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ABSTRACT Particle size distribution (PSD) measurement based on the static light scattering method has
been widely used in the environmental field and combustion diagnostics, such as PM2.5 measurement
and combustion process monitoring. The PSD inversion is mathematically related to the Fredholm integral
equation of the first kind. Although the Tikhonov regularization algorithm is one of the effective inversion
methods to solve the ill-posed linear equation, it still has the disadvantages of excessive smoothness and low
accuracy. Thus, a preconditioned Landweber algorithm combined with the Tikhonov regularization theory
(the improved algorithm) is proposed in this paper. The Tikhonov regularization theory is used to pretreat
the preconditioner B contained in the preconditioned Landweber algorithm. Simulations are conducted to
compare the inversion results of the conventional Landweber algorithm, the preconditioned Landweber
algorithm, the Tikhonov Chahine algorithm, and the improved algorithm at different signal-to-noise ratios.
A CCD-based small-angle forward scattering measurement system is built. A standardized polystyrene
microsphere with a diameter of 35.05 µm is used to evaluate the above algorithms. Both numerical and
experimental results show that the improved algorithm improves the accuracy of the inversion results and
is insensitive to the ring parameter of the detector. The experimental results of the standardized polystyrene
microsphere reveal that the relative errors for the median diameter 50 µm are better than 3%. The improved
algorithm can provide a highly reliable and stable inversion result.

INDEX TERMS Particle size distribution, light scattering, Landweber algorithm, Tikhonov
regularization, CCD.

I. INTRODUCTION
The particle size distribution (PSD) is widely involved in
daily life, industrial, and scientific research [1]–[6]. The
small-angle forward scattering measurement system has been
widely used for the PSD measurement because it is simple,
reproducible and easily implemented for online measure-
ment [7], [8]. In the system, the light scattered by the parti-
cles is collected by a conventional photodiode detector array
consisting of several separate annular rings. However, there
is only one fixed ring parameter for each photodiode detector
array, making it inconvenient to change the ring parameter.
To solve this problem, a CCD sensor is adopted to receive
the scattered light instead of the conventional photodiode
detector array. Using the CCD sensor, the ring parameter

can be set arbitrarily by the image processing technology
to extract the scattered light, and the ring structure can be
calculated more accurately [9].

The PSD inversion is mathematically the solution of the
Fredholm integral equation of the first kind, and is also a
typical ill-posed problem, which leads to the instability of
its direct solution [10]. The inversion methods are generally
classified as the independent mode method and the depen-
dent mode method [11]. In the dependent mode method, the
PSD is retrieved by updating distribution parameters of the
distribution function. This method requires a priori informa-
tion of the measured particle in advance. In the independent
method, the iterative algorithm and the integral transfor-
mation are typically used to solve the integral equation.

10814 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018



M. Kong et al.: Modified Landweber Algorithm for Inversion of PSD Combined With Tikhonov Regularization Theory

As a consequence, a priori information of the measured
particle is not required [12]. Because a priori information of
the measured particle is usually unknown in the actual mea-
surement, the independent mode method is more promising
andmore broadly applied compared with the dependent mode
method [13].

Presently, the independent mode method has two primary
algorithms: the conventional iterative algorithm and the reg-
ularization method. The conventional iterative algorithm is
usually sensitive to the noise, the ring parameter of the pho-
todiode detector array and the number of iterations because
the PSD inversion is a quite ill-posed problem. It is difficult
to obtain the stable result. As a result, many scholars have
gradually carried out the study of the PSD inversion based
on the regularization theory in recent years. Wang presented
a linear matrix based on the Tikhonov regularization the-
ory and achieved the stable solution using the relaxation
iteration algorithm [14]. Tang used an improved Tikhonov
iteration method to retrieve the PSD in the light extinction
method [15]. Xu proposed an l1-norm-based reconstruction
algorithm for the PSD inversion in the Fraunhofer diffrac-
tion method [16]. In a previous paper by Cao et al. [17],
the Chahine algorithm in combination with the Tikhonov
regularization theory (the Tikhonov Chahine algorithm) was
found to be capable of improving the stability and gliding
property of inversion results. However, the calculation of
the mathematical model based on the Tikhonov regulariza-
tion theory is time-consuming, and the inversion accuracy is
closely related to its regularization parameter and the ring
parameter of the photodiode detector array. The Landweber
algorithm has the advantage of a simple iterative format and
good stability; hence, it is widely used for solving engineering
problems [18], [19]. However, the conventional Landweber
algorithm is sensitive to its initial value and has a slow
convergence rate [20].

To solve the above problems of the conventional
Landweber algorithm, a modified algorithm that combines
Tikhonov regularization theory with the preconditioned
Landweber algorithm (the improved algorithm) is proposed
to retrieve the PSD. The Tikhonov regularization algorithm
and the preconditioned Landweber algorithm are presented
and described. Next, the effectiveness and practicability of the
improved algorithm are evaluated by simulations and experi-
ments, respectively. Finally, the inversion results retrieved by
the conventional Landweber algorithm, the preconditioned
Landweber algorithm, the Tikhonov Chahine algorithm and
the improved algorithm are compared using two sets of
detector parameters.

II. MEASUREMENT PRINCIPLE OF PARTICLE SIZE
DISTRIBUTION
A. MEASUREMENT PRINCIPLE OF THE LIGHT
SCATTERING METHOD
In the implementation of the light scattering method,
Mie scattering theory has been widely used in the mea-
surement of the PSD. According to the spatial distribution

of the scattered light, the PSD can be retrieved [21].
Mie scattering theory is the rigorous solution of the Maxwell
equations for uniform spherical particles illuminated by a
parallel monochromatic light beam, and is suitable for the
PSD inversion of the complex refractive index [22].

FIGURE 1. Schematic of the small-angle forward scattering system.

The measurement system of the small-angle forward scat-
tering is shown in Fig. 1. A beam from the He-Ne laser (with
the incident wavelength of λ = 0.6328 µm and the operating
power of P = 2.47 mW) is attenuated to approximately
1mW by the polarizer. Next, the laser passes through an
extender lens (with the magnification of 4×) so that the laser
is collimated, expanded and filtered. The light is scattered
by the particles in the sample pool (the cuvette as a sample
pool with a cross-sectional area of s = 10 × 10 mm2)
and imaged by the main lens (with the focal length is
f = 25 mm) on a CCD sensor (1024 × 1280). The ring
parameter (ring radius) of the photodiode detector can be
predetermined by the particle size range. The relationship
between the particle size range and the ring parameter of the
detector is expressed as [23]

rm =
1.357λf
πDm

, (1)

where m is the number of rings, rm is the mth ring radius,
Dm is the particle size corresponding to the mth ring radius,
λ is the optical wavelength, and f is the focal length of the
lens.

FIGURE 2. Schematic of the photodiode detector array geometry on the
CCD sensor.

Finally, the scattered light intensity of each ring (shown
in Fig. 2) is calculated by the image processing technique
according to the predesigned ring parameter.
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For the polydisperse particle system under the condition of
the irrelevant single scattering, the relationship between the
scattered light intensity on the photodiode detector and the
PSD can be expressed as [24]

Ei =
∑
i

Wi

D3
i

θm∫
θm−1

(i1 + i2) sin θdθ, (2)

where m is the number of particle size bins, i1 and i2 are the
polarized parallel and perpendicular scattered light intensities
relative to the scattered plane, respectively, Wi is the weight
frequency distribution, Di is the mean value of each subinter-
val [Dm,Dm−1], and θm−1 and θm are the inner and outer radii
scattered angle of the mth ring, respectively.
After the discretization of equation (2), it can be expressed

in a matrix form as

E = TW, (3)

where T is the coefficient matrix. According to the Picard
criteria [25], the solution of the linear equation (3) can be
expressed in a singular system as

W =
∞∑
i=1

u′iEivi
βi

, (4)

where ‘′’ is the transpose, βi is the singular value of the
matrix T, and β1 ≥ β2 ≥ β3 ≥ · · · ≥ 0, ui and vi are the
feature vectors of the matrix T.

The singular value βi of the coefficient matrixT tends to be
zero because T is a large and serious ill-conditioned matrix.
Thus, the inversion result retrieved by the conventional inver-
sion algorithm deviates from the real value. Therefore, the
Tikhonov regularization theory is introduced to improve the
linear equation, which can be expressed as [14]

(T′T+ αL′L)W = T′E, (5)

where α is the regularization parameter. According to the
Picard criteria, the solution of equation (5) can be expressed
in a singular system as [26]

W = RαE =
∞∑
i=1

qTik (α, βi)
βi

u′iEivi (6)

qTik (α, βi) =
β2i

α + β2i
(7)

The denominator of equation (6) tends to zero at a slower
rate than the denominator of equation (4) because of the
filter factor qTik (α, βi). This is useful for the stability of the
solution.

B. PRECONDITIONED LANDWEBER ALGORITHM
Lu proposed a preconditioned Landweber algorithm for the
computation of ECT imaging reconstruction [27]. The algo-
rithm can be expressed as{

W(k+1)
=W(k)

+ ωBT′(E− TW(k))
0 < ω ≤ 1/ ‖T‖22

(8)

where k is the number of iterations, ω is the relaxation factor
and B is the preconditioner.

Equation (8) can also be expressed in a singular system
form as [28]

W (k) =
n∑
i=1

(1− (1− ωσiβ2i )
k )
u′iEivi
βi

(9)

qL(k) = (1− (1− ωσiβ2i )
k ), (10)

where qL(k) is the filtering factor related to the num-
ber of iterations k , and σi is the singular value of the
preconditioner B.
The preconditioner B should be solved before perform-

ing the preconditioned Landweber algorithm. The precondi-
tioner B has the same feature vectors ui and vi as those of the

matrix T. The preconditioner B is given by B =
n∑
i=1

uiσiv′i,

The singular value σi of the preconditioner B is given by

σi =
1

β2i + γ

or σi =
β li

β
(l+1)
i + γ

, (11)

where l = 1, 2, 3, . . . , γ is a constant, γ > 0.
The calculation of the preconditioner B is critical to

improving the convergence rate and the inversion accuracy of
the Landweber algorithm [20]. However, the inversion result
retrieved by the above preconditioned Landweber algorithm
has the problems of burrs, false peaks and concussion. This
leads to the deviation of the retrieved PSD from the real
value. Therefore, a modified method for solving the precon-
ditioner B based on the Tikhonov regularization theory is
proposed in this paper. A new singular value βi is achieved
by the singular decomposition of the matrix (T′T+αL′L) of
equation (5). The constant γ is determined by

min

∥∥∥∥qLβi − qTik
βi

∥∥∥∥ = min

∥∥∥∥∥ (1− (1− ωσiβ2i )
k )

βi
−

βi

α + β2i

∥∥∥∥∥
(12)

The initial value of the improved Landweber algorithm can
be expressed as

W(0)
= (T′T+ αL′L)−1T′E (13)

The choice of the regularization parameter is very impor-
tant for the Tikhonov regularization theory and is also cru-
cial for improving the preconditioned Landweber algorithm.
Presently, the Generalized Cross-Validation (GCV) and the
L curve method are widely used to calculate the regulariza-
tion parameter [29]. Both the GCV method and the L curve
method have their own advantages and disadvantages [16].
In general, the regularization parameter calculated by the
GCV method is greater than that calculated by the L curve.
A larger regularization parameter results in an extremely
smooth PSD, causing an increase of the PSD width and a loss
of the detail of the PSD. This problem usually occurs in the
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FIGURE 3. Inversion flowchart of the PSD.

inversion of the bimodal PSD. However, a smaller regulariza-
tion parameter results in a concussive PSD, especially when
the scattered light is strongly influenced by the noise. This
problem usually occurs in the inversion of the unimodal PSD.
As a consequence, the GCV method is used in the case of the
unimodal PSD in this paper. The inversion flowchart of the
PSD is shown in Fig. 3.

III. SIMULATION AND ANALYSIS
To verify the effectiveness of the improved algorithm, sim-
ulations are performed for the homogeneous spheroidal PSD
that obeys the unimodal Johnson’s SB distribution. Johnson’s
SB function distribution can be expressed as [30]

W (D) =
dt(Dmax − Dmin)

√
2π (D− Dmin)(Dmax − D)

· exp

{
−
dt2

2

[
ln(

D− Dmin

Dmax − D
)−ln(

M − Dmin

Dmax −M
)
]2}

,

(14)

where dt is the distribution parameter,M is the mean diameter
of the particles,D is the particle diameter, andDmin andDmax
are the minimum and maximum values of the particle size
range, respectively.

The simulation parameters are shown in Table 1. The
particle size ranges from 1µm to 100 µm and is divided

TABLE 1. Parameters of the simulation.

into 35 subintervals in the form of the arithmetic sequence
(D2 − D1 = D3 − D2 = D4 − D3 = · · · = Di − Di−1)
and 35 subintervals in the form of the geometric sequence
(D2/D1 = D3/D2 = D4/D3 = · · · = Di/Di−1). The ring
parameter of the detector is calculated by equation (1). The
relative error (Re) is used to characterize the accuracy of the
retrieved PSD and can be expressed as [31]

Re =

√∑
i
[Wset (Di)−Winv(Di)]2√∑

i
[Wset (Di)]2

× 100%, (15)

where Wset is the theoretical weight frequency distribution,
and Winv is the retrieved weight frequency distribution.

The standard deviation (Sd) is used to characterize the
stability of the algorithms. The inversion results are shown
in Tables 2-3 and Figs. 4-5.

Table 2 shows the inversion results when the particle
size interval is divided into 35 subintervals in the form
of the arithmetic sequence. The relative errors retrieved by
the conventional Landweber algorithm, the preconditioned
Landweber algorithm and the Tikhonov Chahine algorithm
are found to be more than 20% at various SNRs. However,
the relative errors retrieved by the improved algorithm are
within 20%. Compared with the above three regularization
algorithms, the improved algorithm has higher accuracy.
In addition, the standard deviation is acceptable. Fig. 4 shows
the comparisons of the unimodal PSD retrieved by the four
algorithms when SNR=60dB. The improved algorithm can
provide more accurate and reasonable PSDs compared with
the other three regularization algorithms. The PSDs retrieved
by the conventional Landweber algorithm are quite smooth.
The PSDs retrieved by the preconditioned Landweber algo-
rithm have some tiny peaks in the initial position of the PSD.
The Tikhonov Chahine algorithm gives the concussive PSDs.

Table 3 shows the inversion results when the particle size
interval is divided into 35 subintervals in the form of the geo-
metric sequence. The preconditioned Landweber algorithm is
found to have poor inversion accuracy. With the increase of
the noise, the improved algorithm and the Tikhonov Chahine
algorithm can provide good inversion results. Fig. 5 shows
comparisons of the unimodal PSD retrieved by the four
algorithms when SNR=60dB. The results of the comparisons
indicate that the PSDs achieved by the improved algorithm
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TABLE 2. Inversion results when the particle size interval is divided into 35 subintervals in the form of the arithmetic sequence.

TABLE 3. Inversion results when the particle size interval is divided into 35 subintervals in the form of the geometric sequence.

FIGURE 4. Comparisons of the unimodal PSD retrieved by the four algorithms when the particle size interval is
divided into 35 subintervals in the form of the arithmetic sequence and SNR = 60 dB. (a) Polydispersed particle.
(b) Monodispersed particle.

FIGURE 5. Comparisons of the unimodal PSD retrieved by the four algorithms when the particle size interval is
divided into 35 subintervals in the form of the geometric sequence and SNR = 60 dB. (a) Polydispersed particle.
(b) Monodispersed particle.

and the Tikhonov Chahine are almost identical to the theoret-
ical distribution. The width and the peak position of the PSD
achieved by the conventional Landweber algorithm deviate

from the theoretical distribution. The PSDs retrieved by the
preconditioned Landweber algorithm have some tiny peaks
in the initial position of the PSD.
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FIGURE 6. Schematic of the experimental system.

FIGURE 7. Scattered images recorded by the CCD sensor. (a) Scattered
image of the sample pool and water. (b) Scattered image of standardized
polystyrene microsphere with diameter of 35.05 µm.

From Tables 2, 3 and Figs. 4-5, the improved algorithm is
more flexible and can better adapt to the two sets of the detec-
tor parameters compared with the other three regularization
algorithms.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Fig. 6 shows a CCD-based small-angle forward scatter-
ing measurement system. Its working principle and instru-
ment parameters are presented and described in detail
in section II.

FIGURE 8. Inversion results of the standardized polystyrene microsphere
with diameter of 35.05 µm. (a) Inversion results when the particle size
interval is divided into 35 subintervals in the form of the arithmetic
sequence. (b) Inversion results when the particle size interval is divided
into 35 subintervals in the form of the geometric sequence.

A standardized polystyrene microsphere with diameter of
35.05 µm is dispersed in water and then tested. Fig. 7 (a)
presents the scattered image of the sample pool without par-
ticles (the background image). The scattered image of the
particles in the sample pool is shown in Fig. 7 (b). Fig.7
reveals that the level of the scattered light is very high in the
focus area. Therefore, the pixels in the center of the CCD
sensor will become overexposed, and even overfilled. This
overexposure causes a dark spot in the center of the CCD
sensor and saturates the pixels in the surrounding area of the
dark spot. As a result, in the design of the ring parameter,
the inner radius should be designed to be slightly larger than
the saturated zone.

According to equation (2), the scattered light distributionE
must be achieved before retrieving the PSD. In fact, Fig. 7 (b)
contains the background signal and the actual scattered light
signal. To obtain the actual scattered signal, the background
image shown in Fig. 7 (a) should be deducted from the
image shown in Fig. 7 (b). Next, the actual image can be
divided into several rings according to the ring parameter
and the center coordinate. The average gray value of each
ring is calculated and is taken as the scattered light distribu-
tion E . Subsequently, the inversion algorithms are performed
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TABLE 4. Inversion results of the standardized polystyrene microsphere
with diameter of 35.05 µm.

according to the scattered light distribution. The inversion
results of the standardized polystyrene microsphere with
diameter of 35.05 µm are shown in Fig. 8 and Table 4.
The relative errors for the median diameter 50 µm (D50) are
calculated.

It can be seen from Fig. 8 and Table 4 that the conven-
tional Landweber algorithm and the preconditioned Landwe-
ber algorithm cannot provide reasonable inversion results.
Although the relative errors of the median diameter retrieved
by the conventional Landweber are better than 4%, the
PSDs are extremely smooth. Some tiny peaks are retrieved
by the preconditioned Landweber algorithm. The relative
errors retrieved by the Tikhonov Chahine algorithm and the
improved algorithm are better than 4%. However, when
the particle size interval is divided into 35 subintervals in
the form of the arithmetic sequence, there are some false
peaks in the middle of the PSD retrieved by the Tikhonov
Chahine algorithm. Compared with the other three regular-
ization algorithms, the improved algorithm can be adapted to
the above two ring parameters. The problems of burrs, false
peaks, concussion, etc. are not presented in the above two ring
parameters.

V. CONCLUSIONS
In this paper, a modified preconditioned Landweber algo-
rithm combined with the Tikhonov regularization theory was
proposed for the PSD inversion. The preconditioner B and
the constant γ were recalculated according to a new lin-
ear equation based on the Tikhonov regularization theory.
In the simulations, the inversion results of the conventional
Landweber algorithm, the preconditioned Landweber algo-
rithm, the Tikhonov Chahine algorithm and the improved
algorithm were presented and compared at different detector
parameters. A standardized polystyrene microsphere with
diameter of 35.05 µm was tested experimentally. Simulation
and experimental results showed that the improved algorithm
can provide a high-precision solution using two sets of the
detector parameters. Through comparisons and analysis of
the inversion results, the improved algorithm is more reliable
and stable at different the detector parameters. The improved
algorithm is rapid, simple and reliable.

ACKNOWLEDGMENT
The authors thank State Key Laboratory of Clean Energy
Utilization and Key Laboratory of Energy Thermal
Conversion and Control of Ministry of Education, School
of Energy and Environment, Southeast University, Nanjing,
China for supporting the research.

REFERENCES
[1] J. Goo, ‘‘Development of the size distribution of smoke particles in a

compartment fire,’’ Fire Safety J., vol. 47, no. 1, pp. 46–53, Jan. 2012.
[2] Y. Knop, A. Peled, and R. Cohen, ‘‘Influences of limestone particle size

distributions and contents on blended cement properties,’’ Construction
Building Mater., vol. 71, pp. 26–34, Nov. 2014.

[3] Z. He, H. Qi, Q. Chen, and L. Ruan, ‘‘Retrieval of aerosol size distribution
using improved quantum-behaved particle swarm optimization on spectral
extinction measurements,’’ Particuology, vol. 28, no. 5, pp. 6–14, 2016.

[4] C. Levoguer, ‘‘Using laser diffraction to measure particle size and distri-
bution,’’ Metal Powder Rep., vol. 68, no. 3, pp. 15–18, 2013.

[5] D. Torre, L. H. Bennett, and Y. Jin, ‘‘An effect of particle size on the
behavior of ferromagnetic materials,’’ J. Magn. Magn. Mater., vol. 324,
no. 14, pp. 2189–2192, 2012.

[6] J. Mao and J. Li, ‘‘Dust particle size distribution inversion based on
the multi population genetic algorithm,’’ Terrestrial Atmos. Ocean. Sci.,
vol. 25, no. 6, pp. 791–800, 2014.

[7] X. Shen and J. P. Y. Maa, ‘‘A camera and image processing system for
floc size distributions of suspended particles,’’ Marine Geol., vol. 376,
pp. 132–146, Jun. 2016.

[8] S. Shen, S. Yan, C. Zhou, E. Li, and H. Tong, ‘‘Research of laser particle
sizer based on scattering theory,’’ Semicond. Optoelectron., vol. 30, no. 5,
pp. 1797–1800, 2008.

[9] H. Tan et al., ‘‘Particle size measurement based on near field scattering,’’
J. Beijing Univ. Aeronautics Astron., vol. 43, no. 2, pp. 1–8, 2016.

[10] D. Kouzelis, S. M. Candel, E. Esposito, and S. Zikikout, ‘‘Particle sizing
by laser-light diffraction: Improvements in optics and algorithms,’’Particle
Particle Syst. Characterization, vol. 4, nos. 1–4, pp. 151–156, 1987.

[11] F. Xu, X. Cai, K. Ren, and G. Gréhan, ‘‘Application of genetic algorithm
in particle size analysis by multispectral extinction measurements,’’ China
Particuol., vol. 2, no. 6, pp. 235–240, 2004.

[12] L. Wang and X.-G. Sun, ‘‘Research on pattern search method for inversion
of particle size distribution in spectral extinction technique,’’ Spectrosc.
Spectral Anal., vol. 33, no. 3, pp. 618–622, 2013.

[13] L. Wang, X. Sun, and F. Li, ‘‘Generalized eikonal approximation for fast
retrieval of particle size distribution in spectral extinction technique,’’Appl.
Opt., vol. 51, no. 15, pp. 2997–3005, 2012.

[14] Y. Wang, G. Liang, and Z. Pan, ‘‘Inversion of particle size distribution
from light-scattering data using a modified regularization algorithm,’’
Particuology, vol. 8, no. 4, pp. 365–371, 2010.

[15] H. Tang, ‘‘Retrieval of spherical particle size distribution with an improved
Tikhonov iteration method,’’ Thermal Sci., vol. 16, no. 5, pp. 1400–1404,
2012.

[16] L. Xu, L. Xin, and Z. Cao, ‘‘`1-norm-based reconstruction algorithm for
particle sizing,’’ IEEE Trans. Instrum.Meas., vol. 61, no. 5, pp. 1395–1404,
May 2012.

[17] L.-X. Cao, J. Zhao, and M. Kong, ‘‘Inversion of particle size distribution
based on improved Chahine algorithm,’’ Infr. Laser Eng., vol. 44, no. 9,
pp. 2837–2843, 2015.

[18] D. Yang, B. Zhou, C. Xu, and S. Wang, ‘‘Dense-phase pneumatic con-
veying under pressure in horizontal pipeline,’’ Particuology, vol. 9, no. 4,
pp. 432–440, 2011.

[19] B. S. Kim and K. Y. Kim, ‘‘Resistivity imaging of binary mixture using
weighted landweber method in electrical impedance tomography,’’ Flow
Meas. Instrum., vol. 53, pp. 39–48, Mar. 2017.

[20] M. Piana and M. Bertero, ‘‘Projected Landweber method and precondi-
tioning,’’ Inverse Problems, vol. 13, no. 2, pp. 441–463, 1997.

[21] R. Xu, ‘‘Light scattering: A review of particle characterization applica-
tions,’’ Particuology, vol. 18, pp. 11–21, Feb. 2015.

[22] G. Gouesbet, ‘‘T-matrix formulation and generalized Lorenz–Mie theories
in spherical coordinates,’’ Opt. Commun., vol. 283, no. 4, pp. 517–521,
2010.

[23] E. D. Hirleman, V. Oechsle, and N. A. Chigier, ‘‘Response characteristics
of laser diffraction particle size analyzers—Optical sample volume extent
and lens effects,’’ Opt. Eng., vol. 23, no. 5, pp. 610–619, 1984.

[24] J. Vargas-Ubera, J. F. Aguilar, and D.M. Gale, ‘‘Reconstruction of particle-
size distributions from light-scattering patterns using three inversion meth-
ods,’’ Appl. Opt., vol. 46, no. 1, pp. 124–132, 2007.

[25] S. Noschese and L. Reichel, ‘‘Some matrix nearness problems suggested
by Tikhonov regularization,’’ Linear Algebra Appl., vol. 502, pp. 366–386,
Aug. 2016.

[26] W. Cheng, Y. Lu, and Z. Zhang, ‘‘Tikhonov regularization-based oper-
ational transfer path analysis,’’ Mech. Syst. Signal Process., vol. 75,
pp. 494–514, Jun. 2016.

10820 VOLUME 6, 2018



M. Kong et al.: Modified Landweber Algorithm for Inversion of PSD Combined With Tikhonov Regularization Theory

[27] G. Lu, L. Peng, B. Zhang, and Y. Liao, ‘‘Preconditioned Landweber
iteration algorithm for electrical capacitance tomography,’’ Flow Meas.
Instrum., vol. 16, no. 2, pp. 163–167, 2005.

[28] T. S. Pan and A. E. Yagle, ‘‘Numerical study of multigrid implementations
of some iterative image reconstruction algorithms,’’ IEEE Trans. Med.
Imag., vol. 10, no. 4, pp. 572–588, Dec. 1991.

[29] N.-H. Zhu and X.-H. Zhao, ‘‘Optimal calculation of Tikhonov regulariza-
tion parameter based on genetic algorithm,’’ Eng. Mech., vol. 26, no. 5,
pp. 25–30, 2009.

[30] H. Qi, B. Zhang, Y. Ren, L. Ruan, and H. Tan, ‘‘Retrieval of spherical
particle size distribution using ant colony optimization algorithm,’’ Chin.
Opt. Lett., vol. 11, no. 11, pp. 105–109, 2013.

[31] L. Xu, T. Wei, J. Zhou, and Z. Cao, ‘‘Modified Landweber algorithm for
robust particle sizing by using Fraunhofer diffraction,’’ Appl Opt., vol. 53,
no. 27, pp. 6185–6193, 2014.

MING KONG received the Ph.D. degree in mea-
surement and control technology and instrumen-
tation from Southeast University, China, in 2006.
Since 2012, he has been a Professor with China
Jiliang University, China. His main research inter-
ests include in multiphase flow instrumentation
and computer vision.

LIXIA CAO received the M.Sc. degree from the
College of Metrology andMeasurement Engineer-
ing, China Jiliang University, China, in 2015. She
is currently pursuing the Ph.D. degree with the
School of Energy and Environment fromSoutheast
University, China. Her main research interests are
broadly in multiphase flow instrumentation.

LIANG SHAN received the M.Sc. degree in sig-
nal and information processing from Southeast
University, China, in 2004. She has been an
Associate Professor with China Jiliang University
since 2014. Hermain research interests are broadly
in signal processing.

YAO YANG received the B. Eng. degree in mea-
surement and control technology and instrument
from Nanchang University, China, in 2009, and
the M.Sc. degree from the College of Metrol-
ogy and Measurement Engineering from China
Jiliang University, China, in 2016. Her main
research interests are broadly in multiphase flow
instrumentation.

VOLUME 6, 2018 10821


