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ABSTRACT This paper proposes a blind interleaver parameters estimation method enhanced by identifying
relatively error-less partial symbols among intercepted streams. By exploiting the distribution of the ranks
of the random matrices, we can choose partial symbols having relatively small errors. Calculating the rank
of the matrix constructed using these symbols can improve estimation of the blind interleaver parameters.
Experimental results show that the proposed algorithm performs better than the previous ones.

INDEX TERMS Blind detection, cognitive radio, interleaver.

I. INTRODUCTION
Error-control codes (ECC) are indispensable for reliable
transmission under the channel impairments by introducing
some redundant data.Many ECCs are designed to be robust to
the uniformly distributed random errors, but they are vulnera-
ble to burst errors. To handle these burst errors, we introduce
an interleaver that mingles the symbols from several code-
words so that the symbols from any given codeword are well
separated during transmission. In this case, the receiver has to
synchronize the data and deinterleave them before a channel
decoder can start to correct some errors [1].

In a non-cooperative context, an eavesdropper seeks infor-
mation without any knowledge of the parameters used during
communication. For a perfect recovery of information, one of
the essential steps is blind estimation of the interleaver param-
eters using only the intercepted sequences. Some algorithms
exploiting the linearity of ECCs are proposed in the litera-
ture [2]–[11]. To the best of our knowledge, there are two
fundamental approaches that tackle this problem. The first
approach is to exploit the properties of the dual codes [2]–[4].
By finding a basis of a dual code by using the parity check
relations, interleaver parameters can be blindly estimated.
The second approach uses linear algebra theory [5], [8]–[11].
By using the linear dependence within a codeword, the inter-
leaver parameters can be calculated. Sicot et al. used both
of the approaches and showed very good results using both
approaches [6]. For non-binary ECC, Zrelli et al. also pro-
posed an identification algorithm of codeword length for non-
binary ECC using both approaches [7].

In this paper, we propose an enhanced blind interleaver
parameter estimation algorithm by identifying relatively
error-less partial symbols. First we propose a new approach
in blind estimation of interleaver parameters using the linear
dependence among the codewords. Note that almost all the
algorithms proposed in the literature use the property of
linearity within a codeword. Second, we propose a method of
identifying the partial symbols having relatively small errors
by exploiting the distribution of the ranks of the square ran-
dom matrices. Third, since the proposed algorithm uses only
the square matrices using the partial intercepted symbols, the
proposed algorithm does not suffer from the error propaga-
tion which can happen to the typical Gaussian elimination.
Finally, by constructing a rectangular matrix using these par-
tial symbols with relatively small errors, we can calculate
the interleaver parameters considering the theoretical false
positive rate.

The rest of this paper is organized as follows. Section II
gives a review of the previous algorithms. In Section III,
we explain our proposed algorithm. Simulation results and
analyses are in Section IV, and we conclude in Section V.

II. PREVIOUS WORKS
A. SYSTEM MODEL
LetC be an (n, k) linear code overGF(q), where n is the code-
word length, k is the code dimension, and GF(q) represents
the Galois field of order q. By linearity, we can represent any
codeword c ∈ C as follows:

c = mG (1)
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where c is a 1 × n row vector, m is a 1 × k row vector, and
G is a k × n matrix having full rank.
Generally, in almost all the communication systems, the

interleaver size S is a multiple of the codeword size,
i.e., S = βn, where β is the number of codewords within an
interleaver. Let t be a concatenation of interleaved sequences
and z be an intercepted sequence of length M . Since an
eavesdropper has no a priori knowledge about the interleaver
parameters, the first t0 symbols may be missed. Without loss
of generality, we assume that 0 ≤ t0 < S. For convenience,
we can define the translated sequence zd as follows:

zd (i) = t(i+ t0 + d)+ e(i), 0 ≤ i < M − d (2)

where e(i) is a sequence of channel errors. We assume that the
channel is a binary symmetric channel (BSC) with transition
probability of Pe. Let l be a predicted interleaver period.
Using zd, we construct an interception matrix Zl,d of size
D × l (where D =

⌊M−d
l

⌋
and b•c represents the floor

function). We pile up the received symbols from leftmost top
to rightmost bottom in raster scanning order.

B. DUAL CODE APPROACH
Given an (n, k) linear code C over GF(q), a dual code C⊥ is
defined as all the vectors y of length n satisfying the property

cyT = 0, ∀c ∈ C (3)

where T represents the transpose. Let y be a dual codeword;
then we can identify the interleaver length by calculating the
following values:

yZTl,d = u (4)

where u represents a 1 ×D matrix. Assume that d + t0 = S
and l = S. When no errors occur, then the Hamming weight
of umust be zero. When some errors occur, then the expected
Hamming weight of u is D× P where P is given as

P =
1− (1− 2Pe)w

2
(5)

where w is the Hamming weight of the dual codeword y [2].

C. LINEAR DEPENDENCE WITHIN CODEWORDS
From (1), we can see that some code components can be
expressed as a linear combination of other code components.
Therefore, if a predicted interleaver period l is a multiple of S,
we can identify this linear dependence within a codeword by
calculating the rank of the matrix Zl,d . This algorithm is very
effective when no errors occur [5].

D. HYBRID APPROACH
An algorithm using Gauss-Jordan elimination through pivot-
ing (GJETP) is proposed in [6]. This algorithm is an extension
of the algorithms using the dual codes in that while perform-
ing Gaussian elimination it calculates the dual codewords
simultaneously. This algorithm is also an extension of the
algorithm using the linear dependence within codewords.
When some errors occur, even a single dependent column

might not exist. This algorithm, instead of finding dependent
columns, tries to find almost-dependent columns. In this case,
the Gaussian elimination algorithm is performed horizontally
for Zl,d to calculate the dual codewords. Note that the rank of
the matrix is the same as that of the transposed matrix. After
GJETP, the Hamming weights of the independent columns
act as a metric for identifying the interleaver period. Note
that since the Gaussian elimination algorithm suffers from
error propagation, they also proposed an iterative algorithm
using the relatively error-less lines based on the sum of the
log-likelihood ratios [6].

III. PROPOSED ALGORITHM
A. LINEAR DEPENDENCE AMONG CODEWORDS
All previous algorithms for the blind estimation of inter-
leaver parameters exploit the linear dependence within code-
words. Due to this, all the Gaussian elimination algorithms
are performed in a horizontal direction. (If the codewords
are aligned horizontally, the Gaussian elimination algorithm
is performed vertically, and vice versa.) Besides this linear
dependence within codewords, we can give a new perspec-
tive of linear dependence among codewords. Since an (n, k)
linear code C over GF(q) is a k-dimensional subspace in an
n-dimensional vector space, there are k basis vectors in the
n-dimensional vector space. Therefore, if there are k + 1
codewords, at least one of the codewords can be described
by the linear combination of k basis vectors. This property of
linear dependence among codewords can elucidate the rank
behavior better than the property of linear dependence within
codewords.

For example, consider a (7, 4) linear code C over GF(q)
and a 7 × 7 matrix of (c1, c2, c3, c4, c5, c6, c7)T where
ci ∈ C . In this case, by the property of linear dependence
within a codeword, the rank of this matrix is predicted as 4.
In contrast, by the property of linear dependence among
codewords, the maximum rank of this matrix is predicted
as 4. Let us further assume two errors in c1 and we consider
a 7 × 7 matrix as (c′1, c2, c3, c4, c5, c6, c7)

T. In this case,
by the property of linear dependence within a codeword,
the predicted rank of this matrix is 6, and by the property of
linear dependence among codewords, the maximum rank of
this matrix is predicted to be 5 (because at least 2 codewords
among ci’s (i = 2, 3, 4, 5, 6, 7) are linear combinations of
other codewords and the corrupted codeword c′1 is linearly
independent with the other codewords). Note that the actual
maximum rank of this matrix is 5.

B. DISTRIBUTION OF THE RANKS OF THE
RANDOM MATRICES
In general, we assume that the occurrence of codewords fol-
lows uniform distribution. Consequently, we can also assume
that the occurrence of the symbols within codewords follows
uniform distribution. When we construct an l × l square
random matrix whose entries take the values in GF(q) with
equal probability, the probability Pr that the rank of this

VOLUME 6, 2018 5911



C. Choi, D. Yoon: Enhanced Blind Interleaver Parameters Estimation Algorithm for Noisy Environment

TABLE 1. Ps for some different values of s.

matrix is r can be calculated as [12], [13]

Pr = q−l
2

[
r−1∏
i=0

(ql − qi)

][
r−1∏
i=0

(ql − qi)

]
r−1∏
i=0

(qr − qi)

. (6)

Note that, since the proposed algorithm exploits only the
distribution of the ranks of the random matrices, we can also
apply the proposed algorithm to the non-binary channel codes
straightforwardly. From now on, we will consider only the
binary channel codes.

For an efficient presentation of the proposed algorithm,
we also introduce the probability Ps as the probability that
the rank of the l × l square matrix is l − s (s 6= 0) when
l →∞. In [14], Ps is given by

Ps = 2−s
2
(
∞∏

i=s+1

(1− 2−i))(
s∏
i=1

(1− 2−i)−1) (7)

and when s = 0, P0 is given by

P0 =
∞∏
i=1

(1− 2−i). (8)

Table 1 shows the values of Ps for some different values of s.
Note that as l increases, the calculated Ps rapidly converges
to theoretical values. For example, when l is 8, all the differ-
ences between the calculated values of Ps and the theoretical
values in Table 1 are within 0.41% (up to s = 5). FromTable 1
we can see that an l × l square binary random matrix would
very rarely have a rank as low as l–s (s ≥ 3).

If we assume that an l × l square binary matrix A has a
rank of l–s (s ≥ 3), there are two possible explanations of
this low rank. The first one is when the matrix A is purely
random and its low rank is purely by chance. For example,
if s = 4, this can happen once in 21,505 trials on average,
which is very rare. Another possibility is that there are some
structures in this matrix A. That is, we can presume that the
matrix has l–s–m (m ≥ 1) basis vectors and m distinct errors.
If we plug such data into the blind interleaver parameters
estimation algorithm, when l = S, low ranks can happen
frequently. When l 6= S, the rank of matrix A follows the
distribution in Table 1.

FIGURE 1. Gain of the BER compared with the actual BER. (7, 4) Hamming
codes are used, interleaver period S = 14, and the number of received
symbols M = 50, 000.

C. IDENTIFICATION OF SYMBOLS HAVING SMALL ERRORS
Given an (n, k) binary linear code C and the interleaver of
size S = βn, we can partition the intercepted and translated
sequence zd as a sequence of vectors of length l. Let these
vectors be wi(j) (0 ≤ i < D, 0 ≤ j < l). As can be seen from
Section III-B, when the rank of an l × l square matrix is less
than l–s (s ≥ 2), we can presume with high confidence that
the rows of this matrix are drawn from some channel codes
having some errors. Assume that l = S and d + t0 = S.
If we randomly select l vectors of wi(j) amongD vectors, and
all the vectors wi(j) are distinct, the rank of a square matrix
constructed from selected l vectors must be in the range
βk ≤ rank ≤ l.

Therefore, if there are many errors in the matrix, we can
assume that its rank is close to l; otherwise its rank is assumed
to be far less than l. Using this result, we can identify vectors
with small errors among D vectors. The identification algo-
rithm of small errors is summarized as follows:

1) Randomly select l vectors wi(j) and construct a square
matrix.

2) Calculate the rank of the matrix.
3) If the rank is l–s (s ≥ 3), record indices of

l vectors wi(j).
4) Repeat steps 1) to 3) N times.
5) Find K most recorded indices of vectors wi(j).
To check whether this algorithm can identify the vectors

with small errors, we compare the actual bit error rate (BER)
and the BER of the K vectors which are identified vectors
as relatively small errors. Fig. 1 shows the results when
we use (7, 4) Hamming codes and the interleaver period
S = 14. In this case, the number of intercepted symbols is
50,000, N = 1, 000, K = 38, and the gain is represented as
follows:

Gain(dB) = 10 log
(

Actual BER
BER of K vectors

)
. (9)

We calculate the average gains over 10,000 iterations. From
Fig. 1, we can see that when l = S, the proposed algorithm
can find the vectors with small errors very effectively. To be
specific, when the actual BER = 3.00 × 10−2 (the average
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FIGURE 2. Gain of the BER compared with the actual BER. (7, 4) Hamming
codes are used, interleaver period S = 21, and the number of received
symbols M = 50, 000.

number of errors in 100,000 bits is 3,000), the BER of the
K vectors is 7.6 × 10−4 (the average number of errors in
100,000 bits is 76), having a gain of 15.36dB. As expected,
when l 6= S, the gains fluctuate around 0dB. Fig. 2 depicts
the results when we change the interleaver period from 14 to
21 and hold the other parameters the same as those of Fig. 1.
Compared with Fig. 1, the gain is reduced slightly. We can
increase gain by increasing s, say to 4 or 5. Note that, by vary-
ing the rank threshold of l – s, we can identify the vectors with
relatively small errors for non-binary channel codes.

D. PROPOSED ALGORITHM CONSIDERING
FALSE ALARM RATE
Given an l× (l + q) (q > 0) binary rectangular random
matrix, the probability of the matrix being rank deficient (the
matrix having a non-full rank) PR can be approximated as
follows [15]:

PR ≈ 2−q(1− 2−l). (10)

Using this fact, we can control the false alarm rate of the
algorithm of blind interleaver parameter estimation. That is,
when we construct an l × (l + q) matrix, if its rank is less
than l, we assume that the rows of this matrix are drawn from
some channel codes with the false alarm probability of (10).
The proposed algorithm can be summarized as in Fig. 3.

IV. EXPERIMENTAL RESULTS
We carried out some experiments to validate the proposed
algorithm. We depict the detection probabilities of the pro-
posed algorithm in Figs. 4 and 5, including for comparison the
results of the algorithm of [6] as conventional ones. In all the
experiments in Figs. 4 and 5, we use (7, 4) binary Hamming
code and the random interleaver of periods 14, 21, and 28.
When the interleaver period is S, the search range of the inter-
leaver period is set from 7 to S + 1 and the delay parameter
is chosen randomly from 0 to S – 1. For an identification of
small errors, we set N = 1, 000 and K = l+24 where l is the
predicted interleaver period. Theoretically, the false positive
rate of this value is about 5.96 × 10−8.

Fig. 4 shows the simulation results when the number
of intercepted symbols is 5,000: dotted lines stand for the

FIGURE 3. Generic block diagram for interleaver parameter estimation.

FIGURE 4. Detection probability when the number of intercepted symbols
is 5,000, interleaver sizes are 14, 21, and 28, and (7, 4) Hamming codes
are used.

algorithm of [6] and solid lines for the proposed algorithm.
Fig. 4 shows that the proposed algorithm gives better results
than the conventional one [6]. When the interleaver size
is 28 and BER = 0.045, the performance of the proposed
algorithm is slightly worse than that of [6]. However, the false
positive rate of the proposed algorithm is about 7.41 × 10−5

and that of [6] is about 7.41× 10−4, which is almost 10 times
higher than the proposed algorithm. Note that the detection
probabilities of the conventional algorithm of [6] are hard to
be strictly 1 even when BER is low. To be specific, when BER
is 0.02, the detection probabilities of the conventional algo-
rithm of [6] are 99.8% (S = 14), 99.9% (S = 21), and 98.9%
(S = 28), respectively. And when BER is 0.03, the detection
probabilities of the conventional algorithm of [6] are 99.7%
(S = 14), 99.0% (S = 21), and 98.0% (S = 28), respectively.

VOLUME 6, 2018 5913



C. Choi, D. Yoon: Enhanced Blind Interleaver Parameters Estimation Algorithm for Noisy Environment

FIGURE 5. Detection probability when the number of intercepted symbols
is 50,000, interleaver sizes are 14, 21, and 28, and (7, 4) Hamming codes
are used.

On the contrary, the detection probabilities of the proposed
algorithm are 100% in that BER range. That is, the required
BERs for a perfect detection for the conventional algorithm
of [6] are all 0.015, however, those of the proposed algorithm
are 0.045 (S = 14), 0.035 (S = 21), and 0.03 (S = 28),
respectively.

Fig. 5 shows the results when the number of intercepted
symbols is 50,000. In general, the results of the proposed
algorithm outperform those of [6]. As BER increases, there
are some points where the proposed algorithm performs
slightly worse than that of [6]. In this case, the false positive
rate of the proposed algorithm is about 1.85 × 10−4 and that
of [6] is 1.13 × 10−2, which is about 61 times higher than
the proposed algorithm. We presume that the performance
of [6] is heavily dependent upon the size of the intercepted
symbols from the experiments. And the required BERs for
a perfect detection for the conventional algorithm of [6] are
0.015 (S = 14), 0.02 (S = 21), and 0.015 (S = 28),
respectively. However, those of the proposed algorithm is
0.045 (S = 14), 0.035 (S = 14), and 0.03 (S = 14),
respectively.

To see the performance of the proposed algorithm for
different ECCs with long interleaver sizes, we also performed
simulations using (15, 11) BCH codes with interleaver sizes
of 45 and 60. Figs. 6 and 7 show the experimental results. All
the experimental setup is the same as in Figs. 4 and 5 except
the channel codes used and the interleaver sizes. The number
of intercepted symbols is 50,000.

Fig. 6 shows the detection probabilities of the proposed
algorithm and the conventional algorithm. As can be seen
from Fig. 6, the proposed algorithm outperforms the conven-
tional algorithm. Note that since the code rate of (15, 11)
BCH codes is much higher than (7, 4) Hamming codes,
the detection probabilities of both algorithms start to decay
at lower BERs than in Fig. 5. The required BER for a perfect
detection for the proposed algorithm is 0.03 and that of the

FIGURE 6. Detection probability when the number of intercepted symbols
is 50,000, interleaver sizes are 45 and 60, and (15, 11) BCH codes are
used.

FIGURE 7. False alarm events out of 10,000 trials when the number of
intercepted symbols is 50,000, interleaver sizes are 45 and 60, and
(15, 11) BCH codes are used.

conventional algorithm is 0.015 when the interleaver size is
28 with (7, 4) Hamming codes. On the other hand, when the
interleaver sizes are 45 and 60 with (15, 11) BCH codes,
the required BERs for a perfect detection for the proposed
algorithm are 0.0125 (S = 45) and 0.01 (S = 60) and those
of the conventional algorithm are 0.0025 (S = 45 and 60).

Fig. 7 depicts the false alarm events in 10,000 trials; we see
that the number of false alarm events of the proposed algo-
rithm is extremely low. Here there is a maximum of 3 false
alarm events with the proposed algorithm (when BER =
0.01375, S = 45) and 11 (when BER = 0.01375, S = 60).
In contrast, the number of false alarm events of the conven-
tional algorithm is very high. To be specific, the maximum
false alarm events of the conventional algorithm are 21 (when
BER = 0.01375, S = 45) and 226 (when BER = 0.01375,
S = 60). We presume that this high number of false alarm
events of the conventional algorithm is due to the short series
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of intercepted symbols compared with the long interleaver
size.

V. CONCLUSIONS
In this paper, we proposed an enhanced algorithm for blind
estimation of interleaver parameters. The chief innovation of
the proposed algorithm can be described as follows: First,
we proposed a new approach of exploiting the linear depen-
dence among the codewords, which can better describe the
behavior of the ranks in the interception matrix. Second,
we proposed a method of identifying the partial symbols
having relatively small errors by exploiting the distribution of
the ranks of the square randommatrices. Third, by using only
the square matrices constructed from the partial intercepted
symbols, the proposed algorithm did not suffer from the
error propagation which can happen to the typical Gaussian
elimination. Finally, by constructing a rectangular matrix
using these partial symbols having relatively small errors,
we could calculate the interleaver parameters considering the
theoretical false positive rate. For validation, we compared
experimental results, where the proposed algorithm outper-
formed conventional ones.
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