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ABSTRACT The fourth industrial revolution involves the advanced topics, such as industrial Internet
of Things, cyber-physical system and smart manufacturing that address increasing demands for mass
customized manufacturing. The agent-based manufacturing is a highly distributed control paradigm that can
cope with these challenges well. This paper gives an overview of agent-based architectures for manufacturing
systems. Besides, a cloud-assisted self-organized architecture is presented by comprising smart agents and
cloud to communicate and negotiate through networks. Ontological representations of knowledge base are
constructed to provide the information basis for decision-making of agents, which enables dynamic recon-
figuration among agents in a collaborative way to achieve agility and flexibility. Furthermore, the agents’
interaction behavior is modeled to structure the agents hierarchically to reduce the complexity, because the
interactions among agents in distributed system are difficult to understand and predict. The experimental
results show that the presented architecture can be easily deployed to build smart manufacturing system
and can improve the adaptiveness and robustness of the manufacturing system when dealing with mixed
multi-product tasks.

INDEX TERMS Multi-agent system, industry 4.0, ontology, smart manufacturing.

I. INTRODUCTION
The current market demands are becoming much tougher
and more severe, especially on product customization,
small batch and low prices [1]. The challenges require a
new balance among economy, technology and society [2].
Traditionally, product lines are designed in a rigid pattern to
produce limited types of products. What’s worse, reconfig-
uring a legacy production line or building a new one from
scratch is costly and time-consuming [3]. To survive in this
new manufacturing environment, enterprises in this industry
must be able to react to rapid changes with reconfigurabil-
ity [4]. This necessitates the needs of new manufacturing
methods which are capable of managing continuous product
changes and disturbances efficiently and reliably [5], [6].

A number of technologies and design approaches have
been presented to improve reconfigurability in manu-
facturing systems, including modular machine tools and

reconfigurable automation during the last two
decades [7], [8]. Several IT-driven paradigms such as
Multi-Agent Systems (MAS), Holonic Manufacturing Sys-
tems (HMS), Evolvable Assembly Systems (EAS), and Frac-
tal Factories (FF) have emerged. In addition, many notable
reference architectures like reference architecture for holonic
manufacturing systems (PROSA) and a holonic architec-
ture for agile and adaptive manufacturing control (ADA-
COR) were proposed [9]–[16]. Although the technological
advances are able to achieve reconfigurability theoretically,
their ultimate industrial implementation remains restrained.
The implementing difficulty is short of quantitative multi-
agent system design approaches based on reconfigurability
measurement.

An agent-based manufacturing architecture can ease self-
configuration, modification of the system and enable a larger
decision space for reacting to external environment [17].
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Thus, it is important to build a knowledge base to provide the
information basis for decision-making [18]. An ontological
information modeling method is put forward to build the
knowledge base, which integrates, analyzes and processes
enormous manufacturing information and extracts answers
on the basis of semantics [19]–[21]. The MAS defines
autonomous and smart entities as agents, which are able to
collaborate with each other to complete global tasks [22]. The
basic need for cooperation rises from the fact that agents don’t
have enough knowledge tomake global decisions. As a result,
we introduce the cloud-assistant mechanism to coordinate the
agents globally. However, the interaction behavior of agents
in a distributed system is difficult to understand and predict.
Therefore, the study of behaviors among multiple agents is
used to structure the agents in a hierarchy to reduce the
complexity.

This paper describes a distributed architecture for agent-
based manufacturing system, and the contributions are as
follows. Firstly, the ontological knowledge base is estab-
lished to enable agents’ cooperation in order to complete
the tasks. Secondly, the interaction behaviors among agents
are proposed to explain the dynamic scheduling schemes in
three scenarios. Thirdly, two communication methods are
introduced to meet the communicated demands for interop-
erability in smart manufacturing. Lastly, the superiorities of
proposed architecture are verified and validated by a proof-
of-concept experiment.

The article is organized as follows. In Section 2,
an overview of existing manufacturing architectures is given
and knowledge-driven interaction behaviors among agents
are discussed. In Section 3, two communication methods
used in the proposed architecture are described. In Section 4,
the experimental setup and analysis of main experimental
results are provided. Finally, Section 5 concludes the paper.

II. AGENT-BASED CONTROL STRUCTURE
The core principle of smart manufacturing is the adoption
of Internet of Things (IoT), or in other words connecting
of people, data, and things through networks. Besides, in a
smart factory, the prime consideration is to build a verti-
cally integrated system for data consolidation fromEnterprise
Resource Planning (ERP) systems to plants. This requires a
multi-layer network that makes data identifiable across dif-
ferent layers. Therefore, a smart manufacturing architecture
called cloud-assisted self-organized architecture is presented
to realize the consideration. As shown in Fig. 1, CASOA
comprises two layers: the lower resource layer and the upper
cloud-assistant layer.

The lower resource layer that contains devices is the
basis of IIoT. This layer enables smart objects to collabo-
rate with each other to complete production tasks without
a centralized scheduler. According to various manufacturing
tasks, this way of distributed work makes plants dynam-
ically coordinated in order to meet product requirements
with small batch and variety. To eliminate potential local
optima in the case of fully distributed scheduling, the upper

FIGURE 1. The cloud-assisted self-organized architecture.

cloud-assistant layer is introduced. The upper cloud-assistant
layer collects data from the lower resource layer and fig-
ures out optimal scheduling plan through data analysis. The
plans as suggestions are fed back to the plants for assisted
scheduling. In the upper cloud-assistant layer, the Supervi-
sory Control and Data Acquisition system (SCADA) and
Manufacturing Execution System (MES) blend together: the
SCADA system extends upward for more rich abilities of
service and data management; the MES extends downward
for more capacities of communication with plants. These two
systems cooperate with ERP system to acquire the functions
such as resource scheduling, task management, data process-
ing and visualization. Thus, compared to the traditional man-
ufacturing architecture, CASOA is both standard and more
flexible with highly customizable features.

The lower resources of CASOA compete and cooperate
in a decentralized manufacturing context with self-organized
ability. They contribute to complementary advantages to
achieve flexibility when processing multi-type products.
In addition, the components of the cloud can infer suggestion
plans for optimization of lower resources scheduling. This is
an organic convergence of distributed and centralized systems
that exists the natural relationwithMAS. Therefore, the smart
entities in CASOA can be modeled as MAS to build a smart
manufacturing system based on agents. A solution for the
smart manufacturing can be presented by studying the inter-
action behaviors among agents.

A. BASIC AGENTS
The smart entities in CASOA can be classified into four
types of agents according to their functions and responsibili-
ties: suggestion agents (SA), product agents (PA), machining
agents (MA) and conveying agents (CA).

The product agents represent the products that need to be
processed. In contrast to the traditional products, the product
agents as autonomous and collaborative nodes are able to
interact with other agents. So, the product agents should
be equipped with some communication tools which can
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TABLE 1. Three types of communication tool.

be divided into three types: embedded controllers, radio
frequency identification devices (RFIDs) [23], and Quick
Response (QR)/bar codes. As shown in TABLE 1, the data
transmission speed of embedded controller is the fastest and
embedded controller can both read and write data. But it is the
most expensive communication tool. The data transmission
speed of RFID is moderate and data can be both read and
written. Meanwhile, the price is also moderate. The data
transmission speed of QR/bar code is the slowest and data
can be only read, and the price is the lowest.

The machining agents can perform machining and storing
of operations, referring to machine tools, testing equipments
and so on. The conveying agents can transport the product
agent from current location to the destination, referring to
conveyor belts, auto guided vehicles and so on. The latter
two kinds of agents are the basic manufacturing units. Each
machining agent can complete one or more processes. Due to
the task complexity, every task needs the engagement of vari-
ousmachining agents. Similarly, the transportation of product
agents also requires several conveying agents to negotiate and
cooperate for finishing the task.

The suggestion agent represents the software component
on the cloud which is responsible for processing orders
and generating scheduling suggestions. The traditional cen-
tral scheduler produces scheduling commands to directly
allocate tasks to plants. However, in the lower resource
layer of CASOA, the plants emphasize dynamic autonomous
scheduling and are able to negotiate to allocate the tasks.
Hence, the suggestion agent assists lower resources in
dynamic scheduling rather than directly allocates the tasks.
For instance, when a load-unbalancing of plants occurs, the
suggestion agent considers the unbalancing degree to adjust
scheduling plans in the suggested way [2].

B. ONTOLOGY COMBINED WITH AGENTS
In MAS, an agent is able to produce plans and make
autonomous decisions to react to the external environment.
Therefore, the first thing to consider is how the agents gener-
ate application plans. Ontology techniques are introduced in
order to provide the theoretical basis to build the knowledge
base model of the agent. Ontology is a philosophy conception
which systematically describes objective things on the earth.
It aims to capture the knowledge of relevant field and define
the objects, which forms the semantic basis for interactions
of different agents. The ontology consists of class, property,
constraint and instantiation of class. The object in CASOA
is abstractly described and combines its property to form
an ontology model. The constraints of the ontology model

FIGURE 2. The ontology reasoning based on knowledge base and
data base.

are added into different manufacturing scenarios to build
the semantic knowledge base (hereafter referred to as the
knowledge base).

The construction of unified knowledge base is significant
to achieve interoperability among agents. The superposi-
tion of multi-agent ontology models constitutes the ontology
model of the whole smart factory, which can be used to reason
out the health status of the product line. As shown in Fig. 2,
the status data are uploaded from plants to a database. Mean-
while, plants in themanufacturing environment are abstracted
to build the ontology model. Then, the status data of the
database are mapped to the ontology property of the knowl-
edge base. In this way, the ontology model is associated with
the status of plants. Finally, the reasoning engine produces
strategies which will be applied in resource scheduling and
fault diagnosis.

According to the modeling principles, a machining agent
model can be obtained as presented in Fig. 3. The model
consists of mechanical modules, control modules, electrical
modules and tool modules. Also, these modules are divided
into circuits, various tools and so on. This means the objects
in the lower level are parts of the objects in the upper level,
so the object property ‘‘Hascomponent’’ (Hc) can be used
to indicate the relationship between lower and upper level.
In addition, objects have their own data property which rep-
resents the quantifiable property of objects. For example, a
motor has the data property RPM denoting its current speed.
Before themachining agent accepts a task, its status should be
checked to judge whether it has the processing capacity or it
is broken down. Thus, the following constraint rules should
be obeyed:

1) If MillTool && abrasion loss > ‘‘15%’’, Then
MachineCondition = ‘‘MillingFault’’

2) IfMchineCondition= ‘‘MillingFault’’, Then TaskCon-
dition = ‘‘No accept Milling task’’

The rule 1 shows that, if the abrasion loss of mill tool
is above 15%, the machining agent is in the condition of
milling fault. The rule 2 shows that, if the machine condition
is ‘‘milling fault’’, the machining agent will not accept the
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FIGURE 3. The ontology model of MA.

FIGURE 4. The hierarchical model of CASOA.

milling task. Therefore, the rule 1 is used in fault diagno-
sis and the rule 2 is used in negotiation scheduling among
agents.

There are two levels of the ontologymodel in CASOA. The
first level is the agentmodel whose input is theminimum level
of status called fine grain status, and the output is a coarse
grain status that represents the agent condition. The second
level is the product line model. Whether the product line can
make a product is determined by the status of the related
plants chain, not limited to the status of a certain device. Thus,
the health condition of product line needs to be synthetically
considered. In the second level, the input is the agent condi-
tion which is the coarse grain status in the first level, and the
output is the product line condition.

The hierarchical ontology model of CASOA is presented
in Fig. 4. The real-time status data as the fine grain sta-
tus is updated to the data property of machining agent 1.
The reasoning engine reasons out the coarse grain status
of the machine model. And the coarse grain status is mapped
to the data property of the product line model. After the
second-round reasoning, the health condition of the product
line is inferred and the system uses the product line condition
to produce the correct responses to the order. When a new
agent is engaged, the product line model will be updated
through instantiating the new agent class.

C. AGGREGATION OF BASIC AGENTS
This section demonstrates the behaviors of agents by struc-
turing their interaction in three scenarios. In these scenarios,
agents comprehend the information from other agents and
responds to them based on their knowledge base.

As Fig. 5(a) shows, when a customer submits an order, the
suggestion agent should answer whether the product can be
made. So, the suggestion agent inquires the machining agent
whether the process can be completed. After confirming the
process can be completed, the machining agent inquires the
conveying agent whether the product can be delivered to
the destination, and the conveying agent informs its status
to the machining agent. Then, the confirmation message is
uploaded to confirm the order. Finally, the suggestion agent
creates an order task for the product agents.

Figure 5(b) shows how agents cooperate to execute the
accepted order task. First, the customer places an order,
and then suggestion agent creates an order task for product
agents. The product agents disaggregate the task into several
processes and publish them to the machining agents. The
machining agents negotiate to choose the target machining
agent for processing the product. Then, the target machin-
ing agent publishes its location to the conveying agents.
The conveying agents negotiate to build a route to transport
the product agents to the destination. After completing the
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FIGURE 5. Three scenarios of basic agents interaction behaviors. (a) The scenario of order receiving. (b) The
scenario of basic agents’ cooperation for executing the order task. (c) The scenario of adding an agent
without shutting down the product line.

process, the product agents continue to the next process until
the task is finished. During this period, machining agents and
conveying agents send their status to the suggestion agent.
The suggestion agent analyzes the status data from lower
resource in order to track and monitor products quality.

As Fig. 5(c) demonstrates, when a plant as a machining
agent is dynamically added to the system without shutting
down the product line, the new agent announces its arrival to
the suggestion agent and the product agents which are under
processing. After receiving the message, the suggestion agent

updates the product line model to adapt a new manufactur-
ing environment. Then, the suggestion agent produces new
scheduling plans for the product agents. When the product
agents receive the plans, they update the original process
plans and request the new agent to initiate the new work.

III. COMMUNICATION METHODS IN CASOA
The interaction behaviors among agents in Section 2.3 are
structured in a hierarchy through the effective and feasible
communication mechanisms. The interoperability in smart
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TABLE 2. Three communication methods in application.

manufacturing is divided into two layers: machine-to-cloud
layer and machine-to-machine layer. Therefore, two commu-
nication methods, OPC Unified Architecture (OPC-UA), and
Data Distribution Service (DDS) are employed respectively
in these aforementioned layers to meet various real-time and
semantic demands.

As TABLE 2 shows, in the machine-to-cloud layer, the
cloud needs to be compatible with all data uploaded from
the lower resources, so the semantic demand is the highest.
In the meantime, it is unnecessary that the cloud provides
real-time feed-backs to the lower resources to meet the real-
time demand, since the resource scheduling is distributed and
dynamic. The OPC-UA can build the customizable informa-
tion model, so it offers high semantic transparency that suits
machine-to-cloud layer.

In the machine-to-machine layer, due to the negotiation
mechanism among agents, the real-time capability of com-
munication is very important. The DDS purely relies on its
data center that distributes the data, so it can meet the real-
time demand in machine-to-machine layer.

A. MONITORING AND DATA ACQUISITION BASED ON
OPC-UA
In the manufacturing process, plants are not only the pro-
duction tools, but also the nodes of the information network.
After data acquisition and analysis, the results can be applied
to improve quality and efficiency of the production. The
OPC-UA owns the information model and interfaces which
support technologies such as ERP and Product Lifecycle
Management (PLM). Thus, OPC-UA is used as a network
bridge for monitoring and data acquisition in the scope of
smart factory.

The presentation of the information model is similar to
the ontology, thus, the information model can map to the
agent ontology model and product line ontology model for
achieving the interoperability between machine and cloud.

B. COMMUNICATIONS BETWEEN AGENTS BASED ON DDS
In the smart factory, if the data acquisition can be considered
as the vertical information integration, then the communi-
cation between machines is the horizontal information inte-
gration. The DDS as a communication middleware supports
publisher/subscriber mode which coincides with negotiation
mechanism in MAS. As Fig. 6 shows, the agents subscribe
the task topics which can be carried, and the product agent
publishes the task. All machining agents obtain the task and
reason out the current status to decidewhether or not to bid for
the task. After receiving the task intention, the product agent

FIGURE 6. The negotiation among agents based on publisher/subscriber
communication mode.

TABLE 3. The process capability of four machining agents.

uses the knowledge base to choose the most available device.
Finally, the product agent awards the chosen machining agent
to complete the task. This kind of communication method
based on topic data eliminates the information coupling of
nodes and achieves the interoperability between agents in the
lower resource layer.

IV. EXPERIMENT
The experiment was conducted by using several plants and
network devices in order to verify the proposed architecture
with respect to its associated dynamic scheduling method.
Five servers were used as a cloud to collect and analyze
the field data. A group of machines including five robots as
machining agents (MAs), and five PLC controlled conveyors
as conveying agents (CAs) were interconnected to the cloud
through Ethernet links. The objects are shown in Fig. 7.

A. EXPERIMENTAL SETUP
As shown in TABLE 3, five machining agents can complete
the processes from P001 to P014. Four types of products {A, B,
C, D} were made and the total number of every type of prod-
uct was 25 respectively. It was assumed that the workpiece
type of entering product line is random and that interval time
of adjacent workpieces 1T obeys normal distribution.

Traditional static scheduling uses pre-planned method to
allocate the jobs to the specified machines. It is usually
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FIGURE 7. System layout in experiment [2].

TABLE 4. The traditional scheduling for four types of product agents.

based on the assumption of constant rate of resource supply
known at design time. The pre-planned method represents
that the centralized scheduler makes the optimal schedul-
ing plan before the task executions and the plan cannot be
changed in the process. The process plans of the pre-planned
method for four types of product agents were as shown in
TABLE 4. Three experiments were performed to verify the
performance of product line: 1) the comparison of product
line performances between pre-plannedmethod and proposed
method; 2) the comparison of product line performances for
different configurations; and, 3) the comparison of product
line performances before and after fault occurrence. In the
experiments, the job delay ratio Zj and machine utilization
ratio Zt were considered as performance indicators of the
system, and they were defined by:

Zj = Jt ÷ Jtotal
Zt = Tt ÷ Ttotal (1)

where Jt is the number of delayed jobs, Jtotal is the total
number of jobs, Tt is the actual processing time of the
machine, and Ttotal is the total processing time. In the
following, 1# denotes the machining agent 1, 2# denotes
the machining agent 2, and so on.

B. EXPERIMENTAL RESULTS AND DISCUSSION
The results obtained in three mentioned experiments are
presented in Fig. 8, wherein Fig. 8(a) presents the result of

experiment 1, Fig. 8(b) and Fig. 8(c) demonstrate the results
of experiment 2, and Fig. 8(d) shows the result of experi-
ment 3.

Fig. 8(a) indicates the relation between1T and Zj, wherein
it can be seen that with increase of 1T , Zj decreases. The
reason is the fact that when the workpieces concentrate exces-
sively and the process speed could not keep step with the
number of workpieces, Jt increases. In this figure, when 1T
is 6 s, Zj of proposed method declines to about 3%. However,
Zj of pre-planned method is still 5% when 1T is 10 s. The
horizontal difference between two curves is about 4 s, which
means the capability of proposed method is nearly doubled
over pre-planned method. Therefore, proposed method is
more adaptive than pre-planned method for processing ran-
dom mixed-flow orders.

When1T is stable, the resources need to be reconfigurable
to fulfill the external requirement. In experiment 2, 1T is
stable at 2 s. As Fig. 8(c) shows, when the total number
of machining agents is five, Zt of 2# is about 90%, which
is abnormally high. This means that 2# is the production
bottleneck that constrains the s production efficiency. There-
fore, a new machining agent, agent 6 (6#) was added to
work with original agents without shutting down the product
line. Afterwards, the curve related to 6-machining-agents
case shows that Zt of 2# apparently declines. In addition,
the curve related to 6-machining-agent case is smoother than
that related to 5-machining-agent case. It means the machine
utilization ratio becomes more balanced. As Fig. 8(b) shows,
when the number of machining agents increases from five
to six, the curve moves forward for 3 s. This reveals that
when production bottleneck of a machining agent occurs, a
bottleneck machine should be dynamically added to decline
the process delay and to improve the production efficiency.

The occurrence of the device fault is unavoidable in actual
production process. In experiment 3, 1T was stable at 5 s.
Namely, when the fifth workpiece entered the product line,
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FIGURE 8. Experimental results. (a) The comparison of Zj between pre-planned method and proposed method. (b) The comparison of Zj for
different system configuration. (c) The comparison of Zt for different system configurations. (d) The comparison of Zj before and after fault
occurrence.

3# broke down and consequently could not accept the task.
Before the fiftieth workpiece entered the product line, 3# was
repaired. Figure 8(d) demonstrates that when fault occurs and
n is greater than 5, Zj rises sharply, but when n is greater than
50, Zj drops slowly and approaches to the fault-free curve.
This means that the proposed method based on MAS shows
strong robustness.

V. CONCLUSION
In this paper, we present a cloud-assisted self-organized
architecture called CASOA for agent-based manufacturing
system. CASOA consists of four types of basic agents: sug-
gestion agents, product agents, machining agents and con-
veying agents. Every type of agent concentrates on different
functions of manufacturing system. The agents use the rel-
evant communication methods to exchange their reasoning
information based on their knowledge base. In addition, a
cloud-assistant mechanism is introduced to coordinate the
agents which are limited to local convergence.

The experimental results demonstrated and validated effi-
ciency and reliability of the proposed architecture. The results
showed that the proposed dynamic scheduling method has
distinct advantages compared to the traditional static schedul-
ing method. The proposed method shows high robustness and
adaption to frequent product changes and disturbances.
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