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ABSTRACT Parameter estimation is an important issue in nonlinear science, which can be formulated as
a multi-dimensional problem. Numbers of nature-inspired meta-heuristic algorithms have been applied for
parameter estimation of chaotic systems; however, many of them are not able to achieve an appropriate
trade-off between exploration and exploitation. Therefore, this paper proposes an effective hybrid cuckoo
search (HCS) algorithm to obtain higher quality solutions and convergence speed. Inspired by the powerful
efficiency of differential evolution, the proposed HCS provides two novel mutation strategies to fully
exploit the neighborhood among the current population. Furthermore, a crossover operator under self-
adaptive parameters control is introduced to balance the exploration and exploitation ability of the proposed
two mutation strategies. Besides, the opposition-based learning is incorporated into HCS for initializing
population and producing new candidate solutions during the evolutionary process. HCS is further employed
to estimate the unknown parameters and time delays of chaotic systems. Numerical simulations and
comparisons with some other optimization methods are conducted on three chaotic systems with and without
time delays to demonstrate the performance of HCS. The experimental results show a superiority of HCS
in parameter estimation of chaotic systems, and can be regarded as a promising method in terms of its high
calculation accuracy, fast convergence speed, and strong robustness.

INDEX TERMS Parameter estimation, chaotic systems, cuckoo search algorithm, hybrid algorithm, time
delays.

I. INTRODUCTION
As a particular case of nonlinear dynamics, chaos is charac-
terized by an unstable dynamic behavior that exhibits sensi-
tive dependence on the initial condition and includes infinite
unstable periodic motions. Because of the specific proper-
ties, chaos has been used in many academic and engineer-
ing fields of chemical reactions, power converters, secure
communications, information processing, biological systems
and mechanical systems and so on [1]–[6]. In recent years,
many nonlinear systems have been proven to exhibit phe-
nomenon of chaos. In particular, systems with time delays
exhibit more complex and adequate dynamic behavior than
those free of time delays [7]. Meanwhile, much attention has
been gained for the study of control and synchronization of
chaotic systems for its potential applications [8]–[10]. Many
methods have been proposed to control and synchronize
chaotic systems, only with a condition that parameters of

chaotic systems are known in advance. However, in the real
world such as secret communications, due to the complexity
of chaotic systems, the exact true values of parameters are
difficult to determine. Therefore, parameter estimation of
chaotic systems has become an important issue of nonlinear
science.

In the past decade, a lot of approaches have been put
forward for solving the problem of parameter estimation
of chaotic systems, which can be mainly classified as two
basic methods, one is the synchronization method and the
other is the optimization method. Chaos synchronization has
attracted increasing interest since the pioneering work of
Pecora and Carroll [11] in 1990, and the synchronization
method is based on the stability analysis of chaotic systems
and the control methods. This concept was firstly proposed
by Parlitz [12], [13], and has been extensively investigated
in many literatures concerning the parameter estimation of
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uncertain chaotic systems [14]–[17], but the design of both
the controller and the updating law of parameter estimation
is still a hard task in terms of the techniques and sensitivities
depending on the considered system [18]. On the other hand,
the gradient-based optimization techniques, especially those
using artificial intelligence, have played an important role on
the analysis and parameter estimation of nonlinear dynamic
systems. In the second method, the unknown parameters are
considered as a series of independent variables and parameter
estimation is converted to a multi-dimensional optimization
problem. Compared with the first method, the optimization
method is not sensitive to the considered systems and easy to
implement, thus, it is more applicable.

Recently, nature-inspired meta-heuristic algorithms, espe-
cially combined with stochastic search techniques, seem to
be a more hopeful approach and provide a powerful means
to solve the nonlinear optimization problems. These algo-
rithms can be regarded as a promising alternative to the
traditional gradient-based techniques, since they do not rely
on any assumptions such as differentiability or continuity.
As a matter of fact, heuristic algorithms depend only on
the objective function to guide the search. Owing to these
outstanding characteristics, different kinds of heuristic algo-
rithms have been applied to estimate the unknown parameters
of chaotic systems, including genetic algorithm (GA) [19],
particle swarm optimization (PSO) [20], differential evolu-
tion (DE) [21], cuckoo search (CS) algorithm [22], artifi-
cial bee colony (ABC) [23] and so on [24]–[27]. Among
the latest developed algorithms, cuckoo search (CS) is a
population-based heuristic evolutionary technique proposed
by Yang and Deb [22], [28], the basic idea of which comes
out from the parasitic brood swarm intelligence technique
in cuckoo species together with the Lévy flight behavior of
some birds and fruit flies. Due to simple concepts, ease of
implementation and few parameters, CS has attracted a great
interest of researchers and been successfully applied in a vari-
ety of problems from diverse fields [29], [30]. However, CS is
weak in exploiting the solutions and easily trapped into a local
optimum. Thus, it is necessary to improve the performance
of CS to obtain higher quality solutions and convergence
speed. Many variations of CS have been proposed in recent
years for solving function optimization problems [31]–[33].
Nevertheless, there is no specific algorithm to achieve the
best solution for all optimization problems [34]. Meanwhile,
it is hard to achieve an appropriate trade-off of CS between
exploration and exploitation [35]. In particular, it is common
to find that CS shows relatively slow convergence speedwhen
applied to parameter estimation of chaotic systems.

In the basic CS algorithm, there are two main phases of
generating new solutions, including the exploration phase for
generation of new eggs via Lévy flights and the exploitation
phase for generation of new eggs via replacement of a fraction
of eggs. It is noteworthy that a lot of work have been done to
improve the first phase, such as self-adaptation adjustment of
parameters, selection of variable step size and combination of
other searching mechanisms [36]–[39]. However, researches

devoted to improve the second phase of biased/selective ran-
dom walk (BSRW) are still not sufficient so far. Therefore,
it seems necessary to put forward new improved or enhanced
techniques to ameliorate the quality of solutions and
convergence speed for BSRW. Due to the selection of the
simple randomwalk rule, the second phase significantly lacks
of diversity of solutions and the local search capability is
relatively weak, which may decrease the quality of optimiza-
tion. Moreover, if the searching environment is complex with
numerous local optima, the solutions may get trapped in a
local optimum. Motivated by this aspect, we introduce an
effective hybrid cuckoo search (HCS) algorithm to further
enhance the exploration and the exploitation ability of the
basic CS. To be specific, an improved differential evolu-
tion (IDE) strategy is introduced to the basic CS algorithm to
discourage premature convergence and increase the exploita-
tion ability of local search. In IDE, a new mutation operator
based on two searching schemes under adaptive parameters
control is put forward so that the discovered nests can be
rebuilt by making full use of the current individual’s infor-
mation in a reasonable way. Besides, the opposition-based
learning (OBL) is incorporated into HCS for initializing
population and producing new candidate solutions during
the evolutionary process. By considering an estimate and its
corresponding estimate simultaneously, OBL can provide a
faster convergence rate and a higher chance of finding candi-
date solutions closer to the global optimum. The HCS algo-
rithm is further applied to estimate the unknown parameters
and time delays of chaotic systems. Numerical simulations
are performed on several chaotic systems, and statistically
compared with some typical existing approaches. All of the
simulation results demonstrate the effectiveness and robust-
ness of HCS, and its superiority to the other comparative
algorithms.

The rest of this paper is organized as follows. In Section II,
the problem of parameter estimation of both chaotic systems
with and without time delays is formulated from the view-
point of optimization, respectively. In Section III, the HCS
algorithm is proposed in sufficient details after a brief review
of the basic CS. In Section IV, simulations and comparisons
with some existing approaches are done on three typical
chaotic systems, and results analyses together with discus-
sions are provided as well. Finally, conclusions are drawn
in Section V.

II. PROBLEM FORMULATION
A. FOR CHAOTIC SYSTEMS WITHOUT TIME DELAYS
Consider the following n-dimensional chaotic system
described by ordinary differential equation (ODE):

Ẋ (t) = F(X (t),X0, θ), (1)

where X (t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn denotes the
state vector, X0 = (x10, x20, . . . , xn0)T denotes the ini-
tial state and θ = (θ1, θ2, . . . , θd )T is a set of original
parameters.
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Suppose the structure of system (1) is known in advance,
then the estimated system can be written as:

˙̃X (t) = F(X̃ (t),X0, θ̃ ), (2)

where X̃ (t) = (x̃1(t), x̃2(t), . . . , x̃n(t))T ∈ Rn is the state
vector of the estimated system, θ̃ = (θ̃1, θ̃2 . . . , θ̃d )T is a set
of systematic parameters to be estimated.

To estimate the unknown parameters, the following objec-
tive function is defined as:

F =
1
N

N∑
k=1

‖Xk − X̃k‖2, (3)

where k = 1, 2, . . . ,N is the sampling time point and
N denotes the length of data used for parameter estimation,
Xk and X̃k (k = 1, 2, . . . ,N ) denote the state vector of the
original and the estimated system at time k, respectively.
The parameter estimation of system (1) can be achieved by
searching suitable θ̃ such that the objective function (3) is
minimized, i.e,

θ∗ = argmin
θ̃∈2

F, (4)

where 2 is the searching space admitted for parameters.

B. FOR CHAOTIC SYSTEMS WITH TIME DELAYS
Consider the following n-dimensional chaotic system
described by delay differential equation (DDE):

Ẋ (t) = F(X (t),X (t − τ ),X0, θ), (5)

where X (t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn denotes the
state vector,X0 = (x10, x20, . . . , xn0)T denotes the initial state
for t ≤ τ and θ = (θ1, θ2, . . . , θd )T is a set of original
parameters. The time delay τ is treated as a parameter to be
estimated as well in this paper.

Suppose the structure of system (5) is known in advance,
then the estimated system can be written as:

˙̃X (t) = F(X̃ (t), X̃ (t − τ̃ ),X0, θ̃ ), (6)

where X̃ (t) = (x̃1(t), x̃2(t), . . . , x̃n(t))T ∈ Rn is the state
vector of the estimated system, θ̃ = (θ̃1, θ̃2, . . . , θ̃d )T and
τ̃ are parameters to be estimated.

The objective function for this case is constructed as
similar as formula (3). Then the parameter estimation of
system (5) can be achieved by searching suitable θ̃ such that
the objective function is minimized, i.e,

(θ∗, τ ∗) = arg min
(θ̃ ,τ̃ )∈2

F, (7)

where 2 is the searching space admitted for parameters and
time delays.

Obviously, it is not easy to estimate the unknown parame-
ters and time delays of chaotic systems because of its dynamic
instability.Moreover, it can be seen that the objective function
is a multi-dimensional nonlinear function with multiple local
optimum, and it is difficult to obtain the global optimal solu-
tion effectively and accurately using traditional optimization

methods. In this paper, an effective hybrid cuckoo search
algorithm is proposed and applied to the problem of param-
eter estimation of chaotic systems with and without time
delays.

III. HYBRID CUCKOO SEARCH OPTIMIZATION
ALGORITHM
In this section, an effective hybrid cuckoo search (HCS)
algorithm is proposed in order to further enhance the explo-
ration and the exploitation ability of the basic CS. To be
specific, an improved differential evolution (IDE) strategy
under adaptive parameters control is introduced to the sec-
ond phase of CS to discourage premature convergence and
increase the exploitation ability of local search. On the other
hand, the opposition-based learning (OBL) is incorporated
into HCS for initializing population and producing new can-
didate solutions in evolutionary generations, which can guide
the population toward the more promising areas and spread
it as much as possible over the searching space. The main
strategies of HCS are described in the following subsections
after a brief review of the basic CS algorithm.

A. CUCKOO SEARCH ALGORITHM
CS algorithm is a simple yet very promising stochastic
population-based method. For simplicity in describing the
basic CS algorithm, three idealized rules [22] are used:
(1) Each cuckoo bird lays one egg at a time and dumps it
at a random chosen host nest; (2) The best nests with high-
quality eggs will be carried over to the next generations;
(3) The number of available host nests is fixed, and the host
bird may discover the alien egg laid by a cuckoo with a
probability Pa ∈ [0, 1].

In CS, each egg in a nest represents a solution, and each
cuckoo is supposed to lay only one egg (thus representing
one solution), the aim is to use the new and potentially better
solutions (cuckoos) to replace a not-so-good solution in the
nests [40]. CS uses a balanced combination of a local random
walk and a global explorative random walk, which are con-
trolled by a switching parameter Pa. After each randomwalk,
a greedy strategy is used to select better solutions from the
current and new generated solutions according to their fitness
values.

Based on the rules and description above, the global ran-
dom walk is carried out by using Lévy flights as follows

X t+1i = X ti + α ⊕ Lévy(λ), (8)

where α (α > 0) is the step size related to the optimization
problem scale, and the product⊕ denotes the entry-wise mul-
tiplication. Lévy flights essentially provide a random walk,
the random steps of which are drawn from a Lévy distribution
for large steps:

Lévy ∼ t−λ, (1 < λ ≤ 3), (9)

which has an infinite variance with an infinite mean.
After Lévy flights random walk, CS continues to generate

new solutions in terms of biased/selective randomwalkwhich
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employs a crossover operator. Considering the probability of
cuckoos being discovered, a crossover operator is used to
construct a new solution:

X
′

i =

{
Xi + r · (Xr1 − Xr2), if (rand[0, 1] > Pa),
Xi, otherwise,

(10)

where r1 and r2 are mutually different random integers;
r denotes the scaling factor which is a uniformly dis-
tributed random number in the interval [0, 1]. By using the
greedy strategy, the next generation solution is selected from
Xi and X

′

i according to their fitness values. At the end of each
iteration process, the best solution obtained so far is updated.

The procedures of basic CS algorithm can be described as
the pseudo code shown in Algorithm 1.

Algorithm 1 Pseudo Code of the Basic CS Algorithm
1: Generate an initial population of N host nests Xi,

(i = 1, 2, . . . ,N );
2: Evaluate the fitness value of each nest Xi;
3: Determine the best nest with the best fitness value;
4: while t ≤MaxGeneration do
5: for i = 1, 2, . . . ,N do
6: Generate a cuckoo Xi randomly by Lévy flights

according to Eq. (8);
7: Evaluate the fitness value Fi = f (Xi);
8: Choose a random nest Xj;
9: if (Fj < Fi) then
10: Replace nest Xi with Xj;
11: end if
12: end for
13: Abandon a fraction Pa of worse nests and build new

ones according to Eq. (10);
14: Keep the best nest with quality solution;
15: Rank the nests and find the current best one;
16: Pass the current best nest to the next generation;
17: end while

B. DIFFERENTIAL EVOLUTION-BASED RANDOM WALK
The efficacy of solving optimization problems using evo-
lutionary algorithms relies on the choice of strategies that
are used to generate new individuals and their associated
parameters [41]. In this section, an improved differential
evolution (IDE) strategy under adaptive parameters control
is introduced to the second phase of CS, and used instead of
the simple random walk in the basic CS algorithm.

DE has strong global search capability and shows pretty
good convergence ability. Many schemes have been proposed
based on different mutation strategies, where the notation
‘‘DE/x/y/z’’ is used to denote the strategies. ‘‘DE’’ stands for
differential evolution, ‘‘x’’ represents the base vector to be
perturbed, ‘‘y’’ is the number of differential vectors consid-
ered for perturbation, and ‘‘z’’ denotes the type of crossover
scheme (exp: exponential; bin: binomial). There are several
mutation strategies which are also frequently used in the

literature [42]:

DE/rand/1: Vi = Xr1 + F · (Xr2 − Xr3), (11)

DE/best/1: Vi = Xbest + F · (Xr1 − Xr2), (12)

DE/current-to-best/1: Vi = Xi + F · (Xbest − Xi)

+F · (Xr1 − Xr2), (13)

where Xbest is the best individual in the current generation;
r1, r2 and r3 are mutually exclusive integers randomly chosen
from the range [1,N ], and must be different from the base
index i; F is the mutation factor. The selection of differ-
ent mutation strategies has great impact on the optimization
performance.

Inspired by the mutation strategy ‘‘DE/best/1’’ and
‘‘DE/current-to-best/1’’, a new mutation operator based on
two searching schemes under adaptive parameters control is
proposed as follows:

CS/best/1: Vi = Xbest + F1 · (Xr1 − Xr2), (14)

CS/current-to-best/1: Vi = Xi + F1 · (Xbest − Xi)

+F2 · (Xr1 − Xr2), (15)

where F1, F2 are two independent mutation factors.
‘‘CS/best/1’’ is able to explore the region around the best

solution in the current population. A crossover operator is
incorporated to ‘‘CS/best/1’’ which can be expressed as:

Vi,j =


Xbest,j + F1 · (Xr1,j − Xr2,j),

if (rand[0, 1] > Pa),
Xbest,j, otherwise.

(16)

This strategy is good at increasing the convergence speed and
population diversity, but is easy to fall into local optimum.

‘‘CS/current-to-best/1’’ affords two difference vectors to
perturb the target vector and generates a new solution. Regard
with the discovering probability, then ‘‘CS/current-to-best/1’’
directed random walk can be expressed as:

Wi,j =


Xi,j + F1 · (Xbest,j − Xr1,j)+ F2 · (Xr2,j − Xr3,j),

if (rand[0, 1] > Pa),
Xi,j, otherwise.

(17)

It maintains the population diversity and the global search
capability at the same time. Besides, it favors exploitation
since the new individual is obtained by considering both of
the current best vector and random vectors in the neighbor-
hood.

Considering the properties of the two searching schemes,
a crossover operator under self-adaptive parameters control
is incorporated to the IDE strategy, to keep a good balance
between exploitation and exploration. The crossover opera-
tion is given as follows:

U t+1
i,j =

{
Vi,j, if (rand[0, 1] ≤ CR) or (j = jrand ),
Wi,j, otherwise,

(18)
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whereCR is a self-adaptive crossover rate; jrand is a randomly
chosen integer in the range of [1,D]. CR decides the fraction
of elements copied from the mutant vectors, thus it is of
great importance in balancing the local and global search
processes. In implementation, the self-adaptive CR is set as
follows:

CR =


CR1 + (CR2 − CR1) ∗

max(f )− f (i)
max(f )− min(f )

,

if (f (i) ≤ mean(f )),
CR1, otherwise,

(19)

where mean(f ), min(f ) and max(f ) denotes the mean,
the minimum and the maximum fitness value of the cur-
rent population, respectively; CR1, CR2 are two predefined
parameters.

C. OPPOSITION-BASED LEARNING
Opposition-based learning (OBL), introduced by
Ti-zhoosh [43], is a new concept in computational intelli-
gence. The main idea behind OBL is to consider both of a
solution and its corresponding opposite solution in order to
get a better approximation of the current candidate solutions.
It has been proven to be an effective method to enhance
various optimization approaches [18], [25]. Hence, the
OBL idea is incorporated into our proposed algorithm, to fur-
ther increase diversity and speed up the convergence.

Suppose X = (x1, x2, . . . , xn) is a solution in an
n-dimensional space, where xi ∈ [Lxi,Uxi], (i = 1, 2, . . . , n).
The opposite solution X ′ = (x ′1, x

′

2, . . . , x
′
n) is given by:

x ′i = Lxi + Uxi − xi. (20)

Let f (·) be a fitness function via which the fitness value
can be evaluated. According to the above given definitions
of X and X ′, if f (X ′) ≤ f (X ), then X is replaced with X ′,
otherwise X is kept. Thereby, the solution and its opposite
solution are evaluated simultaneously in order to obtain the
fitter one. OBL is implemented to initialize population and
produce new solutions during evolution process.

D. THE MAIN PROCEDURE OF HCS
In this paper, an effectiveHCS algorithm is proposed based on
the strategies described above. Firstly, OBL is used in popula-
tion initialization to obtain fitter starting candidate solutions
and increase the diversity. Then, to discourage premature
convergence and increase the exploitation ability of local
search, the proposed IDE under adaptive parameters control
strategy is embedded into the second phase of CS, instead
of the simple random walk in CS. When the procedures of
the proposedmodified CS algorithm are finished, populations
are updated based on opposition-based generation jumping
for further increasing the diversity and accelerating conver-
gence during the evolutionary process. Themain procedure of
HCS is given in Algorithm 2. The proposed approaches in this
paper are identified with boldface.

Several new CS variants combined with the DE strategy
have been put forward to address the global optimization

Algorithm 2 Pseudo Code of HCS Algorithm
1: Initialization via OBL;
2: Evaluate the fitness value of each nest through the objec-

tive function Eq. (3);
3: Determine the best nest with the best fitness value;
4: while t ≤MaxGeneration do
5: for i = 1, 2, . . . ,N do
6: Generate a cuckoo Xi randomly by Lévy flights

according to Eq. (8);
7: Evaluate the fitness value Fi = f (Xi);
8: Choose a random nest Xj;
9: if (Fj < Fi) then
10: Replace nest Xi with Xj;
11: end if
12: end for
13: Determine the best nest from the current fitness values;
14: for i = 1, 2, . . . ,N do
15: Calculate the self-adaptive crossover rate CR

using Eq. (19);
16: Search for a new solution using IDE strategy using

Eqs. (16-18);
17: end for
18: Opposition-based generation jumping;
19: Keep the best nest with quality solution;
20: Rank the nests and find the current best one;
21: Pass the current best nest to the next generation;
22: end while

problems [44], [45], and our improved differential evolu-
tion (IDE) strategy under adaptive parameters control seems
to share similarities with them. However, the proposed strat-
egy has its own specific characteristics, whichmakes it differ-
ent from the DE techniques used in the literatures, as clarified
below.

1) Two mutation strategies are adopted in IDE (namely
‘‘DE/best/1’’ and ‘‘DE/current-to-best/1’’), while
DECS presented in [44] only employs the simple
‘‘DE/rand/1’’ strategy which offers lower diversity to
search for new solutions.

2) The searching schemes in the BSRW stage proposed
in our HCS (namely ‘‘CS/best/1’’ and ‘‘CS/current-
to-best/1’’) are distinct from ‘‘CS/rand/1’’ and
‘‘CS/best/2’’ raised in SACS [45]. Compared with the
random scale factor ϕ defined in SACS, two indepen-
dent mutation factors are put to use in IDE. Moreover,
a crossover operator under self-adaptive parameters
control is incorporated to the IDE strategy according to
the properties of the two searching schemes, which is
expected to keep a good balance between exploitation
and exploration.

3) In implementation, the crossover rate CR of IDE is
set self-adaptive, whereas SACS utilizes a self-adaptive
parameter Pa. Besides, DECS is just coupled with
differential evolution but in the absence of parameter
adaptation approach.
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TABLE 1. Simulation results of different methods for Lorenz system (21).

On the other hand, although OBL has been introduced
into CS, our method owns its distinguishing features as
similar done in [25] at each iteration process. For example,
in [46], OBL together with the best solution is merged in
the LFRW phase rather than BSRW. And for NCS [47],
modifications are based on the generalized opposition-based
learning (GOBL) instead of OBL used in this paper.

In summary, the proposed HCS algorithm exhibits advan-
tages and differences from other methods. Furthermore,
extensive simulations are conducted in the following section
to validate its effectiveness and efficiency.

E. COMPUTATIONAL COMPLEXITY OF HCS
Compared with the original CS algorithm, HCS needs to
perform additional computations on the IDE strategy and
OBL process. During one generation, the mutation operations
of the IDE strategy are executed before crossover, the average
complexity of this process is O(N · n). Then, the crossover
operator under adaptive parameters control is calculated to
obtain new solutions in BSRW, the complexity of which is
O(N · log(N )). In addition, calculations of opposition pop-
ulation and population sorting continue to be carried out.
The computation complexity of these two procedures takes
O(2·N ·n)+O(N ·log(N )). Since the complexity of the original
CS algorithm is O(Gmax ·N · n) where Gmax is the maximal
number of generation, the total computational complexity of
HCS isO(Gmax · [N ·n+N · log(N )+2 ·N ·n+N · log(N )]),
which is simplified to O(Gmax · N · n). Hence, the proposed
HCS does not significantly increase the overall complexity
compared with the original CS.

IV. SIMULATIONS RESULTS
To demonstrate the performance of the proposed scheme,
three typical chaotic systems with and without time delays
are taken for example in this section. The simulations are
performed using MATLAB 7.1 on Intel Corer i5-3380,
2.90GHz with 4GB RAM. The original system evolves freely
from a random initial state, and randomly select a state as
the initial state X0 for parameter estimation after a period
of transient process. To achieve a fine balance between the
performance of algorithms and having enough sample data
for credibility, the number of states of the original and esti-
mated system for calculating the objective function (3) is set
to 300 according to the existing simulations In the simulation,
the parameters of the proposed HCS algorithm are set as

follows: the population size N = 40, the maximum iteration
number M = 50, the probability of discovering an alien egg
Pa = 0.25 which is suggested in [22], mutation factors and
adaptive crossover rates are set to F1 = 0.6, F2 = 0.01
and CR1 = 0.1, CR2 = 0.6, respectively, according to
the extensive experiments. In order to evaluate the effective-
ness and efficiency of HCS, comparisons with the classical
CS algorithm, some CS improved variants and state-of-the-
art algorithms i.e., ACS [48], NNCS-F [49], SACS [45],
ABC [23], DE [50], PSO [7], OSOA [25] and HABC [18]
are carried out on different systems. Parameter settings of
these compared algorithms in our experiments are the same
as recommended in their original papers. For a fair compar-
ison, the same computation effort is used in each compared
algorithm, i.e., the number of running times, population size,
maximum iteration number, length of sampling time points,
step size, and searching ranges of parameters. For each prob-
lem, the experimental results are averaged via 20 independent
runs.

A. SIMULATIONS ON CHAOTIC SYSTEMS
WITHOUT TIME DELAYS
In this subsection, we consider two typical chaotic systems
without time delays, namely, Lorenz system and Rössler
system. Simulations are conducted in order to show how
the proposed HCS algorithm can improve the performance
of CS, and at the same time to validate its competitiveness
upon other efficient methods. For the first system, the pro-
posed approach is compared with three improved CS vari-
ants (namely ACS, NNCS-F and SACS) besides classical CS.
Regarding to the second system, comparison with some other
state-of-the-art algorithms (namely ABC, CS, DE and PSO)
are performed to further test the effectiveness of HCS.

1) COMPARISON WITH OTHER CS IMPROVED VARIANTS
Example 1: Consider the following Lorenz system [51]

described by  ẋ = a(y− x),
ẏ = x(b− z)− y,
ż = xy− cz,

(21)

where a, b and c are unknown parameters to be estimated. The
original system is assigned with true parameters: a = 10,
b = 28 and c = 8/3, under which the system is chaotic.
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FIGURE 1. Evolution process of the estimated parameters and the
objective function values for Lorenz system (21). (a) Evolution
process of a. (b) Evolution process of b. (c) Evolution process
of c . (d) Evolution process of F .

The searching ranges of unknown parameters are predefined
in � = [9, 11]× [20, 30]× [2, 3].
The statistical results of the mean estimated values with

corresponding relative error values and the objective function

FIGURE 2. Evolution process of the estimated parameters and the
objective function values for Rössler system (22). (a) Evolution process
of a. (b) Evolution process of b. (c) Evolution process of c . (d) Evolution
process of F .

values are listed in Table 1. It can be seen that the esti-
mated values obtained by HCS are closer to the true param-
eter values than those by the basic CS, ACS, NNCS-F and
SACS algorithm. Especially, from the relative error values
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FIGURE 3. Evolution process of the estimated parameters and the
objective function values for time-delay Mackey-Glass chaotic
system (23). (a) Evolution process of a. (b) Evolution process
of b. (c) Evolution process of c . (d) Evolution process of F .

marked in bold, it is obvious that the HCS algorithm is with
higher precision than the other algorithms. Besides, the mean
objective function values produced by HCS are also signifi-
cantly better than those of the other three approaches.

The evolution process of the average results of the esti-
mated parameters and the objective function values for sys-
tem (21) are shown in Fig. 1. From the figure, it can be easily
found the estimated parameters can converge to the matching
true values at an earlier stage by HCS. We can observe that
its ability to search for the true values of unknown parameters
is successful. What’s more, Fig. 1 shows that the objective
function value generated by HCS decreases to zero much
faster than the comparison algorithms, which implies that
HCS can converge at a faster rate to the global optimal solu-
tion in identifying the unknown parameters of system (21).
From the foregoing discussion, it can be concluded that the
HCS algorithm contributes to superior performance in terms
of efficiency, quality, and robustness.

2) COMPARISON WITH OTHER STATE-OF-THE-ART
ALGORITHMS
Example 2: Consider the following Rössler system [52]

described by  ẋ = −y− z,
ẏ = x + ay,
ż = b+ xz− cz,

(22)

where a, b and c are unknown parameters to be estimated. The
original system is assigned with true parameters: a = 0.2,
b = 0.2 and c = 5.7, under which the system is chaotic.
The searching ranges of unknown parameters are predefined
in � = [0.01, 0.5]× [0.01, 0.5]× [2, 10].

For system (22), Table 2 shows the comparison results
of the mean estimated values with corresponding relative
error values and the objective function values by different
methods over 20 independent runs. According to Table 2,
it can be noted that HCS has more accurate results than the
basic ABC, CS, DE and PSO algorithm, which indicates that
HCS significantly outperforms the comparison algorithms
in estimating parameters of system (22). Fig. 2 depicts the
convergence process of the average results of the estimated
parameters and objective function values. From the figure,
it is obvious that HCS can converge to the optimal solution
more rapidly and accurately than the other algorithms. There-
fore, the HCS algorithm demonstrates the good performance
in aspects of robustness and convergence accuracy, which is
highly competitive with those of ABC, CS, DE and PSO for
Rössler system.

B. SIMULATIONS ON CHAOTIC SYSTEMS
WITH TIME DELAYS
For the problem of parameter estimation of chaotic systems
with time delays, the identification results using HCS are
compared with the basic CS, DE and PSO algorithm together
with a single CS variant named ACS.
Example 3: Consider the following time-delay Mackey-

Glass chaotic system [53] described by

ẋ(t) = −ax(t)+
bx(t − τ )

1+ x(t − τ )10
, (23)
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TABLE 2. Simulation results of different methods for Rössler system (22).

TABLE 3. Simulation results of different methods for time-delay Mackey-Glass system (23).

TABLE 4. Analysis of HCS features and comparisons.

with a, b and τ are unknown parameters to be estimated. The
original system is assigned with true parameters: a = 0.1,
b = 0.2 and τ = 17, under which the system is chaotic. The
searching ranges of unknown parameters are predefined in
� = [0.05, 1]× [0.05, 1]× [12, 20].
The statistical results including the mean estimated values,

the relative error values and the objective function values via
different methods over 20 independent runs are summarized
in Table 3. In addition, the evolution process of the average
results of the estimated parameters and the objective function
values for time-delay chaotic system (23) are shown in Fig. 3.

Based on Fig. 3 and Table 3, it can be observed that all the
algorithms have a certain capability of estimating parameters,
but the performance of HCS is much better than the other
four algorithms, and supplies more precise and robust results
with faster convergence speed. In particular, the relative error
values produced by HCS marked in bold are all smaller than
those by the basic CS, DE and PSO and ACS algorithm;
all the estimated parameters converge to the corresponding
matching true values more rapidly via the HCS algorithm.
In general, HCS is significantly better and statistically more
robust than the listed comparison algorithms in terms of
convergence precision and searching efficiency. Furthermore,
it also can be concluded that HCS is very capable for param-
eter estimation of chaotic systems with time delays.

C. EFFECTIVENESS OF THE HCS FEATURES
The proposed HCS is mainly composed of two features,
including differential evolution-based random walk and
opposition-based learning. This section is intended to inves-
tigate the effectiveness of each strategy in HCS by sequential
activation of these features. For this purpose, the following
two variants of CS are considered:

1) CS employs the IDE strategy under adaptive parame-
ters control, denoted as CS-IDE;

2) CS integrates with OBL, referred to CS-OBL.
The same parameter settings are applied in the afore-

mentioned variants in implementation. Moreover, algorithms
are compared with another two especial methods, namely
OSOA [25] and HABC [18], which also adopt the OBL
optimization tool in their literatures. In our experimental
studies, the three examples for parameter estimation are
set as benchmark functions with identical performance cri-
teria. Besides that, the Friedman test [54] is conducted
on the simulation results to obtain the reliable statistical
conclusion.

Table 4 presents the statistical results of CS, CS-IDE,
CS-OBL, HCS, OSOA and HABC, in terms of the mean
objective function values. From Table 4, it can be seen that
CS-IDE and CS-OBL yield significantly higher accurate
solutions than the original CS algorithm. The combined effect
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FIGURE 4. The objective function values of HCS, OSOA and HABC for
systems (21-23) during 20 independent runs. (a) Results for Lorenz
system (21). (b) Results for Rössler system (22). (c) Results for
time-delay Mackey-Glass system (23).

of the two features, i.e. HCS, is also given in Table 4 and
it shows that the proposed HCS algorithm is much more
efficient in solving all the parameter estimation problems.
Furthermore, with respect to the average ranking of the six
algorithms in Table 4, it can be figured out that HCS achieves
the overall best performance followed by CS-OBL, CS-IDE,
OSOA, CS and HABC. This indicates that the OBL fea-
ture has bigger impact than the adaptive IDE strategy on
the results of the HCS. Meanwhile, algorithms incorporating

each feature demonstrate the ability to improve CS, and are
even better than OSOA and HABC in optimization. HABC,
a hybrid artificial bee colony algorithm, is proven to be good
at handling parameter identification of uncertain fractional-
order chaotic systems, however, shows weaker capacity for
integer-order chaotic systems, which may be due to the insuf-
ficient population size for evolution. In addition, the objective
function values of HCS, OSOA and HABC during 20 inde-
pendent runs are plotted in Fig. 4, to further show the higher
convergence accuracy of our proposed algorithm.

V. CONCLUSIONS
In this paper, an effective hybrid cuckoo search (HCS)
algorithm is proposed to estimate the unknown parameters
and time delays of chaotic systems from the perspective
of optimization. The HCS algorithm is improved mainly
in two aspects: differential evolution-based random walk
and opposition-based learning (OBL). On the one hand,
an improved differential evolution (IDE) strategy is intro-
duced to the second phase of CS to discourage premature
convergence and increase the exploitation ability of local
search, instead of the simple random walk in the basic
CS algorithm. On the other hand, the OBL is incorporated
into HCS for population initialization and generation jumping
in order to increase the diversity and accelerate convergence
during the evolutionary process. Advantages of the proposed
algorithm are easy to implement, fast convergence speed, and
few parameters to adjust.

To verify the performance of the HCS algorithm, numer-
ical simulations are performed on three typical chaotic
systems, namely Lorenz, Rössler and time-delay Mackey-
Glass chaotic system, by comparisons with some other CS
improved variants and state-of-the-art methods besides the
basic CS. The simulation results show that the HCS algorithm
could estimate the unknown parameters and time delays of
chaotic systems more rapidly, more accurately and more
stably than the compared algorithms. Furthermore, the effec-
tiveness of the two HCS features is investigated in details,
respectively. It turns out that each feature has outstanding
ability to improve the original CS algorithm, and the exper-
imental results of them even significantly outperform some
other compared algorithms when solving parameter estima-
tion problems. In light of the results analyses and compar-
isons, it can be concluded that HCS is an effective, robust and
promising algorithm for parameter estimation of uncertain
both chaotic systems with and without time delays. Although
this paper mainly concentrates on the parameter estimation of
chaotic systems, we believe that the HCS algorithm will also
be beneficial for the applications of synchronization and con-
trol of chaotic systems and various optimization problems.
The future work is to further improve the performance of
HCS through nonhomogeneous searching laws and dynamic
sub-population sizes. Meanwhile, we also plan to apply the
HCS algorithm for parameter estimation of chaotic systems
with randomnoises ormultistochastic disturbances, and some
real-world optimization problems as well.
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