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ABSTRACT An explosive growth of cyber-physical-social systems has been witnessed owing to the wide
use of various mobile devices recently. A large volume of heterogeneous data has been collected from
cyber-physical-social systems in the past few years. Each object in the heterogeneous dataset is typically
multi-modal, posing a remarkable challenge on heterogeneous data clustering. In this paper, we propose a
high-order k-means algorithm based on the dropout deep learning model for clustering heterogeneous objects
in cyber-physical-social systems. We first build three dropout stacked auto-encoders, each with three hidden
layers to learn the features for the different modalities of each object. Furthermore, we establish a feature
tensor for each object by using the vector outer product to fuse the learned features. At last, we devise a
tensor k-means algorithm to cluster the heterogeneous objects based on the tensor distance. We evaluate
the proposed high-order k-means algorithm on two representative heterogeneous data sets and results imply
that the proposed high-order k-means algorithm can achieve more accurate clustering results than other
heterogeneous data clustering methods.

INDEX TERMS Cyber-physical-social systems, dropout deep learning model, heterogeneous data,
high-order clustering.

I. INTRODUCTION
Rcently cyber-physical-social systems (CPSS) have achieved
a great progress with the broad use of mobile physical devices
and social media [1]. Specially, CPSS can be viewed as
an extension of the Internet of Things. Internet of Things
integrates the physical devices to the information or cyber
space via wireless communication networks and the
Internet [2], [3]. Thus, Internet of Things is usually viewed
as a kind of cyber-physical systems, as presented in Fig. 1.
Cyber-physical-social systems introduce the humans social
behaviors and intelligence into cyber-physical systems by
mobile personal computing and advanced communication
techniques, as presented in Fig. 2.

s

FIGURE 1. Cyber-physical systems.

From the data analyzing and processing point of view,
alarge volume of data, sometimes called big data, is collected
from the physical world and the social world using the mobile
devices such as sensors, camera, RFID and so on. Afterwards,
the collected data is transmitted to the cyber space via the

wireless sensor networks and the Internet. In the cyber space,
the collected data is analyzed and processed to provide ser-
vices such as intelligent decisions for humans. Therefore,
data mining and analytics are vital for Internet of Things and
cyber-physical-social systems to offer services [4].
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FIGURE 2. Cyber-physical-social systems.

Arsenal vs Manchester United

Title

2,502 2 2

Comments

And it's Arsenal

Arsenal FC,

We're by far the greatest team
The world has ever seen

It was really a great match !

Vive la France and Vive Nasri It

FIGURE 3. One example of heterogeneous data.

In recent years, a large number of heterogeneous objects
are collected from cyber-physical-social systems. For exam-
ple, with the dramatic progress of information collection tech-
niques, various heterogeneous data is sampled from medical
domain that is a typical application of cyber-physical-social
systems including X-ray and CT and so on. As a result,
the size of heterogeneous data is in the constant growth.
Typically, heterogeneous data has the multi-modal property.
Specially, each object in the heterogeneous dataset contains
multiple modalities, such as texts and images. For example,
the object, as shown in Fig. 3, is a representative heteroge-
neous sample, including one image and several paragraphs of
texts (e.g., title and comments) [5].

The objects with the multi-modal property pose a remark-
able challenge on the data mining for heterogeneous datasets.
Specially, different modalities express distinguished informa-
tion and they have complicated correlations. The example
in Fig. 3 utilizes the image show the vivid scenes in the contest
and utilizes the texts to display the hidden information such
as the name of the contest and the comments.

11688

In this paper, we focus on the clustering for heteroge-
neous data. Clustering, as one of the most vital data mining
techniques, partitions the objects into different groups [6].
The objects in the same cluster share as much similarity
as possible while the objects in the different groups are as
different as possible. In the past decades, a lot of clustering
techniques have been developed by researchers and engi-
neers, which could be typically grouped into two classes,
i.e., hard clustering and soft clustering [7]. In the hard clus-
tering, each object is assigned into only one group while the
soft clustering assigns each object into several groups. The
representative hard clustering algorithms include k-means,
affinity propagation and density-based clustering algorithms
while the fuzzy c-means algorithm and the possibilistic
c-means algorithm are two typical soft clustering techniques.

Recently, with the continue growth of heterogeneous data,
heterogeneous data clustering has attracted much attention
from researchers and engineers and many algorithms have
been designed for clustering heterogeneous data [8]. For
example, a multi-modal spectral clustering algorithm was
developed by devising an objective function to extract the
features for clustering the heterogeneous data. Gao and Long
applied the graph theory to the heterogeneous data cluster-
ing [10], [11]. Specially, they converted the heterogeneous
data clustering into a task of graph partitioning. Typical
methods of this type is spectral relational clustering and con-
sistent isoperimetric high-order co-clustering [12]. In addi-
tion, Chen et al. [13] proposed a co-clustering framework
for heterogeneous data by applying the non-negative matrix
decomposition. A representative example of the heteroge-
neous data clustering methods is supervised non-negative
matrix decomposition that captures the correlations between
every object and the clustering centers by designing a seman-
tic space. These approaches have made some progress for
heterogeneous data clustering. However, they are gener-
ally of high computational complexity and low accuracy.
Zhang et al. [14], [15] introduced a high-order possibilistic
clustering algorithm (HOPCM) based on auto-encoders for
heterogeneous data. Although HOPCM outperforms other
representative heterogeneous data clustering algorithm in
clustering accuracy and efficiency, it still has several draw-
backs. First, this method could not extract the hierarchical
features for the different modalities of each object since it
uses the auto-encoder with only one hidden layer to learn
the features, decreasing the final clustering accuracy. Second,
HOPCM has a high computational complexity since it uses
the possibilistic c-means algorithm to cluster the feature
tensors.

Aiming at this problems, we propose a high-order k-means
algorithm (HOK-Means) based on dropout deep learning
models for heterogeneous data clustering in cyber-physical-
social systems. HOK-means works in three steps, i.e., fea-
ture learning, feature fusion and clustering. In the first step,
we build different stacked auto-encoders [16], [17] to learn
the features for different modalities of each heterogeneous
object. A large number of experiments demonstrate that the
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stacked auto-encoders with three hidden layers performs best
for feature learning [18], [19]. In addition, the dropout can
reduce the over-fitting by setting the units in the hidden
layers of the auto-encoder model to 0 with the possibility
of 0.5 [20]. Therefore, we build different dropout stacked
auto-encoders, each with three hidden layers, to learn the
features for each object. In the second step, we establish a
feature tensor for each object by using the vector outer prod-
uct to fuse the learned features. K-means is the most widely
used clustering algorithm in many application domains such
as electronic business and industry production due to its high
accuracy and low computational complexity. Therefore, in the
last step, we design a tensor k-means algorithm to cluster the
heterogeneous objects represented by the feature tensors for
the final pattern. In the tensor k-means algorithm, we utilize
the tensor distance to measure the similarity of each two
objects in the tensor space [21]. Finally, we assess the high-
order k-means algorithm based on the hybrid deep learning
models on two typical heterogeneous datasets collected from
cyber-physical-social systems, i.e., NUS-WIDE [22] and
CUAVE [23]. Furthermore, we compare our proposed
approach with the high-order possibilistic c-means algorithm
in the clustering accuracy and efficiency. Results demonstrate
that our algorithm outperforms the high-order possibilistic
c-means algorithm.

In summary, this paper has three major contributions:

e We propose a uniform architecture that combines the
deep learning with the k-means algorithm for hetero-
geneous data clustering. Specially, the scheme works in
three steps, i.e., feature learning, feature fusion and high-
order cluster;

o We design a tensor k-means algorithm for high-order
feature tensors clustering by extending the k-means
scheme to the tensor space. In the tensor k-means algo-
rithm, we utilize the tensor distance to measure the
similarity of each two objects in the tensor space;

o We validate the high-order k-means scheme based on
the deep learning models on two heterogeneous datasets,
i.e., NUS-WIDE and CUAVE. Furthermore, we com-
pare our proposed approach with the high-order possi-
bilistic c-means algorithm in the clustering accuracy and
efficiency.

Il. PROBLEM STATEMENT

Suppose that X = {x1, x, ..., x,} denotes a heterogeneous
dataset collected from cyber-pyhical-social systems. Each
object x; in this dataset is a multi-modal sample, that means
Xx; contains at least two modalities. Typically, x; contains two
modalities such as image modality and text modality or three
modalities including image modality, text modality and audio
modality. For example, a piece of video usually contains a
set of images, some texts and a piece of audio. Considering
the dataset X, the task of the high-order k-means algorithm
based on the dropoout deep learning model is to cluster it
into k subsets X = X; U X, U --- U X} under the condition
X1 NX>N---NXg = @ depending on the similarity between
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each two objects. There are usually many remarkable chal-
lenges for heterogeneous data clustering since each object is
multi-modal. In the part, we illustrate three major problems
as following.

o Feature Learning. Feature learning is the first and the
fundamental stage for heterogeneous data clustering.
It plays very key role on the clustering accuracy. In the
past few years, many feature learning techniques have
been developed, especially deep learning models. Deep
learning models could extract multiple levels of features
for objects by stacking some basic machine learning
models [24]. For example, the deep belief networks,
one of the most widely utilized deep learning models,
are established by stacking some restricted Bolzmann
machines [25]. Deep learning models have achieved the
best performance for feature learning in these years.
However, most of current deep learning models focus on
feature learning for the supervised objects, so they are
difficult to be applied to the clustering. Therefore, how
to combine the deep learning models with the clustering
algorithm for heterogeneous data is the first problem to
be addressed;

« Feature Fusion. In the feature learning stage, we extract
the features for each modality of every object to build
several feature vectors. For example, considering a
heterogeneous object with three modalities, typically
including image modality, text modality and audio
modality, we will form three feature vectors, i.e., image
feature vector, text feature vector and audio feature vec-
tor, for the three modalities by using three deep learning
models. So, the second problem is how to capture the
correlations for three modalities to reveal the feature for
each object by fusing the learned feature vectors.;

o Tensor Clustering. In the feature fusion stage, we apply
the vector outer product for the learned feature vectors
fusion and so we will get a feature tensor for each object.
The final result can be obtained by clustering the het-
erogeneous objects represented by the feature tensors.
Although a large number of clustering techniques such
as k-means and affinity propagation have been devised
in these years, most of them focus on the vector cluster-
ing. In other words, they could not work in the tensor
mode since they cannot compute the distance between
two objects in the tensor space. Therefore, how to cluster
the heterogeneous objects in the tensor space is the third
problem.

lll. HIGH-ORDER K-MEANS BASED ON DEEP LEARNING
Fig. 4 shows the architecture of the proposed high-order
k-means algorithm based on the dropout deep learning mod-
els. In detail, the proposed architecture includes three parts
from bottom to top, i.e., feature learning, feature fusion and
tensor clustering.

In the first part, we build three dropout stacked auto-
encoders, each with three hidden layers, to learn the features
for the modalities of each object, respectively. After learning
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FIGURE 4. The architecture of the high-order k-means algorithm with
three parts, i.e., feature learning, feature fusion and tensor clustering.

h| O O O

@)

h | O OO OOO—*OOO ts
f‘z’(e)L

h| O OO OO O » O OO 151
) \

x| 000 | |[OOOFH¥OO O «x

FIGURE 5. The architecture of the stacked auto-encoder with three
hidden layers.

the features for the modalities of each object, we can get the
feature vectors. For example, we can get three feature vectors,
i.e., image feature vector, text feature vector and audio feature
vector, for the object with three modalities including image,
text and audio. In the second part, we use the vector outer
product to fuse the learned feature vectors to obtain a feature
tensor for each object. In the final part, we implement the
tensor k-means algorithm based on the tensor distance that
is used to measure the similarity between each object and
every clustering center to cluster the heterogeneous objects
represented by the feature tensors.

A. FEATURE LEARNING BASED ON DEEP
LEARNING MODELS
To learn the features for each modality of every object,
we build three stacked auto-encoders, each with three hid-
den layers. Fig. 5 shows the architecture of a stacked
auto-encoder.

The stacked auto-encoder shown in Fig. 5 is built by stack-
ing three basic auto-encoders from bottom to top. Assume
that x denotes the input data, the basic auto-encoder projects x
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Algorithm 1: Back-propagation Algorithm for Training
Auto-encoder.

Input: {(«'",y)}7L

/\a itc?'lnaxa th

=17
Output: 0
1 for iter = 1.. .., itery,, do
2 for sample =1,...,m do
3 for j=1,....pdo
2 n A1 1
! | 0 =1 (i WP + 60
5 fori=1,....ndo
3 A(2) (2 2
| | Lo S w2 4
7 if J(0) > th then
8 fori=1,...,n do
9 L6 =@ -y @ - a0);
10 for j=1,...,p do
1 5;(’.2) =
(Cim W) (WD (1 = h));

12 fori=1,...,n do
I Ab? = Ab? 4 5P
14 for j=1,...,pdo
15 L Aw:?} = A-u,'g) + a_;z) . J,E:”;
16 for j=1,...,pdo

(1) _ (1) +(2).
17 Abj = Abj + 67
18 fori=1,....n do
19 L Aw}i’ = A-w_&p + x; - (53[2};
20 W=W-—-nx (%Aw];
2 | b=b—nx(5Ab):

FIGURE 6. Algorithm 1.

into the hidden layer % and the output layer y by two func-
tion, i.e., encoding function f and decoding function g,
respectively:

h = fu(WDx 4 py. 1)
y = so(WPx 4+ b?@). )

In the projection functions, # = (WD pD; WP p2)
represents the parameter, and each projection function usually
uses the sigmoid function: f(x) = 1/(1 + ¢™).

The goal of the basic auto-encoder is to train the parameter
6 = WD, pM; W p?) by using the following objective
function:

&1 ,
J=1- Z GI? =xP11 + 2 Z W 3)
i=1 ij
In the objective function, the first item is used to measure
the error between the input and the output and the second item
with a hyper-parameter A aims to prevent over-fitting.
Perhaps the most well-known technique used to train
the parameter § = (WD pM; WP p?) is the back-
propagation algorithm by the following two steps, i.e., feed-
forward step and back-propagation step, as illustrated in the
first algorithm [26].

VOLUME 6, 2018



F. Bu: High-Order Clustering Algorithm Based on Dropout Deep Learning for Heterogeneous Data

IEEE Access

~al.) m()
T

DropQOut Network

FIGURE 7. Example of the dropout auto-encoder.

Furthermore, to prevent the over-fitting, we adopt the
dropout to get three dropout stacked auto-encoder models for
feature learning on each object. In detail, we set each unit
in every hidden layer of the stacked auto-encoder model to
0 with the possibility of 0.5. Fig. 7 illustrates an example of
a dropout auto-encoder model.

B. FEATURE FUSION BASED ON VECTOR OUTER PRODUCT
In this section, we establish a future tensor for each object
by using the vector outer product to fuse the learned feature
vectors. Consider one multi-modal object x with three modal-
ities, i.e., image modality, text modality and audio modality,
we can get three feature vectors, i.e., image feature vector A,
text feature vector B and audio feature vector C, for each
object after feature learning in the last section. We can build
a three-order feature tensor 7', namely T = A o Bo C, for the
object x.

o denotes the vector outer product, one of the commonly
used algebraic operations [27]. Given a three-dimension vec-
torA = [ay, a», az] and a two-dimension vector B = [by, bo],
their outer product will produce a 2 x 3 matrix T = Ao B,
as shown as follows:

by _ | a1br  asby  azb;
|:b2j|®[al “ “3]_[a1b2 arb a3b2] @

More generally, the outer product of n vectors will produce
a n-order tensor.

C. TENSOR K-MEANS ALGORITHM BASED
ON TENSOR DISTANCE
The conventional k-means algorithm could cluster the objects
represented by vectors. However, after feature fusion, one
feature tensor is built for each heterogeneous object. There-
fore, the k-means algorithm could not cluster the heteroge-
neous objects represented by the feature tensors. To address
this challenge, we devise a tensor k-means algorithm by using
the tensor distance to compute the distance between the object
and each clustering center.

To compute the tensor distance between two N-order ten-
sors, i.e., X, Y € RI*I2xxIN 'we unfold each tensor X into

VOLUME 6, 2018

the vector form x. Specially, X;,;,.;y is unfolded to x; by
I =i + vaz 5 ]_[Jl;ll I;. Therefore, the tensor distance drp
between X and Y is computed by

drp =+ (x — ) G(x —y), 5)

where x and y denote the vector form of the tensor X and
the tensor Y, representatively, and G denotes the coeffi-
cient matrix used to reveal the location correlation between
X and Y in the tensor space.

Therefore, the tensor k-means algorithm based on the ten-
sor distance is outlined in the following four steps.

Step 1: Randomly select k objects as the clustering centers.

Step 2: Use the equation (5) to compute the tensor distance
between each object and every clustering center and assign
each object to the nearest clustering center.

Step 3: Recompute each clustering center.

Step 4: If convergence, stop the algorithm, otherwise,
repeat Step 2 and Step 3.

From the steps of the tensor k-means algorithm, the key
step is to compute the tensor distance between each object
and every clustering center. Therefore, the tensor k-means
algorithm has a computational complexity of O(tnk), where
t, n, k denote the number of iterations, objects and clustering
centers, respectively.

IV. PERFORMANCE EVALUATION

In this section, we validate the high-order k-means
(HOK-means) based on dropout deep learning models on
two commonly used heterogeneous datasets collected from
cyber-physical-social systems, i.e., NUS-WIDE and CUAVE.
We compare the HOK-means algorithm with the HOPCM
algorithm in two metrics, namely E* and RI.

Ex is used to measure the accuracy of the produced clus-
tering centers by computing the distance between the true
clustering centers and the produced clustering centers in the
following:

c
Ex= | Y |Vie —Vil12, (©6)
i=1

where Vi, and v represent the i-th true clustering center
and the i-th produced clustering center by the approach *, ¢
denotes the number of clustering centers.

RI aims to measure the clustering accuracy according to
how many objects that are assigned into the correct groups.
For example, if there are 1000 objects in the dataset and
there are 950 objects are assigned into the correct groups,
RI equals 95%.

Obviously, the lower Ex and the higher RI imply that the
approach achieves the more accurate clustering result.

A. EXPERIMENTS ON NUS-WIDE

There are 269,648 images, each with some annotations, in the
NUS-WIDE dataset that is collected from Flickr, a well-
known image website. Zhang selected 80,000 representative
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images that can be clustered into 14 groups to evaluate the
performance of the HOPCM algorithm. In this paper, we also
uses the same images to compare the performance between
the HOK-means algorithm and the HOPCM algorithm.

We perform the HOK-means algorithm and the HOPCM
algorithm for five times and the experimental results are
displayed in Fig. 8 and Fig. 9.

! @ HOPCM
3.05 =@ *HOK-means

Number of iExpen'mems

FIGURE 8. Experimental result on NUS-WIDE in E .

@+ HOPCM
~8-HOK-means
- A a.

~,
~.,
~

,,,,
S
~—

L I ;
1 2 3 4
Number of Experiments

FIGURE 9. Experimental result on NUS-WIDE in RI.

The experimental results in Ex are displayed in Fig. 8.
It can be seen from the results that the HOK-means algorithm
achieves the lower Ex values than the HOPCM algorithm
in five experiments. For example, in the second experi-
ment, the HOK-means algorithm produces the Ex value
with 2.76 while the HOPCM algorithm produces the
Ex value with 3.01. The E% value produced by the
HOK-means algorithm is significantly smaller than that pro-
duced by the HOPCM algorithm. Such results demonstrate
that the HOK-means algorithm produced more accurate clus-
tering centers than the HOPCM algorithm.

Fig. 9 displays the experimental result in RI. We can
see from Fig. 8 that HOK-means gets a bigger RI value
than HOPCM in each experiment. Specially, the HOK-means
algorithm produces the average RI value with 0.902 while
the average RI value produced by the HOPCM is 0.844.
Obviously, the HOK-means algorithm achieves the higher
clustering accuracy than the HOPCM algorithm in terms of
RI on the NUS-WIDE dataset.

B. EXPERIMENTS ON CUAVE

There are 1800 multi-modal objects in the CUAVE dataset
that is widely used to validate the performance of the deep
learning models and other clustering algorithms. This paper
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FIGURE 10. Experimental result on CUAVE in RI.

TABLE 1. Average execution time (minutes).

Dataset HOPCM  HOK-means
NUS-WIDE 295 261
CUAVE 127 111

uses this dataset to estimate the HOK-means approach by
comparison with the HOPCM approach.

Since this dataset does not have the true clustering centers,
we compare the HOK-means algorithm with the HOPCM
algorithm in the clustering accuracy with the metric RI. Each
approach is performed on the CUAVE dataset for five times.
Fig. 10 shows the experimental results.

We can make the several remarkable observations from
the experimental results presented in Fig. 10. First, the
HOK-means algorithm obtains bigger RI values than the
HOPCM algorithm in five experiments. For instance,
the HOK-means algorithm yields the RI value with 0.92
while the HOPCM algorithm yields the RI value with 0.86
in the fourth experiment. Second, the HOPCM algorithm
produces the highest Rl value with 0.88 in the second
experiment. However, this value is still smaller than the
RI value with 0.89 produced by the HOK-means algorithm
in the second experiment. Finally, HOK-means and HOPCM
yield the average RI values with 91.2% and 86.4%, respec-
tively. Such observations clearly validate the better perfor-
mance of the HOK-means algorithm compared with the
HOPCM algorithm in terms of RI.

C. EXECUTION TIME

Finally, we compare the clustering efficiency between
HOK-means and HOPCM with respect to average execution
time for two datasets. Table 1 illustrates the results.

From Table 1, we can see that HOPCM is more time-
consuming than HOK-means. Such results imply that our
proposed approach is more efficient than HOPCM on two
datasets. Therefore, our approach is potential to cluster
large-scale data in cyber-physical-social systems. However,
HOPCM is slightly more time-consuming than HOK-means
since they have the same computational complexity.

V. CONCLUSION
In this paper, we proposed a high-order k-means algorithm
based on dropout deep learning models for heterogeneous
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data clustering in cyber-physical-social systems. One remark-
able point of the proposed method is to build different dropout
stacked auto-encoder models, each with three hidden layers,
to learn features for each modality of every object. Different
from the conventional clustering approaches which use the
vector to represent each object, we establish one feature
tensor by using the vector outer product for every object
in the heterogeneous dataset. To cluster the heterogeneous
objects represented by the feature tensor, we devise a tensor
k-means algorithm by using the tensor distance to measure
the similarity between each object and the clustering centers.
Experimental results implied that the proposed approach per-
formed better than the HOPCM algorithm in the clustering
accuracy.

In the future work, we will build the different deep learning
models to learn features for different modalities in the cluster-
ing process. For example, the convolutional neural networks
has achieved the best performance for large-scale images
feature learning while the stacked auto-encoders performs
best for text and audio feature learning, so we plan to build a
convolutional neural network and the stacked auto-encoders
to learn the features for the image modalities and other two
modalities, representatively.
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