose the following two
assumptions:

αi(
x ′

s
,
y′

s
) = αi(x, y) ≈ αi+1(x ′, y′),

kγii (
x ′

s
,
y′

s
) = ksγii (x ′, y′) ≈ ksγii+1(x

′, y′). (8)

An intuitive explanation of our first assumption is that
the model parameter αi+1 is approximately equal to αi. This
approximate equality occurs because only frame i+1 is added
to update the model parameter from frame i to frame i + 1
and because the features of the target object in frame i + 1
are similar to those in frame i. In the second assumption, the
difference between ksγii (x ′, y′) and ksγii+1(x

′, y′) exists in the
differences in themodel patch ρ. Based on the above analysis,

the model patch ρi+1 is approximately equal to ρi. Thus, the
second assumption is reasonable.

Therefore, we have the following:

αi(0, 0)⊗ kγii (0, 0)

≈

∫ ∫
�x′,y′

αi+1(x ′, y′)k
si+1γi
i+1 (−x ′,−y′)

1

s2i+1
dx ′dy′

=

∫ ∫
�x′,y′

αi+1(x ′, y′)k
γi+1
i+1 (−x

′,−y′)
1

s2i+1
dx ′dy′

=
1

s2i+1
αi+1(0, 0)⊗ kγi+1i+1 (0, 0) (9)

where γi+1 indicates the updated bandwidth of the Gaussian
kernel in frame i+ 1 and γi+1 = si+1γi.

Then, we can obtain the relationship between the scale
variable and the classifier response:

si+1 = (
αi+1(0, 0)⊗ kγi+1i+1 (0, 0)

αi(0, 0)⊗ kγii (0, 0)
)
1
2 = (

g∗i+1
g∗i

)
1
2 (10)

where g∗i represents the maximal classifier response in
frame i.

B. CONSTRAINT FUNCTION AND SCALE UPDATING
An important target feature characteristic in visual tracking is
that sample features extracted between two adjacent frames in
a video sequence are similar because the appearance or scale
of the target object changes only slightly between adjacent
frames. Based on this characteristic, we assume that the
variation in target scale will not increase or decrease greatly
between consecutive frames. Therefore, we adopt a scale
constraint function to integrate the above prior knowledge
into scale estimation. The constraint function is defined as
follows:

c(s) = −sign(1s) ·

{
θ, log(1+ |1s|) > θ

log(1+ |1s|), log(1+ |1s|) ≤ θ,

(11)

where 1s = s− 1 and θ = 0.5 is a threshold. The constraint
function ranges from −θ to θ . Fig. 3 shows the value of
the constraint function. When the target scale is decreasing
(i.e., the estimated scale variable s is less than 1), a positive
constraint will be added to the scale variable to ensure that
the target scale does not shrink too much. Similarly, when
the target scale is increasing (i.e., the estimated scale variable
s is greater than 1), a negative constraint will be added to the
scale variable to ensure that the target scale does not expand
too much.

The iterative scale-updating strategy is summarized in
Algorithm 2. Figure 4 shows the effect of object scale on
Gaussian kernel correlation. The Gaussian kernel correlation
can be seen as adding Gaussian shaped weights to images.
Based on Algorithm 2, when the object scale ς < 1, the
Gaussian bandwidth γ will decrease. As shown in Figure 4 (a)
and (b), in the detection phase, a smaller bandwidth leads γ to
a smaller effective detection area in the testing image patch. In
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Algorithm 2 Scale Updating
Input:

Object scale ςi−1
Gaussian kernel bandwidth γ
Current frame number i
Integer constant j > 0 % update object scale every j
frames

Output:
Object scale ςi
Gaussian kernel bandwidth γ

1: Calculate the average scale variable using j consecutive
frames: s̄i = 1

j

∑j−1
t=0 si−t ;

2: Update the scale of the target in frame i with a learning
ratio 0 < λ < 1: ςi = (1− λ)ςi−1 + λs̄i;

3: Add the constraint (Eq. (11)) to the scale variable ςi =
ςi + c(ςi−1);

4: Update the bandwidth of the Gaussian kernel via ςi: γ =
ςiγ .

FIGURE 3. The constraint functions with different θ . This function is
bounded in the range [−θ, θ]. When the scale variable is less than 1, a
positive constraint will be added to the scale variable; otherwise, a
negative constraint will be added. We adopt a logarithmic function
because when the independent variable of a logarithmic function is
increasing, the increment of the dependent variable gradually decreases,
which ensures that after adding a constraint to the scale variable, the
scale (i.e., safter = sbefore + c(sbefore)) will be a monotonically increasing
function of sbefore.

contrast, when the object scale ς > 1, the effective detection
area in the next frame will expand. Figure 4 (c) and (d)
illustrate the Gaussian kernel correlationmaps of two training
image patches in training phrase. The image patch with the
larger object scale ς (Figure 4 (c)) has a larger effective
training area, while the image patch with the smaller object
scale ς (Figure 4 (d)) has a smaller effective training area.
Note that testing and training images always have the same
dimensions. The effective testing and training area varies on
both the object scale ς and the Gaussian kernel bandwidth γ .

C. SAMPLE LEARNING
In many existing sample learning methods, the learning vari-
able can adopt only binary values, which is disadvantageous

FIGURE 4. Gaussian kernel correlation maps. Subfigures (a) and (b) in the
first row are the kernel correlation maps of the same testing image patch
with different Gaussian bandwidths. The bandwidth in (a) is γ = 0.4995,
and the bandwidth in (b) is γ = 0.4495. Subfigures (c) and (d) in the
second row are the kernel correlation maps of two training image
patches with different Gaussian bandwidths.

because such a hard threshold scheme cannot reflect the
relative importance of samples. Samples with different losses
are either selected for learning and given the same importance
or omitted from learning when the sample losses exceed a
threshold. In this paper, we formulate a new hybrid sample
learning scheme that is a mixture of the hard and soft thresh-
old schemes and that enables the model to select pertinent
samples when learning a new appearance model [19]. On
one hand, compared to the soft-weighting scheme, the hybrid
scheme is fault tolerant. On the other hand, comparedwith the
hard-weighting scheme, the hybrid scheme can assign real-
valued weights that reflect the latent reliability of samples
during training.When the sample loss is smaller or larger than
the thresholds, the hard scheme is assigned to the learning
variable; otherwise, the soft scheme is employed. After the
target scale has been updated, calculating the value of the
sample learning function allows pertinent training samples
with higher learning weights to be selected for learning,
whereas corrupt samples are removed.

The hybrid sample learning scheme proposed in this
paper is introduced and analyzed from three perspectives.
In addition, to define the threshold for the hard and soft
schemes, an additional parameter is introduced, namely, σ =
[σ1, σ2]T , (0 < σ1 < σ2 < 1). Here, di ∈ [0, 1] represents
the sample lossD(qi, g(pi,w)). Figure 5 illustrates the hybrid-
scheme sample learning method.

1)When the sample loss is di ∈ [0, σ1), the learning weight
of the sample is ei = f (di) = 1. In this case, a hard scheme
is employed for the learning weight. The sample’s loss is less
than σ1, indicating that the sample is reliable enough to learn;
thus, a learning weight equal to 1 is assigned to this sample.
This practice is tolerant to small errors. Although a pertinent
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FIGURE 5. Illustration of the hybrid-scheme sample learning method.
A real-valued learning weight ei is assigned to each sample based on the
image patch loss di . The red dashed lines represent the target trajectory.
Using this approach, pertinent samples will be learned (e.g., e36 and
e110), and corrupt samples will be removed (e.g., e256). Moreover,
samples with small losses compared to the ground truth data will be fully
learned (e.g., e78, e112 and e114).

sample may have a small loss compared to the ground truth
data, it can still be fully learned.

2) When the sample loss is di ∈ [σ1, σ2], the learning
weight of the sample is ei = f (di) =

σ2−di
σ2di
·
σ1σ2
σ2−σ1

. The
learning function is a deformation of the exponential function
where the learning weight is negatively correlated to the
sample loss. In this case, a soft scheme in which the sample
takes a real-valued learning weight is employed. Thus, this
approach can determine the relative importance of samples
with different losses. Two special cases are when the loss di
is equal to σ1 and σ2.When di = σ1, ei will be 1, whichmeans
this sample will be fully learned. When di = σ2, ei will be 0,
which means this sample will not be learned.

3) When the sample loss is di ∈ (σ2, 1], the learning
weight of the sample is ei = 0. Under this condition, a hard
scheme is employed for the learning weight. The sample’s
loss is greater than σ2, which means that the sample is not
sufficiently reliable to learn; thus, a learning weight equal to
0 is assigned to this sample. This approach protects the model
from learning corrupt samples.

We propose a dynamic adaptive learning threshold σ in
the hybrid learning scheme to replace the pre-determined
threshold. In this scheme, rather than being predetermined,
the learning threshold is determined according to the average
losses DM of the lastM frames. For example, when the aver-
age loss of the last 40 frames D40 is greater than 0.2, we con-
sider that the target has experienced a large-scale appearance
change; thus, a larger threshold σ = [0.45, 0.8]T is adopted
to ensure that more appearance information will be learned.
In contrast, when the average loss of the last 40 frames D40
is less than 0.2, we consider the appearance of the target to
have changed only slightly; thus, a smaller threshold σ =
[0.15, 0.8]T will be adopted to better detect corrupted training
samples. The threshold value is re-assigned every 40 frames
during tracking.

D. UPDATE MODEL PATCH AND MODEL PARAMETER
After the pertinent samples have been selected for learning,
a new model patch and model parameter will be learned from

the learning weight ei. According to KCF theory, the vector
ai of coefficients am can be learned as follows:

âi = â(p∗i ) =
q̂

k̂γ (p∗i ,p
∗
i )+ ξ

, (12)

where each element of q is a regression target qi, p∗i is the
image patch extracted from frame i and centered at the target
location oi, and kγ (p∗i ,p

∗
i ) represents the kernel correlation,

as shown in Eq. (5).
Then, themodel patch andmodel parameter can be updated

as follows:

ρ̂i+1 = (1− λ)ρ̂i + λp̂
∗
i · ei,

α̂i+1 = (1− λ)α̂i + λâi · ei, (13)

where 0 < λ < 1 is a constant that determines the ratio of
new samples.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
Our proposed tracker runs at 131 fps when implemented in
MATLABon an i5Quad-Core computer operating at 3.3GHz
with 8 GB of RAM. The experimental results shown in this
section are based on all 50 video sequences in the OTB-2013
dataset [32]. Table 1 summarizes the values and ranges of
all the key parameters in the proposed algorithm. The search
window area is set to the same value as in CF2 [27] to obtain
a more precise search area. 10 percent value of the constraint
c(s) is adopted in the videos Car4, David, Liquor, Soccer,
Trellis,Walking andWalking2.

The OTB-2013 dataset includes 50 fully annotated videos
and the tracking results of 29 visual trackers on these videos.
The benchmark concludes that 11 attributes are mainly
responsible for the types of interference that occur in video
sequences: illumination variation (IV), out-of-plane rotation
(OPR), in-plane rotation (IPR), scale variation (SV), occlu-
sion (OCC), deformation (DEF), motion blur (MB), fast
motion (FM), out-of-view (OV), background clutter (BC),
and low resolution (LR). Various comparison criteria were
proposed in OTB-2013 to evaluate the overall and attribute-
based performances of trackers.

B. EVALUATION METRICS
In this study, we adopted two metrics to evaluate the perfor-
mance of our tracker: precision plots and success plots [32].
A precision plot indicates the percentage of frames whose
estimated target locations are within a specified threshold
distance to the ground truth. A success plot illustrates the
percentage of frames whose overlap ratio > T for all
threshold values is T ∈ [0, 1]. Overlap ratio is defined as
overlap ratio = Area(Bt∩Bg)

Area(Bt∪Bg)
, where Bt is the tracked bounding

box and Bg is the ground-truth bounding box. To rank the
trackers, the commonly used precision score threshold is
20 pixels. Moreover, we adopted an additional measure of
overlap ratio = 0.5 for each success plot to rank the trackers.
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TABLE 1. The values and ranges of the parameters used in this paper.

FIGURE 6. The precision and success plots of one-pass evaluation (OPE) for 16 trackers on OTB-2013. The ‘‘Ours_scale’’ represents our tracker with an
adaptive scale, and ‘‘Ours_single’’ represents our tracker with a single scale. Our baseline tracker is KCF.

We compared our tracker to the top 8 trackers in the
OTB-2013 dataset (i.e., Struck [17], SCM [40], TLD [41],
VTD [42], VTS [43], CXT [44], CSK [45] and ASLA [46])
and to 6 other recent representative high performance trackers
that are not included in the OTB dataset (i.e., DCF_CA [25],
CFN- [24], TGPR [47], STC [37], DLT [26] and KCF [8]).
Among these, the KCF tracker is our baseline tracker. CFN-,
STC, DLT, SCM, TLD, VTD, VTS, CXT and ASLA are
multi-scale trackers.

All the precision plots and success plots were generated
from the OTB data. The KCF, CFN-, and TGPR data were
sourced from their authors, the DCF_CA data were generated
by the open source code available from its author, the STC
and DLT data were sourced from the author of LCT [34], and
the Struck, SCM, TLD, VTD, VTS, CXT, CSK and ALSA
data were acquired from the OTB dataset. All the tracking
performance scores shown in this paper are the results of one-
pass evaluations [32].

C. QUANTITATIVE COMPARISONS
1) OVERALL PERFORMANCE
Comparisons of the overall performance of our proposed
tracker with that of 14 other state-of-the-art trackers are
presented in Fig 6. We summarize them in the precision and

success plots and rank them in the legends in the left and right
subfigures of Fig. 6, respectively. Our tracker achieves first
place in both the precision plot and the success plot. In the
precision plot, when the location error threshold is 20, our
tracker’s precision score is 0.802, outperforming DCF_CA
(0.785) by 2.2%, and the baseline KCF method (0.740) by
8.4%. In the success plot, when the overlap threshold is 0.5,
the success rate of our tracking method reaches 0.694, out-
performing DCF_CA (0.680) by 2.1%, and the KCF tracker
(0.623) by 11.4%.

Furthermore, we compare the performance of our proposed
tracker both with scale estimation (Ours_scale in Fig.6) and
without scale estimation (Ours_single in Fig.6). The preci-
sion rate (0.780) and success rate (0.665) of Ours_single
are both higher than the baseline KCF tracker. This result
can be attributed to the sample learning strategy adopted
in this paper. Moreover, the precision rate and success rate
of the Ours_scale tracker increased compared with that of
Ours_single. This result can be attributed to the use of the
proposed scale estimation method.

2) ATTRIBUTE-BASED PERFORMANCE
We also analyzed the performance of our proposed tracker
based on the 11 attributes categorized in OTB-2013
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TABLE 2. Precision plot scores of 8 trackers on OTB-2013 (the location error threshold is 20). The values in red indicate the highest scores, while those in
blue are second-best.

to further demonstrate and analyze its strengthens and
weakness.

FIGURE 7. The precision and success plots of one-pass evaluation (OPE)
for 5 trackers on 28 experimental video sequences with the scale
variation attribute. Among them, the ‘‘Ours_scale’’ represents our tracker
with an adaptive scale, and ‘‘Ours_single’’ represents our tracker with a
single scale, KCF is our baseline tracker, DCF_CA is a correlation
filter-based tracker, and our scale estimation method was inspired by STC.

Fig. 7 illustrates the precision and success plots of the
trackers on the 28 video sequences from the OTB-2013
dataset that have the SV attribute. In terms of the precision
plot, our tracker reaches 0.738 and outperforms the KCF
method (0.679) by 8.7%. As the success plot shows, our
tracker reaches 0.568, outperforming the KCF tracker (0.479)
by 18.6%.

In the precision plot, the improvement from Ours_single
(0.718) to Ours_scale (0.738) is 2.8%. However, in the
success plot, the improvement from the Ours_single (0.513)
to Ours_scale (0.568) is 10.7%. This result demonstrates
that the hybrid sample learning strategy proposed in this
paper mainly contributes to our tracker’s increased precision,
whereas the scale estimation method proposed in this paper
mainly contributes to our tracker’s increased success rate.

The precision rates of 8 of the experimental trackers on
the other 10 video attributes are summarized in Table 2. Each
score in the table represents the precision of one tracker with
the location error threshold set to 20 pixels. The red and
blue scores indicate the best and second-best performances,
respectively. Our proposed tracker is the best or second-best
tracker for 9 of 11 attributes, and it outperforms the KCF
tracker on all attributes. Although our tracker is ranked third

on the DEF attribute (0.769) and the LR attribute (0.507),
it still outperforms KCF by 3.9% and 33.1%, respectively.

D. QUALITATIVE COMPARISONS
1) SCALE VARIATION
Figure 8 shows some sample results from three experimental
videos in which the targets suffer from large scale variations.
The ‘‘Car4’’ sequence contains both scale (e.g., #100 and
#300) and illumination variations (e.g., #180 and #200). The
DCF_CA, KCF, Struck and STC trackers cannot track the
target as precisely as the other trackers when the target passes
under a bridge and experiences large illumination changes
(e.g., #250). As the target gradually moves forward, its scale
decreases. Although the CFN- and TPGR trackers can both
track the target throughout the video sequence, they cannot
handle the SV and are not as precise as our tracker and
SCM (e.g., #350). In the ‘‘Walking2’’ sequence, a pedestrian
walking away from the camera undergoes large-scale changes
(e.g., #50 and #300) and occlusions (e.g., #200). Only our
tracker, CFN- and the SCM algorithm can persistently track
the entire sequence and handle the scale variations (e.g., #300
and #500). The DCF_CA and KCF trackers drift away to
the background when the target is occluded (e.g., #200 and
#300). In contrast, the TPGR, Struck and STC trackers cannot
adapt to the scale changes; thus, they do not track the target
precisely as the scale decreases. The ‘‘Girl’’ video contains
both scale variation challenges (e.g., #50 and #300) and in-
plane or out-of-plane rotations (e.g., #100 and #120). The
CFN- and STC trackers lose the target after the large-scale
changes and out-of-plane rotations (e.g., from #100 to #220).
In contrast to the KCF tracker, our tracker can precisely
track the target (e.g., #275), and it adapts well to the scale
variations.

2) OCCLUSION
Figure 9 presents some screenshots for three challenging
sequences in which the targets undergo serious occlusions.
The ‘‘Coke’’ video exhibits both serious occlusion (i.e., #200
and #258) and illumination variation challenges (e.g., #10 and
#50). Overall, our tracker, CFN-, TGPR and Struck perform
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FIGURE 8. Qualitative results of the 8 trackers on the videos Car4, Walking2 and Girl, in which the targets undergo large-scale variations.

FIGURE 9. Qualitative results of the 8 trackers on the videos Coke, FaceOcc1 and Tiger1, in which the targets undergo large-scale occlusions.

well on this sequence, whereas the other 4 compared trackers
drift away to the background regions (e.g., #120 and #275).
In the ‘‘FaceOcc1’’ sequence, the target is occluded by a book
moving in from the bottom (e.g., #50 and #620), the left side
(e.g., #360 and #740) and the right side (e.g., #230 and #550).
Most of the experimental trackers can track the target in this
sequence successfully, but the STC method loses the target
starting in frame #230, and the CFN- tracker shrinks the target
too much to be representative in some frames (e.g., #620
and #740). In the Tiger1 sequence, the target rapidly moves
behind some leaves (e.g., #55 and #321) and undergoes occlu-
sions, illumination variations and rotations (#70 and #95).
The CFN-, TGPR, Struck, SCM and STC methods cannot
track the target when it moves rapidly (e.g., #70 and #121).

Most of the trackers drift during some frames (e.g., #321)
on this challenging video sequence; however, our tracker and
the DCF_CA method can precisely track the target from the
beginning to the end of the sequence (e.g., #326).

3) ROTATION
Figure 10 shows screenshots of the tracking results in three
experimental videos where the targets undergo in-plane and
out-of-plane rotations. In the ‘‘Dudek’’ sequence, the target
moves indoors and experiences heavy out-of-plane rotations
(e.g., #100, #600 and #700). The CFN- tracker cannot adapt
to the scale change in some frames (e.g., #300 and #700).
The STC tracker drifts to the background after the tracker
experiences heavy rotations (e.g., #800). Our tracker tracks
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FIGURE 10. Qualitative results of the 8 trackers on the videos Dudek, David and Sylvester, in which the targets undergo in-plane and out-of-plane
rotations.

FIGURE 11. Qualitative results of the 8 trackers on the videos Shaking, Trellis and Basketball, in which the targets undergo illumination variations.

the target persistently and adapts well to the scale varia-
tions. In the ‘‘David’’ video, the target undergoes rotations
(e.g., #415 and #455) and deformations (e.g., #580). Most of
the tested tracking methods perform well on this sequence;
however, the Struck method drifts heavily when the target
rotates out-of-plane (e.g., #574). Compared with KCF, our
tracker handles the scale change well and tracks the target
more precisely (e.g., #610). In the Sylvester sequence, the
target undergoes rotations (e.g., #550 and #620) and illumi-
nation changes (e.g., #275). Our tracker and the TGPR and
SCM trackers perform well on all the frames, whereas the
DCF_CA, CFN-, KCF, Struck and STC trackers drift when
the target suffers from large-angle rotations (e.g., #1185).

4) ILLUMINATION VARIATION
Figure 11 shows screenshots of three videos in which the
targets suffer from serious illumination variations. In the

‘‘Shaking’’ video, when the target moves in front of a
dark background, the illumination around the target changes
frequently (e.g., #10 and #300). The CNF- and KCF meth-
ods drift away to the background when a heavy illumi-
nation change occurs (e.g., #50). Although the Struck and
SCM methods can track the target throughout the entire
sequence, they achieve lower precision than our tracker and
the DCF_CA, TPGR and STC trackers (e.g., #250, #300
and #350). In the ‘‘Trellis’’ video, the target moves from
a dark area, and the illumination changes during the video
sequence (e.g., #200 and #490). The STC method drifts to
the background starting at frame #490 of the video clip. The
CFN- method shrinks the target too much in some frames
(e.g., #400 and #490). Our tracker and the DCF_CA, TPGR,
KCF and SCM trackers handle the illumination variations and
rotations to track the target well throughout the entire video
sequence (e.g., #400 and #540). In the ‘‘Basketball’’ video,
a man moves rapidly on a basketball court with illumination
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variations (e.g., #678 and #700) and deformations (e.g., #30
and #275). The Struck and STC algorithms drift away to the
background when the target is occluded or experiences heavy
appearance variations (e.g., #30, #275 and #678). Moreover,
the SCM does not handle fast motion and background blur
well, which reduces its precision (e.g., #490 and #550). The
CFN- tracker fails to adapt to the scale changes. In contrast,
our tracker and the DCF_CA, TGPR, and KCF trackers,
which can handle the illumination variations, perform well
on the entire sequence (e.g., #700).

VI. CONCLUSION
Amature scale estimation method can greatly improve track-
ing performance and provide accurate target information for
model training. This paper proposes a new CF based visual
tracking algorithm that reveals the missing link between scale
estimation and detection response by deducing a scale estima-
tion equation from the detection response; thus, the scale is
estimated mathematically rather than determined by the most
common practice, namely, generating samples using some
pre-designed criteria and identifying the sample with the
maximal classifier response. Furthermore, to obtain a more
stable estimated object scale, the estimated scale variable is
updated iteratively using a constraint function that considers
prior knowledge from visual tracking. Moreover, a hybrid
sample learning scheme is formulated to select the pertinent
training samples with higher learning weights to train the
appearance model. The hybrid sample learning method not
only assigns real values (as opposed to binary values) to a
sample but is also error tolerant. Finally, we demonstrate the
robustness and efficiency of our tracking algorithm on the
OTB-2013 dataset through comparisons with 14 state-of-the-
art trackers.
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