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ABSTRACT The evolution of business software technologies is constant and is becoming increasingly
complex which leads to a great probability of software/hardware failures. Business processes are built based
on web services as they allow the creation of complex business functionalities. To attack the problem of
failures presented by the use of web services, organizations are extrapolating the autonomic computing
paradigm to their business processes as it enables them to detect, diagnose, and repair problems improving
dependability. Sophisticated solutions that increase system dependability exist, however, those approaches
have drawbacks; for example, they affect system performance, have high implementation costs, and or
they may jeopardize the scalability of the system. To facilitate evolution to self-management, systems must
implement the monitoring, analyzing, planning, and execution (MAPE) control loop. An open challenge
for MAPE loop is to carry out in an efficient manner the diagnosis and decision-making processes,
recollecting data from which the system can detect, diagnose, and repair potential problems. Also, dealt
by systems dependability, specifically as fault tolerant mechanisms. One useful tool for this purpose is
the communication induced checkpointing (CiC). We use CiC in attacking the dependability problem of
using web services in a distributed and efficient manner. First, we present an approach for web services
compositions that supports fault tolerance based on the CiC mechanism. Second, we present an algorithm
aimed at web services compositions based on an autonomic computing and checkpointing mechanism.
Experimental results support the feasibility of this concept proposal.

INDEX TERMS Autonomic computing, web services, autonomic systems, Internet technologies,
checkpointing.

I. INTRODUCTION
Businesses are always searching for ways to improve overall
competitiveness. In developing business software, new tech-
nologies help the evolution and growth of businesses. For
large-scale systems, the entire system becomes less reliable
and the fault rate probability augments as the number of
components increase [1]. Usually under these circumstances
Web Services carry out complex business processes known
as compositions which frequently work with the Business
Process Execution Language (BPEL) engine for orchestra-
tion [2]. These Web Services may be locally deployed or they
may be used collaboratively with other Web Services and
are distributed over heterogeneous environments, which this

the most common situation seen in real world deployments.
Distributed enterprise applications are usually built follow-
ing the Service Oriented Architecture (SOA) paradigm [3].
Following the SOA architectural model for composite ser-
vices, it dynamically enables the creation of distributed soft-
ware intensive systems to be built from a combination of
diverse independently developed services [4]. SOA may be
used as the platform for distributed systems and a bridge
between all these spatially separated, loosely-coupled ser-
vices that can be easily discovered through a well-known
interface. These interfaces are leveraged by the Web Services
paradigm which follow and apply open-standards for
interoperability; specifically, Web Services support service

5538
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018



M. Vargas-Santiago et al.: Autonomic Web Services Enhanced by Asynchronous Checkpointing

composition and application evolution [5]. Even though Web
Services are usedwithin complex business collaborative envi-
ronments, they are error prone because of unreliable Internet
behavior during run-time while they are still required to
function correctly and be available on demand. Failures may
lead to terrible consequences such as augmenting execution
time, higher costs to run applications, destroyed systems,
or system breaches. As a consequence, organizations must
maintain a way to make their systems or business processes
as dependable as possible before they intend to automate
them [6]. In anticipating these errors, organizations using core
Web Services for their business processes require efficient
and seamless solutions. In order to attack the problem of fail-
ures presented byWeb Services, organizations are extrapolat-
ing the Autonomic Computing Paradigm into their business
processes as it enables them to detect, diagnose, and repair
problems and therefore improve system dependability.

IBM introduced the Autonomic Computing paradigm,
where systems are considered to be self-manageable; these
should be able to perform self-maintenance and corrective
actions with minimal human intervention [7]. In order to
facilitate evolution to self-management, Kephart proposed
the MAPE (Monitoring, Analysis, Planning and Execution)
control loop [8]. IBM introduced the notion of Autonomic
Managers and Managed Elements. Autonomic Managers
are responsible for interaction and communication with the
outside world; this may be interpreted as human computer
interaction, interactions with other elements, or as a bridge
between the managed elements. The Monitoring phase
focuses on recollecting data, which afterwards is used by the
Analysis phase for diagnosis purposes to identify the cause
of a detected symptom. The Planning phase must plan ahead,
if possible, what actions to take. Finally, the Execution phase
executes actions based on previous phases.

Presently, sophisticated solutions exist for dependability
enhancement of Web Services. However, these approaches
have drawbacks; these include: affected system performance,
potentially high implementation costs [5], and/or they
may jeopardize system scalability [9]. One open chal-
lenge for Web Services is increasing reliability [4]; depend-
ability is based upon reliability, availability, security, and
maintainability [10].

To facilitate evolution to self-management, systems must
implement theMAPE control loop. An open challenge for the
MAPE loop is to carry out in an efficientmanner the diagnosis
and decision-making processes, recollecting data from which
the system can detect, diagnose and repair potential problems.
Also, dealt by systems dependability, specifically as fault
tolerant mechanisms. One useful tool for this purpose is
the Communication induced Checkpointing (CiC). For Web
Service composition CiC is used so that while Monitoring
and Analyzing data exchanged between processes the system
can save a consistent global snapshot (CGS) or rollback to a
previous CGS.

In this paper, we propose the use of CiC in attacking the
dependability problem of using Web Services and tackling

the issues with the MAPE loop of autonomic computing in
a distributed and efficient manner. CiC has proved to be a
worthy method that has gained vast maturity improvements,
advances especially for distributed systems by solving issues
of rollback recovery, software debugging and software veri-
fication [11]. CiC focuses on building CGSs or checkpoints
(one from each process) and avoiding dangerous patterns
such as zigzag paths and zigzag cycles [12]. The purpose
of building CGS is to checkpoint processes on nonvolatile
storage to allow for system rollback or the survival of process
failures. Therefore for decoupled systems, an architectural
model type has been chosen; the autonomic behavior may be
incorporated into preexisting non-autonomous systems, such
as Web Services. Checkpointing protocols may be applied
in this category. Research leads us to propose merging the
following technologies.
• Autonomic Computing which provides incorporates the
MAPE control loop for self-manageable systems.

• Web Services which follow open standards for interop-
erability.

• Checkpointing Protocols which save consistent states to
which a system may rollback in the event of undesirable
system function.

In this paper, we first introduce and justify the motiva-
tion for our specific area of research in previous Section.
In Section II, we analyze the model for checkpointing and
in Section III, we discuss related state-of-the-art works that
increase Web Services dependability. Section IV analyses the
environment and considerations for the proposed solution; a
case study is presented as well as an algorithm. Section V
illustrates the results to support our approach and shows fea-
sibility. Finally, conclusions are drawn in Section VI where
we also suggest further work research.

II. THE MATHEMATICAL MODEL
A. COMMUNICATION PATTERNS
Distributed systems have the following characteristics: there
is no global notion of time, processes do not share common
memory and communication is solely by message passing.
In this context, distributed computation consists of a finite
set of processes where P = {P1,P2, . . . ,Pn}, and our focus is
the enhancement of Web Services. We assume that channels
have unpredictable yet finite transmission delays which are
both reliable and asynchronous. To have the ability of using
checkpointing mechanisms, two types of events must be con-
sidered: internal and external.

Internal events are those that change the processes states;
for instance a checkpoint, which is a finite set of internal
events is denoted by Ei. External send and delivery events
are those that affect the global state of the system. Let m
be a message, send(m) is the emission of m by a process
p ∈ P and delivery(q,m) is the delivery event of m to
participant q ∈ P where p 6= q. The set of events associated
to M is

Em={send(m) : m∈M}∪{delivery(p,m) : m ∈ M ∧ p ∈ P}
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Thus the whole set of events is

E = Ei ∪ Em

B. DEFINITIONS
1) THE HAPPENED BEFORE RELATION
This relation establishes causal precedence dependencies
over a set of events. The HBR is a strict partial order
(transitive, irreflexive and antisymmetric). It is defined as
follows [13]:
Definition 1: The HBR, denoted by→, is defined by the

following three rules and it is the smallest relation on a set of
events E .

1) If a and b are events of the same process, and a was
originated before b then a→ b.

2) If a is the event send(m) and b is the event
delivery(pi,m) then a→ b.

3) If a→ b and b→ c, then a→ c.
The partially-ordered set Ê = (E,→) models the distributed
computation.

2) IMMEDIATE DEPENDENCY RELATION
The HBR, in practice, is expensive since it has to keep track
of the relation between each pair of events. In order to avoid
such, the Immediate Dependency Relation (IDR) identifies
and attaches a minimal amount of control information per
message to ensure causal ordering. The IDR is the transitive
reduction of the HBR and is denoted by ‘‘↓’’, defined as
follows [14]:
Definition 2: Two messages a and b ∈ E have an IDR a↓b

if the following restriction is satisfied:
a ↓ b⇔ [a→ b ∧ ∀c ∈ E,¬(a→ c→ b)]

3) CHECKPOINT AND COMMUNICATION PATTERN CCP
Represented by its distributed computation, it consists of a
set of incoming and outgoing messages and associated local
checkpoints [15]
Definition 3: A communication and checkpoint pattern

(CCP) is a pair (Ê,Ei) where Ê is a partially-ordered set
modeling a distributed computation and Ei is a set of local
checkpoints defined on Ê .
An example of a CCP is exhibited in Fig. 1; showing the
checkpoint interval denoted I xk , with a sequence of events
occurring at pk between C

x−1
k and Cx

k (x > 0)

C. BUILDING CONSISTENT GLOBAL SNAPSHOTS
In distributed systems, processes take their checkpoints inde-
pendently so the system can restart execution from the
last saved consistent global snapshot (CGS) in case of a
failure.
Definition 4: A CGS does not contain any HBR causally

related checkpoints, in other words, for any pair of check-
points A and B satisfies that:

¬(A→ B) ∧ ¬(B→ A)
As stipulated by Netzer and Xu in [16].

FIGURE 1. A Checkpoint and Communication Pattern (CCP) [12].

III. RELATED WORKS
Dependability has been widely researched; a whole
taxonomy about it may be found in [19]. Many different
aspects of the system affects its dependability, including:
reliability, availability, security, maintainability and systems
considered to be self-manageable [10]. To date none address
the self-manageable issues for systems and there is no unified
or standardized form for implementing the MAPE control
loop within Web Services. Some works treat each one of the
MAPE control loop phases as an individualWeb Service [20],
while others only tackle the self-healing feature of autonomic
computing [21]. In [22], the authors attempt to address the
entire MAPE control loop process by adding extra interfaces
to confront functional and nonfunctional requirements of
Web Services.

Marzouk et al., illustrate [2], that Web Services are imple-
mented to follow business logic; they could be deployed
either locally inside an enterprise or they could cooper-
ate in a distributed environment. Either way incorporating
Web Services are crucial to the process solution and must
implement fault tolerance mechanisms. The authors principal
concern is ensuring self-adaptability of composite services.
An approach for adaptingWeb Service(s) configuration based
on strong mobility code has been provided and is achieved
with generic source code transformation. It has been deter-
mined or recognized that a strong mobility methodology for
Web Services BPEL processes requires periodic checkpoint-
ing. When self-adaptability is a necessity, one or several
instances of the orchestration process will be migrated to the
previous checkpoint and processes will be resumed starting
from the interruption point; this is to say, that the system
process will begin from the last captured checkpoint. Using
strong mobility requires replicating services, when possible;
in other cases finding similar services becomes a complicated
task due to services formats. For example one service uses an
integer instead of a float.

The Marzouk et al. [18] approach pursues a self-healing
property where in case of failure the orchestration process is
migrated to a different server and in case of QoS violation
a subset of running instances may be migrated to a new
server in order to decrease the initial host load. The authors
argue that, their solution has no risk of non-deterministic
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TABLE 1. Web services and checkpointing.

execution when recovering flow activities since a unique state
is always saved for each instance. But, a recovery state is
built after synchronizing all flow branches which permits
saving a consistent checkpoint. Yet, in our opinion, using syn-
chronization for constructing a consistent checkpoint makes
this approach expensive because of the barrier imposed from
synchronizing; hence this solution is slow and with no con-
currency. For this reason, other proposed works do not use
checkpointing techniques and have to restart the whole Web
Service composition or orchestration when there is a fault.

Vaca and Gasca identified [6] that executing business
processes are susceptible to intrusion attacks, which may
cause severe faults. Fault tolerance techniques tackle such
issues, decreasing risk of faults and therefore being more
dependable; the aim is to achieve dependability in business
processes automation. The authors claim that, to resists
faults related to integrity attacks, fault tolerance techniques
may be applied. Varela and Martnez proposed OPUS: Fault
tolerance against integrity attacks in business processes,
a framework with many capabilities developed following
the Model-Driven Development (MDD) and the Model
Driven Architecture (MDA). This framework has four layers:
Modeling, Application, Fault Tolerance and Services. Where
the Fault Tolerance layer is based on checkpointing and roll-
back recovery. However, the authors do not mention which
checkpointing mechanism they use; often new and improved
checkpointing mechanisms are proposed in state-of-the-art
literature. We believe that recovery of overhead time may be
reduced making use of such improved protocols.

Varela et al. [17] argue that companies need to communi-
cate internally exchanging information between business log-
ics, thus they seek to deploy a Business Process Management
System (BPSM). A BPSM aids in automation of business
processes, but in this context systems are error prone and may
not guarantee perfect execution over time. Therefore a new
paradigmBusiness ProcessManagement (BPM) has arisen; it
is defined as a set of concepts, methods and techniques to aid

the modeling, design, administration, configuration, enact-
ment and analysis of business processes. In implementing the
business process life cycle the BPM paradigm follows diverse
stages: design and analysis, configuration, enactment and
diagnosis. However each stage may introduce different kinds
of faults. It is indispensable for companies to gain depend-
ability in early design stages and promote the reduction of
possible faults and risks. In this work, the authors propose
following traditional fault tolerant ideas such as replication
and checkpointing while focusing on service-oriented busi-
ness processes. Such approaches require the introduction of
extra components (sensors) into the business process design
and therefore extra time to check each sensor and recovery of
business process service in rollback.

Table 1 summarizes related works. It exhibits the aim,
the technology used and the environment under which the
authors recommend solutions. Despite the differing propos-
als, some open questions remain such as: How to integrate
Web Services in dynamic environments in an autonomic
way. Are checkpoints taken for rollback recovery strategies
consistent? Are the proposed solutions negatively impacting
system performance?

IV. AUTONOMIC WEB SERVICES BASED ON
ASYNCHRONOUS CHECKPOINTING MECHANISM
A. ARCHITECTURE
The proposed approach is suitable in distributed hetero-
geneous environments; it leverages the Enterprise Service
Bus (ESB) infrastructure which provides and integration.
Additionally, the ESB ensures interoperability and offers sev-
eral features including: service discovery, intelligent routing,
message processing and service orchestration assuring proper
format between service providers and consumers regardless
of which programming language is used [23].

Functional properties, or the functional contract, of a Web
service may be exposed by theWeb Service Description Lan-
guage (WSDL); this dictates how the service must behave.
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Whereas the non-functional properties of a Web Service are
represented by the Quality of Service (QoS) parameters; this
is also true for Web Service composition, which must be
monitored and analyzed in order to determine whether or not
the service is functioning in an adequate manner. Monitoring
an individualWeb Service and globalWeb Services composi-
tions is challenging because of the distinctiveness presented
in each case since each Web Service is unique. Performance
parameters can be monitored under diverse scopes; the client
may obtain various parameters including latency, throughput
or error rate.

The architecture is designed to provide interoperability
between diverse services and systems comprised of differ-
ent technologies through standard-based adapters and inter-
faces that use Web Service technology (as shown in Fig. 2).
Furthermore, each Web Service follows the MAPE control
loop from the autonomic computing paradigm. The service
layer represents the petition or the execution of a required
task or service from which performance information will
be extracted. In particular, we use the active component
approach for monitoring and analyzing activities related to
Web services performance measurements, for example we
monitor non-functional requirements periodically or when
processes exchange messages.

FIGURE 2. ESB with MAPE loop Architecture.

B. PERFORMANCE MEASUREMENTS
We have proposed an asynchronous checkpointing
mechanism to address fault tolerance, therefore, we measure
systems performances before and after implementing the CiC
mechanism system architecture.

We have chosen performance measurements pertinent to
network traffic to evaluate performances before and after
applying CiC architecture. We measured average response
time AVGRT and throughput βt , in terms of Transactions per
Second (TPS), in order to measure application service and
CiC performance. Also, the number of forced checkpoints
where measured as performance indicator.

1) AVERAGE RESPONSE TIME (AVGRT )
Defined as the average time taken by a Web Service from
the time the client sends a request until the time that the

reply is received from the Application Server. To calculate the
response time, we use two timestamps: one, when the client
sends a request (t1) and two, the time when the response is
received (t2). Then the response time is calculated as:

RT = t2 − t1 (1)

This is done for each request/response which is in play in
the system consequently obtaining AVGRT .

2) THROUGHPUT (βt )
For interactive systems, the system throughput is defined as
the ratio of the total number of requests for the total time
which has a correlation with the response time. We define
Web Services system performance βt as the amount of data
processed by a Web Service in a given time interval.

3) NUMBER OF FORCED CHECKPOINTS
Implementing CiC brings benefits to Web services, however,
there exists a trade-off for checkpoints when the system is
behaving correctly and when the system suffers degradation.
Plus, storage space must be considered for applications that
lack resources, therefore proposed solutions must checkpoint
efficiently.

For such reason we measure the number of forced check-
points, because checkpoints must belong to a CGS, and
implementing CiC we can be certain that if a checkpoint
is taken it is most likely to belong to a CGS. Since, CiC
follows a safe checkpointing approach by triggering certain
checkpoints to avoid zigzag paths and z-cycles, such rules and
safe conditions can be found in [12].

C. MAPE CYCLE
Business processes must be dependable so they are avail-
able when requested; solutions that suggest augmenting Web
services dependability must also be scalable and even auto-
nomic [22]. In this work we propose an approach which
follows the autonomic computing MAPE cycle based on CiC
protocols (as shown in Fig. 3).

As illustrated in Fig. 3, the Monitoring module will initiate
the petition, sending a request through the Enterprise Service
Bus (ESB) system, which is in charge of routing, adapting or
mediating the request if necessary; this is the service layer.
Then the Monitoring module computes the QoS parameters
as response time and throughput. These events are then con-
verted into XML-based messages and stored in a common
knowledge base which is shared by all Web Services.

The Analyze module uses aDiagnostic Engine that checks
the extracted information to decide if the behavior of the
Web Service is normal or if it suffers any anomaly or fault.
In other words, it identifies patterns in the logs by looking
for specific problems that occurred [20]. If the Web service
presents normal parameters then it is immediately returned
from the Analysis module to the Web Service invoking a new
service. However, the message is forwarded to the analysis
process which checks the new aggregate values with the aim
of predicting the immediate future state of the system, based
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FIGURE 3. Autonomic Web services based on CiC protocols.

on Hidden Markov Model (HMM) [24], Bayesian Networks
[25], [26] or any other method that supports prediction.When
the QoS parameters are predicted as abnormal, an alert will
be sent to the scheduler who will set up the next forced
checkpoint(s). So that later the Execution module realizes,
and processes them. After that if degradation occurs and
the system cannot continue then it would enter the rollback
recovery stage.

D. SCENARIO
Autonomic Web services based on communication induced
checkpointing can be better explained through an example
like the Stock Quote composite Web Service system. Con-
sumers of a service solicit multiple stocks brokers to deter-
mine in which stocks they should invest; clients that pay a
subscription, premium users, are able to receive real-time
stock quote services. Fig. 4 depict a case where two ser-
vice consumers make a petition to a stock broker or service
provider, showing the need for building CGS.

FIGURE 4. Example Scenario.

As stipulated by Netzer and Xu, when both zigzag and
causal paths are present CGS cannot be identified [16]. Fig. 4
also illustrates thatM0 andM1 build CGS while C1

c1, C
2
c2 and

C2
p1 cannot be part of a CGS; because of messagesm4 andm5;

although no causal path exists between C1
c1 and C

2
p1 a zigzag

path has been formed by the aforementioned messages. This
means that no CGS can be formed from the checkpoints
involved in a zigzag path, in other words no CGS can be built
that containsC1

c1 and C
2
p1.

E. ALGORITHM
We present Algorithm 1 that targets implementation of an
autonomic computing paradigm and integration of a check-
pointing mechanism. The aim of our algorithm is to address
the MAPE loop for Web Services composition.

With Algorithm 1 we suggest initializing all variables
(lines 1 to 5); line 4 builds and assigns to C the systems initial
CGS. The MAPE control loop is represented by lines 6 to 31;
for eachWeb Service, the algorithm starts theMonitoring step
by checking Web Service policies and the process level at the
time that the CHECKPOLICIES are called while confirming
that Web Services perform based on the constraints stipulated
in their policies. At any time during this computation period
a new CGS may be built. VALIDATE is used to detect a
set of symptoms returning a non-empty set when the Web
Service specifications and policies are not met. When the
entire composite is functioning correctly a no problem reply
is returned (lines 10 and 11). Otherwise in order to have a
consistent view of the system and to have a proper verification
and diagnostic result, the last known CGS is retrieved from
the common Knowledge Base (KB), line 13.

The vector containing the set of symptoms is Analyzed
in order to find the best known diagnosis, retrieved from
the KB; this is done for each individual Web Service within
the composition. When no diagnosis is found, line 17, the
symptoms are classified, line 18, and a new diagnosis is
generated as well as a new plan, line 19. Contrarily, when the
diagnostic is found, line 21, a Plan is retrieved from the KB.
This is suitable for an individual Web Service, however with
a composite Web Service, the system must build a global
diagnostic demonstrating how the overall composite is behav-
ing, line 26. The same case is applied to individual plans;
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Algorithm 1 Autonomic Composite Web Services
1: procedure Initialization
2: Initially
3: S ← ∅, P← ∅, D← null
4: C ← BUILD_INITIAL_CGS(WS1,WS2, . . . ,WSn)
5: end procedure
6: procedure MAPE((WS1,WS2, . . . ,WSn))
7: for WS[i], i = 1 to n do
8: FWS[i]← CHECKPOLICIES(m)
9: end for
10: if FWS[i] == ∅∀FWS[i], i = 1, 2, . . . , n then
11: return ‘‘No problem found for Composite WS’’
12: else
13: GET_LAST_CGS((C))
14: for ∀FWS[i], i = 1, 2, . . . , n do
15: if FWS[i] 6= ∅ then
16: D[]←FIND_BEST_DIAGNOSTIC(FWS[i])
17: if D[] = NULL then
18: D[]←CLASSIFY_SYMPTHOM (FWS[i])
19: P[]← GENERATE_PLAN (D[])
20: else
21: P[]← FIND_BEST_PLAN (D[])
22: end if
23: end if
24: end for
25: end if
26: DG← BUILD_GLOBAL_DIAGNOSTIC(D[])
27: PG← FIND_BEST_GLOBAL_PLAN (DG[]) ∩ P[]
28: for action ∈ PG do
29: EXECUTE(action,PG)
30: end for
31: end procedure
32: procedure CheckPolicies(m)
33: wsdescr ← GET_WS_DESCR(wsid[e])
34: wspolicy← GET_WS_POLICY (wsdescr)
35: processpolicy← GET_PROCESS_POLICY (pid[e])
36: policy← processpolicy ∩ wspolicy
37: S ← validate(m, policy,wsdescr)
38: return (S)
39: end procedure

a global plan must be generated from the know plans and
for the overall system, line 27. Finally, each action must be
Executed from the overall global plan carrying out a series of
actions, lines 28 to 29, such as rollback or restart a specific
Web Service.

V. RESULTS AND DISCUSSION
In order to show that autonomic Web Services based on
asynchronous checkpointing (specifically communication-
induced checkpointing) do not have a great impact on the
overall performance of the systems, we conducted several
performance tests. Specifically, we measured response time
and transactions per second as key performance indicators.

For testing we implemented our proposed solution using the
following hardware: a workstationwith a 16GBRAMusing a
Windows 7 64-bit Operating System. TheWSO2Application
Server was used to deploy Web Services; for performances
tests, diverse concurrent Java clients were emulated in order
to replicate approximate a real world setting.

A. EXPERIMENTAL RESULTS
Fig. 5 and Fig. 6 show the behavior of the system when
evaluating performance. For this purpose, each scenario was
executed 100 times; for 20 consumers, 2000 samples were
collected and for 30, 3000 were collected in increments of 10
to reach 200 where a total of 20,000 samples was collected.
Subsequently, an average was obtained based on response
time and transactions per second. Response time measured
the time from when the customer sent a request to the credit
approval service until he received a response. Transactions
per second measured how many transactions were executed
over a specific period of time.

FIGURE 5. Response Time Measurement for the system implementing
and without implementing CiC.

Fig. 5 indicates that although the average response time,
AVGRT , increased by approximately 30%, this increase was
maintained for both the 20 customers requesting credit
approval service and the group of 200. During the initial
performance tests, we observed that with a low number of
consumers, the average response time was slightly higher
than when the existing solution without the CiC mechanism
was applied. However when the number of clients making
requests increased, i.e., more users accessing Web Service
concurrently, the CiC mechanism performed better by reduc-
ing the average response time.

Experimental results for system throughput (βt ), in terms
of Transactions Per Second (TPS), are shown in Fig. 6.
The behavior is quite similar to the average response time
exhibited in Fig. 5. In the early state of the performance
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FIGURE 6. Transactions per second Measurement for the system
implementing and without implementing CiC.

tests, we observed little enhancement in β in comparison to
Web Services that do not implement the CiC mechanism.
Nevertheless, when many clients are in play, a maximum
gain is observed in throughput. Generally, boosts in all per-
formance measurements were seen by applying our CiC
approach to the existing Web Services considering a large
number of concurrent users.

The aforementioned figures support an argument that
our approach is scalable with low implementation cost (in
terms of performance impact). The values recommended by
ITU G.1010, which attempts to standardize the use of Web
Services, are not violated for the response time. ITU stipu-
lates the following values: preferred = 0− 2 seconds, accept-
able = 2− 4 seconds and unacceptable = 4 to infinity.

Table 2 shows the incremented percentage for the response
time when the CiC mechanism was implemented and when it
was not executed.When 200 clients use the same applications
or processes concurrently, as seen in real life scenarios, saving
snapshots from the system can cause performance degrada-
tion. However, CiC adds a fault tolerance feature under which
the system can restore execution from previously executed
events.

Table 3 shows system performance degradation; here we
compare system throughput when implementing the CiC
mechanism and when not implementing it.

As evidenced from performance tests, we conclude
that system performance is not affected when the mech-
anism of communication-induced checkpointing (CiC)
is implemented; the underlying actions corresponding to
the rest of the MAPE control loop should be seamlessly
executed.

In Fig. 7 during the initial performance tests, we observed
that with a low number of consumers, the average number
of forced checkpoints was slightly higher than with a high

TABLE 2. Response time.

TABLE 3. Throughput.

number of consumers. However when the number of clients
making requests increased, i.e., more users accessing Web
Service concurrently, the CiC mechanism performed better
by reducing the average number of forced checkpoints.

B. COMPARISON WITH RELATED WORK
This section presents a comparison with related works.
Several of the related work only mention that checkpointing
mechanisms are suitable for use in Web services [6], [17],
however, do not consider service composition [5], [9]. On
the other hand, other works to identify a consistent recov-
ery point inhibit the system by introducing synchronization
points [2], [18], finally, scalability is a factor that must be
taken into account. According to our analysis and what some
of these works report do not fulfill such properties. Summa-
rized in Table 4. Hence, according to the results presented
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FIGURE 7. Number of forced checkpoints for 1000 messages sent.

TABLE 4. Comparison with related work.

in the previous section and Table 4, we can assure that our
approach (OA) presents a better solution. Since it does not
represent a negative impact on system performance, it is scal-
able, distributed, asynchronous and has low implementation
cost.

VI. CONCLUSIONS AND FUTURE WORK
We have presented an algorithm aimed at improving Web
services compositions based on implementing an autonomic
computing and checkpointing mechanism. Additionally, we
suggested an approach that implements the Monitoring
Analyze Plan and Execute (MAPE) control loop within
Web Services based on checkpointing protocols. Afterwards
we presented a Web services composition to support fault
tolerance using asynchronous communication induced
checkpointing (CiC) which is domino effect free. To prove
the feasibility we have presented an algorithm that leverages
communication-induced checkpointing, and it is oriented for
Web Services compositional interactions. Our algorithm can
be applied to Web services since it supports an asynchronous
communication and a non-coordinated execution.

Our approach reduces forced checkpoints by establish-
ing certain triggering rules that we call safe checkpoint
conditions. The results show that the CiC mechanism does
not introduce high overhead to current Web Services com-
positions. We have shown how a Communication-induced

Checkpointing (CiC) mechanism can improve autonomic
computing.

Merging these two widely used paradigms, autonomic
computing and checkpointing protocols, is a challenge that
remains open. We think that an adaptive CiC based on system
performance is worth consideration. The development of an
Autonomic Service Bus (ASB) based on CiC protocols will
be pursued. Another area of interest worth consideration is
optimizing the number of checkpoints, which may be a good
strategy to reduce communication overhead that is generated
by communication-induced checkpointing mechanisms. The
aforementioned strategy may be carried out by predicting
quality of service variation, which represents how systems
behave during a given period.
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