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ABSTRACT Gaze estimation using monocular cameras has significant commercial applicability, and
many studies have been undertaken on head pose-invariant and calibration-free gaze estimation. The head
positions in existing data sets used in these studies are, however, limited to the vicinity of the camera, and
methods trained on such data sets are not applicable when subjects are at greater distances from the camera.
In this paper, we create a room-scale gaze data set with large variations in head poses to achieve robust
gaze estimation across a broader range of widths and depths. The head positions are much farther from the
camera, and the resolution of the eye image is lower than in conventional data sets. To address this issue, we
propose a likelihood evaluation method based on edge gradients with dense particles for iris tracking, which
achieves robust tracking at low-resolution eye images. Cross-validation experiments show that our proposed
method is more accurate than conventional methods on all the individuals in our data set.

INDEX TERMS Gaze estimation, iris tracking, particle filter, regression.

I. INTRODUCTION
As the price of cameras has decreased and the performance
of computers continues to increase, more consumer-grade
devices have been equipped with monocular cameras. Such
cameras are used for many applications, i.e., video calls using
laptop PCs, next-generation controllers for video games,
natural user interfaces, and digital signage, and are widely
employed for image recognition and human–computer inter-
action (HCI). If a gaze estimation function could be integrated
into such built-inmonocular cameraswithout additional hard-
ware, they would have many applications. Gaze estimation is
a key factor in determining user intent and interest; thus, it can
be used for next-generation UIs and marketing analysis [1].
In addition, gaze estimation technology is expected to be
applied to automatic vehicles. The estimation of driver and
pedestrian gaze is helpful in improving automatic driving,
because eye contact is an important element in driving
situations.

To realize such applications at lower cost and complexity,
we propose a novel gaze estimation system that achieves suf-
ficient accuracy in real time. Our aim is to meet the following
conditions. The proposed system should (1) work with only
a single monocular camera, (2) be operable with unknown
users, and (3) remain consistent under varied conditions,

e.g., low-resolution eye images, unconstrained user postures,
different locations, and varying distances from the camera.

Various gaze estimation methods have been proposed.
In recent years, learningwith a large-scale dataset has enabled
user-specific calibration-free point of gaze (PoG) estima-
tion with a monocular camera. However, the head positions
in conventional datasets are constrained within a limited
area, which considers only the region near to the camera,
so that those systems have not been evaluated with images
taken from more varied distances. In addition, the require-
ment of high-resolution eye images also limits the practical
applicability.

In this paper, we propose a gaze estimation method that
comprises a model-based iris tracker that is robust to the
scarcity of information brought about by the high distance
from the camera. We further propose a new gaze dataset,
called the ‘‘Room-scale Gaze Dataset,’’ (RSGD) to achieve
PoG estimation in a room-scale space without user-specific
calibration. The remainder of this paper is organized as fol-
lows. In section II, we briefly review related studies on gaze
estimation. Section III describes the dataset proposed in this
paper. Section IV explains the theory of iris tracking and PoG
estimation, before section V summarizes the experiments and
results.
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II. RELATED WORK
Many gaze estimation methods have been proposed [2].
These can be broadly divided into methods using an infrared
light camera and those using a visible light camera.

A. METHODS USING INFRARED CAMERAS
In methods using infrared cameras [3]–[5], the vector
between the reflection point on the cornea (Purkinje image)
and the center point of the pupil is mapped to the PoG after
some calibration processes. This method has two advantages.
First, a Purkinje image is a suitable reference point because
the eyeball is approximately spherical; therefore, the Purkinje
image does not move when the gaze angle changes. Second,
the pupil is easily observed by infrared cameras, because the
iris reflects infrared light well. The iris and pupil are difficult
to distinguish in visible light cameras. Generally, infrared
methods have high accuracy. However, they require a high-
resolution eye image and special equipment, such as infrared
lights and cameras. In addition, the subject must be close to
the camera, i.e., within the reachable range of the infrared
light.

B. METHODS USING VISIBLE LIGHT CAMERAS
Methods using visible light cameras work with inexpensive
and readily available cameras, and can be categorized as
appearance-based and model-based methods.

1) APPEARANCE-BASED METHODS
Appearance-based methods directly use an eye image as
input, and then estimate the PoG through machine learn-
ing. For the learning process, methods using adaptive lin-
ear regression [6], support vector regression [3], Gaussian
process regression [7], and convolutional neural net-
works (CNN) [8], [9] have been proposed.

Generally, appearance-based methods are more robust to
low-resolution eye images than model-based methods [9].
In contrast, previous studies on appearance-based meth-
ods [10]–[13] were easily influenced by head pose and
environmental light changes. Later, some appearance-based
methods used the head pose information obtained from
facial feature point tracking to achieve head pose invari-
ance [14]–[16]. Lu et al. [17] compensated the gaze biases
caused by head pose changes.

The requirement of large user-specific training datasets
(in other words, calibration) is an issue in appearance-
based methods. To reduce the burden of calibration,
Sugano et al. [18] proposed an automatic online calibration
technique under the assumption that the position selected by
PC users with the mouse was the correct PoG. However,
hundreds of individual samples were required to achieve
sufficient accuracy, and so an unknown user’s gaze cannot be
estimated instantly. Zhang et al. [9] collected the MPIIGaze
dataset, which contains a large number of images of laptop
users looking at on-screen markers in daily life. They trained
a CNN using the dataset, then achieved person- and head
pose-independent gaze estimation in the wild. However, the

computational cost of a CNN is very high and requires a
discrete GPU for real-time tracking. In addition, the targets
of previously proposed datasets [9], [19]–[22] considered PC
or tablet users; therefore, the area of the head position was
necessarily close to the camera, as explained in section II-B4.

2) MODEL-BASED METHODS
Model-based methods estimate gaze by fitting face and eye
models to the input image. As these methods use human
anatomical features such as faces and eyeballs, simple param-
eters can describe the gaze state without a large amount of
person-specific training data.

Early model-based methods [23], [24] estimate gaze direc-
tion from the shape of the iris, that are called ‘‘circle algo-
rithm.’’ An ellipse is fitted to the observed iris, and then the
gaze is estimated from the ellipse parameters. These methods
only work with an eye image; however, they require relatively
high-resolution eye images.

Later model-based approaches use 3D eyeball mod-
els [25], [26]. In these approaches, the gaze direction is
defined as the vector from the eyeball center to the iris center.
Kitagawa et al. [27] employed the eyeball model with eyelids,
but this requires manual annotation of the eye corners. The
authors in [28] used tracked facial feature points to estimate
3D gaze vectors; however, this requires accurately detected
eye corners and one-time calibration.

The advantage of model-based methods is that they con-
sider head pose changes more effectively than appearance-
based methods, because model-based methods often utilize
the head position and rotation information obtained from the
face image [29].

In [30], a tracker for 3D head pose, lips, eyebrows, and
irises was proposed. In [31], a method of combining the head
pose and eye location information to obtain enhanced gaze
estimation was proposed, but this requires calibration phases
to look at known targets.

One of the issues of model-based methods is the necessity
of a calibration process prior to tracking each individual user
in order to determine user-specific parameters such as the
accurate position of the eyeballs in the face. This limits many
potential uses. Yamazoe et al. [32] proposed an automatic cal-
ibration method to reduce the burden on users. This approach
optimizes the face and eyeball models by minimizing the
projected errors between model output and images through
hidden online calibration. It is remarkable that this method
does not require any special calibration action. However,
although short, the time required for the calibration limits the
applicability of this technique. In addition, the robustness to
head pose changes is not clear.

Cazzato et al. [33] proposed an instant calibration-free
gaze estimation method by generalizing the eyeball center
to 12 mm from the surface of the eye using an RGB-D sensor.
Although suitable for some situations, the necessity of the
depth sensor also limits the available scenes. The experiment
was conducted at 70 cm from the RGB-D sensor, but the gaze
estimation at farther distances was not verified.
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TABLE 1. Existing gaze datasets.

Baltrušaitis et al. [34] proposed OpenFace, an open source
tool for facial behavior analysis. This toolkit tracks facial
feature points and estimates gaze based on conditional local
neural fields (CLNF, [35]). OpenFace achieved a state-of-the-
art score using the MPIIGaze dataset, exceeding that of a
CNN appearance-based method [9]. Therefore, we compare
this approach with the proposed method in section V.

In general, model-based methods require high-resolution
images of faces and eyes, because the alignment accu-
racy of facial and eye feature points is important [9].
Consequently, some low-resolution conditions, such as head
positions distant from the camera, are challenging. Further-
more, the translational freedom of users relative to the camera
(i.e., the available head position range) is also important for
HCI applications, digital signage, and TV users. However,
the above-mentioned gaze estimation methods limit the user
head positions to being close to the camera (less than 1 m) or
restrict the user to a preset location using a chair.

3) GAZE ESTIMATION FOR DISTANT PERSONS
As described above, gaze estimation for remote distances
or large translational freedom has been challenging. The
methods described in [37] and [38] use head and body pose
information instead of iris tracking. The authors in [39] pre-
sented a two-camera system that detects the face from a fixed
wide-angle camera to estimate a rough location for the eye
region and another active pan-tilt-zoom camera to focus in on
this area. This method achieved gaze estimation for distant
users (approximately 4 m from the camera), however, pan-
tilt-zoom cameras cannot track multiple users at the same
time. In addition, users must look straight into the camera for
calibration; whether such behavior occurs in real applications
is unknown. In [40] and [41], an RGB-D sensor is employed
for head pose invariant gaze estimation of distant users.
The work of [40] proposed a geometric generative model to
avoid the critical feature tracking of geometric approaches,
which requires high-resolution images. Cazzato et al. [41]
proposed gaze estimation based only on head pose informa-
tion, under the assumption that the head pose can supply the
gaze direction. They tested several distances (70 cm, 150 cm,
and 250 cm from the camera), but did not clarify the available
width range.

4) EXISTING DATASETS
Gaze datasets, which contain images of participants looking
at known markers, are used for the training and evaluation
of gaze estimation methods. Because existing gaze datasets
were constructed for laptop or desktop PC users, the head
positions of participants are close to the camera, and there
is little variation in head translation. Table 1 summarizes the
existing datasets.

McMurrough et al. [36] collected gaze data with fixed head
positions. In [20], the heads of the participants are fixed on
a chin mount and images are captured from five different
camera positions. UT Multi-view [22] used eight cameras to
capture images of 50 participants, enabling the reconstruction
of 3D shapes of the eye regions. In these datasets, the heads
of participants are fixed, so there no variety in the head
positions.

EYEDIAP [21] used RGB and RGB-D (Kinect) sensors
to capture participants gazing at markers on the display
and floating objects under static and moving head motions.
MPIIGaze [9] contains the gazes of laptop users obtained
with high-resolution front-facing cameras under large illumi-
nation changes. Both EYEDIAP and MPIIGaze allow head
position and rotation changes, but the variations in translation
are small and close to the camera. The methods trained using
these gaze datasets are only applicable in the vicinity of the
camera.

III. DATASET
We propose RSGD (available online) to achieve uncon-
strained calibration-free gaze estimation across a wide area
using a monocular camera. The targets of the dataset include
TV and digital signage users. We collected 53180 images of
16 subjects (2 females and 14 males) looking at markers on
the display. In RSGD, head translations relative to the camera
are quite large. Three subjects wear glasses, and two change
their facial expression (laughing). All subjects look at the
markers with their natural head orientations. We train and
evaluate the proposed method based on this dataset.

A. DATA COLLECTION PROCEDURE
We used a 1.2 m×0.8 m television (55’’ diagonal) and a
Kinect v2 for data collection. The Kinect v2 was positioned
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centrally at the bottom of the TV. The Kinect v2 has an RGB
camera (1920×1080 pixels) and a depth sensor. In this study,
we only use color images from the Kinect v2 as input to
the proposed method. The Kinect v2 was used because it
has a cost-effective wide-angle color camera that is suitable
for capturing persons across a wide area. Depth data are
not used for training and prediction, but only to confirm the
distribution of head positions and for some evaluations.

FIGURE 1. Example of the circular marker and its movement.

To collect the data, subjects were asked to sit at an arbitrary
position in front of the TV and look at a circular marker
(3 cm diameter) displayed on the screen. Fig. 1 shows the
marker and its movement. This marker continuously moves
for 1 s and then stops for 3 s. During the 3 s stationary period,
the subjects are expected to look at the center of the marker.
The marker shrinks and expands during the stationary period
as an indication that the subjects should look at it. When the
marker is stationary, three pictures are taken, but no pictures
are taken while the marker is moving. The locations at which
the marker stops follow a uniform distribution. After 40 stop-
start cycles, the system temporarily stops capturing images
and shows the message ‘‘Please change position’’ on the TV.
The subject changes their sitting position freely, and pushes
a button to resume the image capture process. This procedure
is repeated for about one hour for each subject. Fig. 2 shows
some images from the dataset.

B. DATASET DETAILS
In this subsection, we describe the features of RSGD.

1) WIDE VARIETY OF HEAD POSITIONS
Previous datasets were designed for laptop or desktop PC
users, so the ranges of head positions were limited. As head
position changes affect PoG accuracy, evaluations should
consider a wide range of head positions. Fig. 3a shows the
distribution of head positions in RSGD. The range of head
positions in RSGD is -0.9–0.9 m in the X-axis and 0.5–2.5 m
in the Z-axis. This corresponds to the available angle from the
camera and covers the typical TV viewing area. In contrast,

FIGURE 2. Example images from RSGD.

FIGURE 3. Distribution of head positions for (a) RSGD and (b) MPIIGaze.

Fig. 3b shows the distribution of head positions in MPIIGaze
on the same scale as Fig. 3a. The range of head position in
MPIIGaze is -0.1–0.1 m in the X-axis and 0.3–0.8 m in the
Z-axis. From Fig. 3, it can be seen that RSGD has a wider
head position range than MPIIGaze.

The head positions denote the translation vectors in the
world coordinate system. The world coordinate system is
defined as a right-handed system with the origin at the center
of the camera.

Fig. 3 shows the distribution of head rotations for RSGD
andMPIIGaze. Both datasets have continuous head rotations.

2) LOW RESOLUTION OF EYE IMAGES
The resolution of eye images also affects the accuracy of gaze
estimation. To evaluate the effectiveness and robustness of
model-based methods in varied situations, testing with low-
resolution eye images is important. Fig. 5 shows examples
of eye images from RSGD and MPIIGaze. RSGD does not
contain illumination variations as large as those inMPIIGaze,
but has a greater variation of eye image resolutions. Here,
we define ‘‘eye resolution’’ as the pixel distance between
the inner and outer eye corners in the image, as shown in
Fig. 6. Fig. 7 shows the distributions of eye resolutions in both
datasets. RSGD contains more low-resolution eye images
than MPIIGaze.

IV. PoG ESTIMATION
This section explains the process of estimating PoG from an
input RGB image. The proposedmethod comprises head pose
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FIGURE 4. Distributions of head rotations for (a) RSGD and (b) MPIIGaze.

FIGURE 5. Example eye images from (a) RSGD and (b) MPIIGaze.

FIGURE 6. Definition of ‘‘Eye resolution’’ in this paper. The two white
points represent the inner and outer eye corners.

FIGURE 7. Two histograms to compare the distributions of eye resolution
in RSGD and MPIIGaze.

estimation, iris tracking, and PoG regression. First, from the
tracking result of facial feature points, we estimate the head
position t and rotation r. In addition, the left and right eyeball

FIGURE 8. System flow of the proposed method.

centers (el , er ) are estimated from t and r. Second, based on
(el , er ), iris tracking is performed in the eye region to estimate
the gaze directions (gl , gr ). Finally, PoG p is estimated from
t, r, gl , and gr by a regressor, which is trained using RSGD.
t, r, el , er , gl , gr are three-dimensional vectors in the world
coordinate system. The flow of the system is shown in Fig. 8.

A. HEAD POSE ESTIMATION
1) HEAD POSE IN WORLD COORDINATES
Because our aim is to achieve gaze estimation across a wide
space using a monocular camera, we estimate the 3D head
pose (t and r) from a 2D image. The head pose is calculated
from the tracking result of facial feature points. The tracking
of facial feature points is not the target of this study; therefore,
we use Baltrušaitis et al.’s OpenFace [34].
The point distribution model (PDM) of OpenFace follows

a model proposed in [42]. The PDM of OpenFace is noted
in [35], expressed by eq.1:

xi = aR2D(x̄i + Viq)+ (x, y)T , (1)

where xi = (xi, yi)T represents the ith projected facial feature
point in the image, and x̄i = (x̄i, ȳi, z̄i)T is the mean location
of the ith feature point in a facemodel space.Vi is a 3×m prin-
cipal component matrix and q is anm-dimensional coefficient
vector that represents facial deformation. R2D represents the
first two rows of the 3×3 face rotation matrix R, and a is the
face scale, which is the ratio of the face model space to the
image space. (x, y)T is a mean face coordinate in the image.

The head position t = (X ,Y ,Z ) is calculated from (a, x, y)
using a perspective transform as follows:

X = (x − cx)
1
fx
Z , (2)

Y = (y− cy)
1
fy
Z , (3)

Z =
fx
a
, (4)

where (fx, fy, cx, cy) represents the focal length and optical
centers of the camera. The head rotation r is the Euler angle
of the rotation represented by R.

2) EYEBALL CENTER IN IMAGE
In model-based gaze estimation, the gaze vector is defined
as the line through the center of the eyeball and the iris.
However, the center of the eyeball cannot be observed directly
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in an image. Thus, it must be estimated from the facial feature
points and the head pose.

FIGURE 9. Estimation of eyeball center position.

As shown in Fig. 9, the eyeball position is set to be 12 mm
from the center point of the inner and outer eye corners in the
opposite direction to face rotation. The length of 12 mm is the
average radius of an eyeball, as used in [33] and [40].

B. IRIS TRACKING
An overview of the iris tracking procedure is shown in Fig. 10.
Iris tracking is performed using a cropped eye image.

1) EYE IMAGE CROPPING
The purpose of this process is to obtain a stable eye image
from various head poses. The cropping process is as follows.
The image center is defined as (êlx , êly) and its cropping
size is defined as (ĥ × ŵ). Here, (êlx , êly) denotes the 2D
coordinates of the left eyeball center in the input image,
which is projected from el . We take (ĥ, ŵ) as (kra, 2kra),
where a is the face scale in eq. (1) and kr is a scaling factor
from the face scale a to the cropping width ŵ. Thus, ŵ is
double the distance between the inner and outer eye corners.
We determined empirically that kr = 23.45. After cropping,
the eye image is resized to 200 × 100 pixels using bilinear
interpolation. We call this resized eye image the cropped eye
image. The cropped eye image has u and t axes, as shown
in Fig. 11. The coordinates of the projected eyeball center in
the cropped eye image are denoted as (elu, elt ).
Iris tracking is composed of an initial template matching

and particle filter refinement.

2) INITIAL TEMPLATE MATCHING
Initial template matching is performed to determine the rough
iris position quickly. The template image is a black circle
of diameter 50 pixels, which is determined empirically. The
matching is performed using the normalized cross-correlation
method, and the result is (ubase, tbase), which represents the
coordinates of the detected iris center.

3) PARTICLE FILTER REFINEMENT
To obtain an accurate iris position, we use a particle filter.
Tracking is based on the eyemodel shown in Fig. 11. The state

FIGURE 10. Overview of the iris tracking process.

vector is defined as s = (φ, θ, d). Here, φ and θ represent the
yaw and pitch angle of eyeball rotation and d represents the
radius of the iris.

First, we generate random samples. For φ and θ , we add
Gaussian noise within a range of ±5◦ of the rough
eyeball rotation angle (θbase, φbase), which is calculated from
(ubase, tbase) following:

θbase = arcsin
(
−(tbase − clt )

R

)
, (5)

φbase = arcsin
(
−(ubase − clu)
R cos(θ)

)
. (6)

As for d , we add Gaussian noise within a range of
25 ± 2 pixels. As a result, 200 state vectors si = (θ i, φi, d i)
are generated. R represents the eyeball radius in the cropped
eye image. We determined empirically that R = 70 pixels.
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FIGURE 11. Eyeball model used in the proposed method. The relation
between an eyeball state s = (φ, θ,d ) and an ellipse shape in the
cropped eye image is o = (cu, ct ,h,w, λ).

Second, we spread the observation vector oi as a particle
based on the state vector si. oi = (ciu, c

i
t , h

i,wi, λi) is the
ith ellipse candidate in an eye image. Here, (ciu, c

i
t ) is the

ith center of the ellipse, (hi,wi) is the ith ellipse size, and
λi is the ith rotation angle. The relation between si and oi is
given by:

ciu = −R sin(φi) cos(θ i)+ elu, (7)

cit = −R sin(θ i)+ elt , (8)

hi = d i, (9)

wi = |d i cos(φi) cos(θ i)|, (10)

λi = arctan
(

sin(θ i)
cos(θ i) sin(φi)

)
. (11)

For each oi, a likelihood L(oi) is calculated as:

L(oi) =
∑
pj∈oi

m(pj)g(pj)q(pj), (12)

m(pj) =
√
du(pj)2 + dt (pj)2, (13)

g(pj) =
1

(∇im(pj)−∇md (pj))2 + 1
, (14)

∇im(pj) = arctan
(
dt (pj)
du(pj)

)
, (15)

∇md (pj) = arctan
(
t(pj+1)− t(pj)
u(pj+1)− u(pj)

)
, (16)

q(pj) =

1
(
|∇im(pj)| ≤ 45 or
|∇im(pj)− 180| ≤ 45

)
0.01 (otherwise),

(17)

where pj represents the jth of 120 points equally located
along the ellipse arc. du(pj) and dt (pj) are the u-direction

and t-direction differences of the pixel value at a point pj,
respectively. u(pj) and t(pj) are the u and t coordinates of pj.
m(pj) is the edge intensity at pj, and g(pj) is the similarity

of the gradient direction between the image and the model.
∇im(pj) denotes the gradient direction of the image at a point
pj, and ∇md (pj) denotes the gradient direction of the model
at a point pj. q(pj) denotes a weight that penalizes edge
directions pj that are approximately vertical, because such
edges are likely to be part of the eyelid, although we are
attempting to find the iris independently from the eyelid.
In other words, when the angle between the u-axis and the
edge direction at pj is less than or equal to 45◦, q(pj) takes a
value of 1; otherwise, it takes a value of 0.01. These numbers
were chosen empirically.

FIGURE 12. Example eye edges. Colored points represent sampled edges
that have high likelihood. The color (hue) denotes the edge gradient
direction and the brightness denotes the value of m(pj )g(pj )q(pj ).

In summary, the likelihood is high when many edges on
the ellipse candidate oi have strong intensity and similar
directions to the slope of oi. Some sample eye images and
edges are shown in Fig. 12. The large white circle represents
the projected contour of the 3D eyeball model. The set of pj

is shown as points on the edges. The set of points looks like
a curve because it is dense. The color (hue) of pj represents
the edge gradient direction and the brightness represents the
value of m(pj)g(pj)q(pj). As can be seen in the edge images
in Fig. 12, only the edges of the iris are properly sampled.

Finally, the maximum likelihood state s∗ = (φ∗, θ∗, d∗)
is obtained by taking the weighted mean of all particles. The
gaze direction g is obtained by:

g =

 gx
gy
gz

 =
 1 cos(θ∗) sin(φ∗)
1 sin(θ∗)
−1 cos(θ∗) cos(φ∗)

. (18)

Each eye gaze direction (gl , gr ) is obtained as described
above.

C. PoG REGRESSION
The head position t and the gaze directions (gl , gr ) were
estimated as described previously; thus, the gaze ray was
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obtained by adding t and (gl , gr ) geometrically. However,
experiments showed that the PoG results calculated by the
geometric method contained significant errors. The main
reason for the errors is an inaccuracy in the estimated eyeball
center positions el and er . Unlike the iris, that can be observed
directly in an image, the eyeball position must be estimated
from the head pose and face shape. However, biased errors
occur between the actual position of the eyeball center and
the estimated position according to the head pose because of
differences in face shapes among individuals. We discuss this
in section V-A.

To compensate for this error, we propose a PoG regressor
that uses the head pose (t, r) and the gaze directions (gl , gr )
as explanatory variables to estimate PoG as a set of objective
variables. We use gradient boosting regression trees (GBRT)
for training, as this technique can handle mixed data types
effectively. In addition, a decision tree method such as GBRT
is suitable because it can learn different regression coeffi-
cients according to the head pose.

V. EXPERIMENTS
We performed several experiments to evaluate the effective-
ness of the proposed method. All experiments were per-
formed using RSGD. The error was defined as the distance on
the TV screen [m] between the predicted PoG and the actual
marker position. Table 2 summarizes the methods compared
in the experiments.

TABLE 2. Methods compared in experiments.

To assess generalizability, we evaluated the training meth-
ods in a leave-one-person-out test, which uses one subject for
testing and the rest for training.

A. EFFECT OF TRAINING
In this subsection, we evaluate the effect of the PoG regressor
proposed in this study.

The previous model-based gaze estimation method [34]
outputs the head position t and the gaze directions gl and gr.
By combining these, the gaze vector gline can be calculated
geometrically as gline = t + l gl+gr2 (l is a parameter). If the
position and size of the TV is known in the world coordinate
system, the PoG on the TV can be obtained by calculating the
intersection of the gaze vector and the TV plane. We refer to
this as the [CLNF+Geometric] method.

The [CLNF+Training] method uses the head pose (t, r)
and the gaze direction (gl , gr ), similar to [CLNF+Geometric],
to predict the PoG using the regression model proposed
in section IV-C.

FIGURE 13. Distribution of markers and results of [CLNF+Geometric].

FIGURE 14. Two histograms showing the distributions of predicted PoGs
from (a) [CLNF+Geometric] and (b) [CLNF+Training].

FIGURE 15. RMSEs in horizontal direction, vertical direction, and overall.

Fig. 13 shows the marker positions displayed on the TV
as blue points, and shows the TV size as the red rect-
angle. The green points represent the PoG predicted by
[CLNF+Geometric]. Note that the horizontal and vertical
directions are the same in the real world. As can be seen
in Fig. 13, the PoGs obtained by [CLNF+Geometric] were
concentrated in the middle-bottom area of the TV. Fig. 14a
shows a histogram of predicted PoGs, which indicates that
the predicted PoGs lie in a very narrow range. The center
point of this range is (x, y) = (0.6 m, 0.87 m), which
corresponds to the installation point of the camera. This result
means that the predicted gaze vectors are concentrated in the
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FIGURE 16. Iris tracking results given by CLNF and the proposed method using RSGD.

camera position. Therefore, we infer that the predicted eye-
ball center positions in the image are consistently shifted from
their actual positions away from the center of the image.
In other words, biased shifts occur according to the head
poses.

Individual calibration is commonly used to optimize
geometric methods [32]; however, it is difficult to obtain a
precise result under a non-calibration condition. Employing
an RGB-D sensor helps to obtain accurate eyeball center
positions by generalizing the eyeball radius as 12 mm [33]
and calculating the eyeball center position from the face sur-
face. However, without depth information, accurate eyeball
positions cannot be estimated.

The main aim of the proposed PoG regression using
RSGD is to compensate for the error caused by the biased
shift of the predicted eyeball center according to the head
pose. Fig. 14b shows the histogram of the PoGs predicted
in [CLNF+Training], whose range corresponds to the TV
size. The root mean square error (RMSE) improved from
(x, y) = (0.38 m, 0.56 m) in [CLNF+Geometric] to (x, y) =
(0.30 m, 0.18 m) in [CLNF+Training].

Therefore, we believe that a decision tree-based ensemble
training method like GBRT is effective for calibration-free

FIGURE 17. RMSE of each subject from [CLNF+Training] and [Proposed].

gaze estimation across a wide range of head poses, because
it optimizes different regression coefficients according to the
head poses. However, [CLNF+Training] still exhibited large
PoG prediction errors because of the inaccuracy of iris track-
ing. In the next subsection, we demonstrate the improvement
given by the proposed iris tracking.
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B. COMPARISON OF IRIS TRACKING
To evaluate the proposed iris tracking accuracy, we com-
pared three iris tracking methods (CLNF [34], x-Sobel
edge [43], and the proposed method) with head pose estima-
tion using OpenFace and regression using GBRT. We refer to
each method as [CLNF+Training], [x-Sobel+Training], and
[Proposed], respectively. The CLNF method is used for com-
parison because it has achieved the state-of-the-art score in
gaze estimation, as mentioned in section II. In the x-Sobel
edge method [43], which is our previous technique, a parti-
cle filter is also used for iris tracking, but the likelihood is
calculated using only the edge intensity from the Sobel filter
output in the x-direction.

Fig. 15 shows the RMSE of each method in the
horizontal direction, vertical direction, and overall. The
total RMSEs of [CLNF+Training], [x-Sobel+Training], and
[Proposed] are 0.356 m, 0.256 m, and 0.239 m, respec-
tively. Thus, the proposed method demonstrates the highest
accuracy.

In the horizontal direction, in particular, the accuracy was
greatly improved. In many cases, the iris edges on the upper
and lower sides are covered by the eyelid, i.e., only the
edges on the left and right sides can be seen. The proposed
method samples 120 points on the iris ellipse arc and esti-
mates the gaze parameters from points that fit well with
the model. Therefore, we can estimate the yaw angle very
accurately from the limited left and right edges. In contrast,
[CLNF+Training] only uses eight sample points as patch
exports on the iris, so it is influenced by eyelid occlusion.

The CLNF-based method achieved a state-of-the-art score
using the MPIIGaze dataset. However, with RSGD, it could
not capture the features of the iris correctly because of noise,
eyelid occlusions, and low-resolution eye images.

Fig. 16 shows example images of iris tracking results given
by CLNF and the proposed method using RSGD. As can
be seen in the first row, CLNF failed to track the irises
in many frames because of the low-resolution of the eye
images in RSGD. However, the second row shows that the
proposed method tracked the irises properly, ignoring outlier
edges (e.g., shadow and eyelids). It only extracted iris edges
efficiently; thus, it was possible to track correctly under poor
conditions.

Fig. 17 shows the RMSEs of [CLNF+Training] and
[Proposed] for each subject. As can be seen, improvements
were confirmed for all subjects.

C. ROBUSTNESS AGAINST DISTANCE
When the distance of the user from the camera becomes
greater than around 1 m, model-based methods tend to fail
because the eye image resolution is insufficient for tracking.
To estimate the gaze in conditions where the eye image reso-
lution is relatively poor, Cazzato et al. [41] proposed amethod
for estimating the gaze from the head pose information alone.
Through a series of experiments, they demonstrated that the
errors in their method were comparable to those in other
state-of-the-art methods.

The proposed method also attempts to estimate the gaze of
persons who are far from the camera (up to 2.5 m), and uses
head pose information for the gaze estimation. Therefore,
there is concern that the gaze is estimated simply from the
head pose, and iris tracking does not have any meaning at this
distance. To confirm whether iris tracking is effective at this
distance, we compared the proposed method and a method
using only head pose information, which is referred to as
[Head]. In addition, we also compared [CLNF+Training].

FIGURE 18. RMSEs of [Head], [CLNF+Training], and [Proposed] in the
(a) horizontal and (b) vertical directions.

Fig. 18 shows the RMSE results at intervals of 0.3 m from
0.5–2.6 m from the camera. Fig. 18a shows the results in the
horizontal direction, and Fig. 18b shows those in the vertical
direction. The x-axis of the figures represents the distance
from the camera, and the y-axis represents the RMSE.

With respect to the vertical direction, at distances greater
than 1.5 m, the RMSE of each method is very similar. This
indicates that the iris tracking information is not effective at
this distance.
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TABLE 3. Comparison with other representative methods.

However, with respect to the horizontal direction, the
proposed method produced lower errors not only in the
vicinity of the camera but also at farther distances. It is
noteworthy that the iris tracking in [CLNF+Training] failed
above 1.5 m, and could not provide any further value. In con-
trast, the proposed iris tracking method remained effective
up to 2.5 m.

Using RSGD, we could not verify the maximum distance
at which the iris tracking is effective. In other words, we
could not verify the intersection of the blue line [Head]
and the orange line [Proposed]. However, Fig. 18a indicates
the possibility that the proposed iris tracking is effective at
distances greater than 2.5m, which is a very interesting result.

D. COMPARISON WITH OTHER
STATE-OF-THE-ART METHODS
In this subsection, we compare the proposed method with
other representative state-of-the-art gaze estimation methods
mentioned in section II. Table 3 summarizes the head pose-
free methods, together with information on the variety of
head positions, rotations, categories, reported errors, number
of subjects, and number of cameras. As the other methods
report the error in degrees, we converted our results from PoG
error [m] to [degrees], and list the mean absolute error and
standard deviation. The conversion used the cosine theorem
in the world coordinate system. We calculated the angle
between the predicted gaze vector and the vector from the
head position to the displayed marker position on the TV. For
this, we employed the head positions obtained from Kinect’s
depth measurements, which are more accurate than those of
OpenFace.

The appearance-based methods [9], [14], [18] give more
accurate results than the proposed method, but all ver-
ifications were performed in the vicinity of the camera
(less than 1 m). In addition, the head position translations in
the x-direction were very limited (less than 0.2 m). Therefore,
these methods have only been verified in a very small area.

Cazzato et al. [41] verified the accuracy of gaze estimation
at distances of 0.7 m, 1.5 m, and 2.5 m from the camera.
They divided subjects into three groups and performed a
comprehensive study [17]. Subjects in the first group were
familiar with the system and had experience of using it.
The second group was informed how the system works, but
had no experience with it. The subjects in the third group
were completely unaware of the system. According to this
classification, our experiment involved five subjects in the
second group and 11 subjects in the third group. Although
we could not confirm a significant difference between the two
groups using RSGD, we selected the results from the second
and third groups in [41] for comparison under the same
conditions (see Table 3). Although Cazzatos method requires
an RGB-D sensor, the accuracy of the proposed method is
similar in the vertical direction and higher in the horizontal
direction. This result is consistent with the results obtained
in section V-C.

Yamazoe et al. [44] estimated the gaze of subjects who
were 2.2 m away using only a monocular camera. They used
eye images of 30×15 pixels, similar to RSGD. However,
the subjects were in a fixed chair in the experiment, mean-
ing there was no variation in head positions. However, the
proposed method allows subjects to sit in a wide range of
arbitrary positions. In addition, the accuracy of the proposed
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method is higher than that reported in [44] in both the vertical
and horizontal directions.

As described above, other representative gaze estimation
methods restrict the user’s position to the vicinity of the
camera, to a preset location, or require additional hardware. In
contrast, the proposed method is applicable to arbitrary head
positions across a wide area using only a monocular camera.
Furthermore, the accuracy is equal to or higher than that of
conventional methods. Our method is a practical approach
for gaze estimation applications in digital signage and
smart TVs.

Regarding the processing speed, our system is imple-
mented by a single thread of the C++ environment, and the
frame rates are 20 fps at a resolution of 640×480 and 16 fps
at a resolution of 1920×1080 using an Intel Core i7 3.4 GHz
CPU. When implemented in a multi-thread environment,
30 fps can be achieved at both image resolutions. The pro-
cessing speeds reported in [41] and [44] are 30 fps and
10 fps, respectively. Although their input data and machine
specifications are different, out system works efficiently in
real time.

VI. CONCLUSION
Although gaze estimation has been extensively studied, pre-
vious methods have only targeted users that are close to the
camera. In this study, we achieved gaze estimation over a
wide variety of positions with respect to the camera without
calibration for each individual.

We provide two main contributions. The first is an iris
tracking method that is robust to low eye image resolutions
using dense particle sampling and improved likelihood eval-
uation. The second is RSGD, which contains a broader range
of head positions than existing datasets. Using this dataset to
train a regressor, we achieved gaze estimation in a room-scale
environment.

We proved that the proposed method is more accurate than
conventional methods using cross-validation, and showed
that our approach is less affected by the eye image resolu-
tion and distance from the camera. The proposed method
is applicable to arbitrary head positions in a wide space
using only a monocular camera. Furthermore, even across a
wide area, the accuracy is comparable to other state-of-the-
art methods. Thus, we have developed a practical method for
gaze estimation applications in digital signage and smart TVs.

In future work, we plan to verify the proposed method
in various illumination environments, such as outdoors, and
achieve gaze estimation at greater distances.
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