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ABSTRACT Elderly people care is a major challenge for the smart-cities of future. This represents a
valuable opportunity to develop scalable applications to cover the special needs in terms of health monitoring
and accessibility for people with cognitive impairments. In this paper, a complete system to support daily
activities of elderly people based on a multi-sensor scheme is presented. This system is intended to be
deployed not only at home, but also at crowded places, such as daily care centers. A multi-layer architecture
is drawn to ensure system modularity and interoperability of heterogeneous data with concurrent services.
The proposed system includes a set of algorithms for data gathering and processing to detect abnormal events
in the considered scenarios. The experiments performed in real scenarios have led to a good performance of
the algorithms proposed as well as high accuracy in event detection for both environments.

INDEX TERMS Abnormal behavior detection, healthcare, WSN, multi-modal fusion, depth sensors.

I. INTRODUCTION
The number of people living with dementia worldwide today
is estimated at 44 million, set to almost double by 2030 and
more than triple by 2050 [1]. Cognitive impairment, however,
is further deteriorated in individuals with other diseases, such
as Parkinson [2].

There is a growing interest in the employment of Informa-
tion and Communication Technologies (ICT) as a response to
the healthcare system requirements for aging people [3]–[5].
Most of the healthcare applications are mainly focused on
the active homes monitoring which represents a considerable
advance as the patients autonomy can be extended [3], [6].
Additionally, the multi-disciplinary health teams can obtain a
continuous vital signs and behavior tracking which yields to
appropriate diagnosis or treatment [8].

However, to guarantee the sustainability of these systems
subject to special needs of elderly in terms of accessibility
and mobility, several issues must be faced in organizational,
medical, stakeholders and infrastructural aspects [8], [9].

Furthermore, elder people activities must not be only con-
strained to home care, but it must be considered as part
of a global monitoring in their society [8], [10]. In this

sense, smart cities play a key role, as some activities can be
included within the range of services aiming for improving
the citizens’ quality of life [10]. The impact that healthcare
services for smart cities can have into population has been
quantified in up to 12 billion in 2020 [9]. In the context of
integral healthcare applications, multiple opportunities from
a research perspective arise.

In the recent years, advances in ICTs have allowed the
development of low-cost devices for monitoring complex
activities. As an example, camera deployments for peo-
ple tracking [11], Wireless Sensor Network (WSN) based
technologies permit non-intrusive monitoring [6]. Addi-
tionally, inclusion of e-health sensors in wearable devices
have increased the potential of full-time monitoring applica-
tions [16]. However, there exist several constrains associated
to each technology, such as occlusions and lighting changes
in camera-based systems; accuracy inwireless devices among
others [17]. To tackle these factors, an interesting alternative
is given by fusing the information from multiple sensors.

In this paper, a multi-modal sensor fusion scheme for
health monitoring is presented. This system considers the
medical, ethical and functional issues for data retrieving and
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synchronization in Parkinson Disease (PD) patients. Addi-
tionally, the system is intended to detect abnormal events
by the proper fusion of the measurements gathered from the
sensors. The system is able to detect several persons simulta-
neously and associate the data from the sensors considered to
an individual. This is a significant advantage of the proposed
system as it allows to extend the scope of detection and
tracking to multiple patients.

Several works have been presented for integrated health-
care using ICT-based solutions. A complete review of WSN
systems for healthcare applications is drawn in [5].Moreover,
traditional health monitoring systems rely on the use of vision
sensors [11]. Recently, implementation of depth sensors have
permitted to analyze body movements in a detailed man-
ner by the employment of interesting features such as the
joint skeleton detection [7]. Probably the most similar work
to the one presented here is [4]. In this paper, a complete
architecture for homecare monitoring is described. In this
architecture, information from infrared sensors, microphones
and depth cameras is centralized in a gateway for home-
care. However, the system presented in this work aims to
be modular as it is able to detect events even with partial
information. Furthermore, healthcare services are intended
to be deployed and work in several scenarios. The system
proposed is capable of monitoring several pedestrians and
individualize the events detected for analysis which is called
in this paper as person re-identification.

The main contributions of this paper are:
• A multi-sensor modular scheme for indoor people mon-
itoring.

• A set of modules for the implementation of tracking and
sensing functionalities for detection of abnormal events
in PD patients.

• A framework to associate measurements gathered from
diverse sensors to the corresponding person.

• Acollaborative system that allows the appropriate fusion
of multiple sensors.

The remainder of this paper is organized as follows: in
Section II, the general architecture of the proposed system
is outlined. Furthermore, in Section III and IV-A, the main
modules of the proposed system are presented. In Section V,
the methodological aspects of the experiments, as well as
setup and results of the described modules are drawn. Finally,
conclusions and future work are detailed in Section VI.

II. SYSTEM ARCHITECTURE
From a global perspective, the inclusion of healthcare sys-
tems into smart cities services must address several issues,
specially in terms of data privacy [5]. A robust codification
process must be performed in order to guarantee that patients
identity is preserved. Consequently, the overall architec-
ture of the proposed system is illustrated in Figure 1. This
architecture is mainly composed of a low level and a high
level subsystem. The former is mainly devoted to the data
acquisition and low level sensing whereas the latter is in
charge of the data processing and inference extraction. This

FIGURE 1. General architecture of healthcare systems and its integration
into smart cities services (High Level Subsystem).

modular architecture involves the physical implementation of
sensor systems in the places to be monitored. The aim of this
system is to be integrated into a smart city in a Software
as a Service (SaaS) distribution model [13]. Additionally,
the high level subsystem can access information from the
smart cities for decision-making procedures using a Platform
as a Service (PaaS) model [15].

The low level layer is formed by (a) the Data Acquisi-
tion and Processing (DAP) module, (b) the Data Synchro-
nization and Storage stage and (c) the Abnormal Behavior
Detection (ABD) module. DAP is responsible for the proper
acquisition and filtering of the information gathered from
diverse sensors. Further, Data Synchronization and Storage
stage aims to securely save data as well as synchronization
tasks for later processing. Finally, methods for the detection
of events associated to people with cognitive problems are
implemented in ABD. These methods rely on fused informa-
tion from the data gathered in previous modules.

The high level Subsystem consists of: (a) an Electronic
Health Record (EHR), (b) a Clinical Decision Support Sys-
tem (CDS) and (c) an authentication component. EHR is the
module where the medical related information is stored. CDS
contains the recommendation engine to support the decision
making of health professionals. Finally, the authentication
module endows the system with security layers by adding
headers to protect the identity of users. In next section,
details on the subsystems of the architecture are provided.
This work is part of a research project aiming to develop a
system to extend life autonomy of elderly people with Parkin-
son Disease. The experiments as methodological aspects
were defined in collaboration with the Asociación Parkinson
Madrid (APM).1 The novel concept of this paper is given

1Asociación Parkinson Madrid (APM) http://www.parkinsonmadrid.org
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TABLE 1. Data extracted from the selected devices. Zenith camera coverage depends on the lens employed. Kinect default resolution is 640 × 480 at
30 Frames Per Second (FPS).

by the low level Subsystem modules and functionalities for
PDs patients care as well as its implementation. Therefore
these aspects will be detailed whereas the high level modules
will be briefly addressed and reviewed in Future Work. The
remainder module of this architecture comprises user inter-
faces that are out of the scope of this paper.

III. LOW LEVEL SUBSYSTEM
The low level subsystem comprises the modules for data
acquisition and processing algorithms to extract the infor-
mation used for ABD. It is divided into three modules. The
first includes the data collection from diverse sensors and
devices in addition to some brief pre-processing tasks (DAP).
The second stage involves the data synchronization, label-
ing and storage. In the third stage, several processing algo-
rithms for synchronization, association and data fusion are
performed in two senses: (a) to reduce the amount of data sent
to higher layers by sending only processed information and
(b) to allow the system to make real-time decisions by con-
taining the whole set of algorithms that permit the extraction
of useful information from sensors. In a global overview,
the multi-sensor approach of the low level subsystem for
elderly people monitoring is presented in Figure 2.

FIGURE 2. Experiment setup for the multi-modal approach used in low
level subsystem. This proposal includes Kinect, Zenith camera, WSN and
eHealth bands.

A. DATA ACQUISITION AND PRE-PROCESSING (DAP)
The devices used in the system retrieve data from several
sensors to extract information about elderly people activity
and behavior. This data must be collected and stored before

applying processing algorithms to make inferences or gener-
ate alarms yielding to useful reports for the medical teams.
A high synchronization level is required to label and classify
the entire dataset. Sensors deployed over diverse scenarios
provide multiple data types, sampling rate, resolution and
accuracy. An overview of devices and features extracted is
depicted in Table 1. Specifically, the following sensors are
considered:

1) DEPTH SENSOR
Kinect camera V2 is a multi-sensor device developed by
Microsoft [19]. It is able to provide up to 30 frames
per seconds (fps) for several types of data formats as
described in Table 1. Both images and skeleton joint points
are labeled with the corresponding timestamps in the DAP
module in the same manner as other sensors. The 640× 480
resolution at 30 frames per second (fps) was chosen in the
scope of this project. Data retrieved from this sensor will be
employed for several behavioral (daily motion, etc. . . ) and
physical related problems (festination, freezing).

2) ZENITH CAMERA
Traditional vision sensors have played an important role in
general person detection and tracking applications. Addition-
ally, the use of special lens can increase the range of detec-
tion which represents an important advantage for large range
applications. In the scope of this work, a fish-eye camera by
Vivotek [12] with a 1280× 960 and a sampling of 15 fps will
be employed for both person identification and tracking.

3) WIRELESS SENSOR NETWORK (WSN)
A WSN consists of a group of self-organized sensing
nodes deployed across the area to be monitored. There
is a wide range of applications where these devices have
been used [5], [6]. According to Table 2, the main goal
of these devices is the daily tracking of PD patients. For
this purpose, a set v = {vi,λ | i = 1, . . . , I ; λ =
1, . . . , 3} of Access Points (AP) located at cartesian coor-
dinates pi = (xi, yi) ∈ R2 is defined. Furthermore, let
3 be the number of sensors that each node is equipped
with. In this work, two sensors from mentioned wire-
less technologies are considered: IEEE802.15.1/Bluetooth
v4.0 [21], IEEE802.15.4/XBee [22]. Network nodes are able
to obtain the Received Signal Strength Indicator, denoted
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TABLE 2. A range of abnormal events to be detected with the corresponding functions that must be implemented to reach it. In left column the sensors
involved in the multi-modal detection are described.

by RSSI , from the monitored target. Consequently, RSSIi,λ
describes the RSSI measurements gathered by node i using
technology λ.

4) HEALTH BRACELETS AND BELTS
Several smart devices were chosen for the testing pur-
poses. Firstly, a commercial health band, developed by
Microsoft, with a sampling rate of up to 45 samples per sec-
ond has been adopted [18]. This bracelet is equipped with
accelerometer, gyroscope, Galvanic Skin Response (GSR),
Heart Rate (HR), skin temperature sensor and bluetooth
transmitter. Furthermore, another commercial eHealth band
endowed with the aforementioned sensors and magnetometer
has been also adapted to the system [20]. Additionally, this
band is IEEE802.15.4 XBee/Zigbee compatible [22]. The
reason to evaluate both bands is to perform multiple tasks
taking advantage of the wireless monitoring capabilities that
WSNs are able to estimate.

In concrete, IEEE802.15.4 sampling rate is up to 30 mes-
sages per second. This information is gathered by the WSN
for position estimation. Moreover, sampling rate for Blue-
tooth RSSI extraction is 2 seconds. The DAP module is in
charge of receiving measurements from bracelets (to obtain
HR, temperature and GSR measurements) and the WSN
(RSSI from the nodes deployed). The measurements are
labeled with both timestamps from bracelet devices and local
synchronization of the gateway node where samples are
collected.

B. DATA SYNCHRONIZATION AND STORAGE
Because of the nature of sensors employed, a synchronization
stage is required in order to allow proper data treatment.
Accuracy of timestamps labeling guarantees the similarity
of measures to be analyzed. For this reason, this module
will simultaneously add the common timestamps to each
measurement. Additionally, the multiple sampling rates of
devices considered can yield to comparison errors. Therefore,
time-windows are created to process the data from multiple
sensors.

The first step is to quantify the delay introduced by every
sensor. Empirical experiments allowed to obtain the Zenith
delay by performing an action (e.g. applause) and calculating
the lag between the action realized and the processed times-
tamps (stored). 100 repetitions of this process yield as result
that the camera delay is 2.6 seconds.

Additionally, images from cameras (RGB) are processed to
extract the useful features and discarded to guarantee privacy
protection. Data extracted will remain stored until the ABD
access this information. Once data and events are forwarded
to the high level subsystem, the local information is deleted.

Moreover, in order to ensure data privacy, a policy for stor-
age in a non-human readable format is adopted. This policy
involves a serialization process into binary files. The subse-
quent module (ABD), will initially perform a de-serialization
task in order to extract the data.

Kinect delay depends on the move speed, therefore for
slow-motion events it can be neglected whereas for fast
moves, the delay is up to 200ms [40].

Finally, delays introduced in bluetooth transmission have
been extensively studied [42]. In concrete, for the devices
employed in this work, it has been proved to be 200 ms

The second step is to define a reference for synchroniza-
tion. In this work, the reference time-system is defined by
using the Kinect sensor frame rate. Accordingly, the samples
of all sensor devices must satisfy the following condition:

tsBi −
1
vfps
≤ tsKj < tsBi +

1
vfps

{
i = 1, . . . ,N ;
j = 0, . . . , 5;

where tsBi and tsKj denote the band and Kinect times-
tamp respectively. Furthermore, the vfps parameter refers to
the Kinect frame rate, which is obtained by counting the
number of frames per second to be processed. This condi-
tion is applied for inertial data of the N devices available
and the skeletons detected (in the range 0-5) by the depth
sensor.

Moreover, a smoothing filter is applied to the information
gathered from all sensors to minimize the impact of outliers
and some abnormal moves. In concrete, the well known
Butterworth filter is applied [41]. This is a low-pass filter that
aims to reduce high frequency variations.

C. ABNORMAL BEHAVIOR DETECTION (ABD)
In this section, the main activities to be detected as well as the
multi-sensor scheme and algorithms developed are described.
Firstly, it is important to highlight that this work is part of
a research project which aiming is to extend the autonomy
of elderly people with cognitive problems (see Acknowledg-
ments). Therefore, general activities such as daily motion
and fall detection are combined with specific targeted activ-
ities for people suffering from PD as shown in Table 2.
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Appropriate fusion of sensors involved will increase the accu-
racy of the ABD.

In the next subsections, details on the functions implemen-
tation as well as the ABD decision making will be provided.

1) DAILY MOTION
Based on data from previous modules, processing algorithms
are mainly focused on the fusion of sensors data to track PD
patients. Non-intrusive tracking is an emerging research topic
whose goal is to achieve the best accuracy in the final esti-
mation. In this project, three sensors for tracking algorithms
are considered using both wireless signals and cameras. The
first system uses WSN ability to obtain the RSSI parameter
from Bluetooth and XBee transmitters. By the application
of advance processing techniques it is possible to estimate
the position. The second system uses RGB image informa-
tion to track people based on the detection of movement
in the image. The third functionality is implemented by the
extraction of the joint skeleton positions and estimate the
orientation and position of the object sensed.

2) WIRELESS SENSOR NETWORK TRACKING
WSNs represent a valuable option for multiple-person posi-
tioning and tracking due to its ability to perform non-intrusive
detection and overcome the problem of visual occlusions.
Furthermore, WSN does not require additional hardware to
wireless transmitters for RSSI parameter detection. However,
the large variance of these measurements raises an important
challenge for the accurate estimation process. For the pro-
posed system, several nodes have been deployed along sce-
narios considered to gather the RSSI parameter from bracelets
IEEE802.15.1Bluetooth and IEEE802.15.4XBee devices.

Once the RSSI is collected by all nodes, the positioning
algorithm can be applied and afterward, a filtering stage to
smooth the estimation is carried out to calculate the final
trajectory. In a general statement, the algorithm is composed
by the following steps:
• Fingerprinting calibration. This technique performs an
initial RSSI dataset by collecting data from bracelet
wireless sensors at certain predefined locations. These
locations are obtained by splitting the room into several
cells [24]–[26].

• Fingerprinting Kernel density Estimation. This algo-
rithm selects the cell that fits better between the finger-
print dataset and the current measure [27]–[29].

• Orientation estimation. In this stage, the heading angle
to estimate the device orientation in the 360 degrees is
obtained [30].

• Velocity estimation. Fusing information from accelerom-
eters and positions estimated, the person velocity can be
achieved by using this algorithm [31].

• Particle Filter Tracking. Filtering of the estimated posi-
tions to determine the final trajectory applying a real
movement model [32].

Fingerprinting is a technique commonly used to charac-
terize the signal propagation for indoor environments [44].

Due to the hard conditions, reflection and obstacles, it is
difficult to fit the propagation attenuation into a valid model.
Fingerprinting tackles this problem by creating a RSSI
datasets which are obtained by splitting the scenario into a
set c = {pl | l = 1, . . . ,L} of cells with geometrical center
at pl = (xl, yl) ∈ R2 and collecting RSSI values for a
predefined period in each cell cl .

Moreover, taking into account the fingerprint dataset,
Kernel Density Estimation is applied to estimate a position in
the scenario. The algorithm employed in this work is called
Nadaraya– Watson Kernel Regression [29]. This algorithm
estimates the position by comparing the similarity degree of
the fingerprinting dataset with theWSNRSSI measurements.
The position p̂ is obtained by using the following equation:

p̂ =
N∑
c=1

wcpc (1)

where wc denotes the weights, with its corresponding cen-
ter position pc. These weights are obtained by using Gaussian
Kernel functions [28] as follows:

wc =
K
(

RSSI−E[RSSIc]
h

)
L∑
j=1

K
(
RSSI− E[RSSIj]

h

) (2)

where K (·) is the Kernel function employed, L is the num-
ber of total cells, RSSI is the vector containing the current
RSSI measures fromWSN, E[RSSI c] denotes the vector with
mean RSSI values from fingerprinting dataset and h is the
bandwidth parameter for the Kernel function used. Further
details as well as examples and public datasets of this process
can be found in [39]
Particle Filter is employed for tracking purposes by apply-

ing the following movement model:

xk = xk−1 + vxk cos(θ )dt

yk = yk−1 + vyk sin(θ )dt (3)

where pk = (xk , yk ), vxk and vyk denoted the x, y axis
velocity respectively, whereas θ represents the orientation.
To use this model, the mentioned parameters (x, y, θ and v)
must be previously estimated. The latter can be calculated
from accelerometer, gyroscope and magnetometer sensors.
The orientation angle for the movement model is known in
the same manner as the heading angle or yaw in navigation
and it can be obtained by applying the following equation:

θ = arctan
(
2q1q4 + q2q3
2q21 + 2q22 − 1

)
(4)

where qx are the values of the quaternion vector obtained
from accelerometer, gyroscope and magnetometer sensors
using Magdwick Filter [30]. This filter is able to fuse sensor
measures to calculate the quaternion vector that is a orienta-
tion representation using complex numbers.
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The other parameter needed is the velocity of themonitored
people. This information can be estimated using accelerom-
eter measurements. The three axis values can be fused into
a single value that provides information of the acceleration
behavior as a function over time:

a =
√
a2x + a2y + a2z (5)

Using an adaptive threshold peak detector algorithm [33],
the maximum and minimum peaks of this curve can
be obtained. In addition, Weinberg formula [31] can be
employed to calculate the step length of people walking.
With this information, the velocity by time interval is also
estimated as follows:

Step = v ∗ dt = K1
4
√
amax − amin (6)

where 0.3 < K1 < 0.7 is a constant value that depends
on the patient height, age and amax , amin are the maximum
and minimum values obtained from Equation (5). Once these
parameters are computed, the particle filter can be utilized
to iteratively estimate the position with a Kernel-based algo-
rithm. The particle filter adopts Monte Carlo methodology
to find the solution of filtering problems. The steps of the
mentioned algorithm are:
• Generate P random particles with a Gaussian distribu-
tion across the considered scenario.

• Predict the new state based on the movement model
selected (4).

• Calculate the weights according to the distance of the
particles to the prediction.

• Re-sampling particles.
• Estimate the new state for the system.
This algorithm will return the trajectory of individu-

als wearing bracelets around the room. The final estima-
tion presents high accuracy in terms of Minimum Squared
Error (MSE) in comparison to the real path. Further details
can be found in Section V.

3) ZENITH CAMERA TRACKING
Zenith cameras have gained relevance as suitable option for
large area tracking systems. The main advantage of these
devices is given by the comprehensive detection range as
they offer the widest-field-of-view possible. Computer vision
algorithms are employed to detect the movement on the frame
and decide whether the objects detected correspond to people
or not [34]. Moreover, a tracking algorithm is used over
these detected persons for trajectories estimation and finally,
the conversion of pixel images to real world coordinates is
carried out. The entire procedure for person detection and
tracking using Zenith cameras is described as follows:
• Camera calibration. This process is performed by using
a chessboard pattern to obtain the intrinsic, distortion
and extrinsic parameters of the camera chosen.

• Area calibration. Selection of several points on the floor
to get the parameters for the pixel to world coordinates
conversion.

• Histogram of Oriented Gradients training. In this stage,
the Algorithm training to detect people in the image is
carried out [34].

• Undistorted images. Procedure executed to eliminate
the omni-directional distortion effects introduced by the
360 degrees lens [35].

• Image movement detection. This algorithm is utilized for
background subtraction of the image; giving as a result
the possible motion objects in the image.

• Blob classification. Based on the probable motion
objects detected, applying this algorithm allows to verify
if this object is a person or not [34].

• Kalman Filter Tracking. Implement the well known
Kalman Filter tracking to persons detected along the
images collected [36].

• Detection Assignation. To allocate the most probable
distribution of trackers along the images.

• Pixels to real world coordinates conversion. Transform
the tracked pixels route to real world coordinates in the
reference system.

The entire process is drawn in Figure 3, where an image of
every step of the Zenith sensor is shown.
Camera Calibration: This process is required in case

the camera intrinsic and extrinsic parameters are unknown.
It consists in obtaining several images from a chessboard
pattern to detect the corners in different positions and orien-
tations. An example of the mentioned procedure is illustrated
in Figure 4. Harris corner detector is employed to extract the
points from the image and therefore to estimate the intrinsic,
distortion and extrinsic camera parameters using Zhengyou
Zhang calibration [43].

Once the camera calibration is performed, the area under
monitoring must be calibrated. This process allows to convert
from pixels to real spatial coordinates. To carry out this task,
several known points on the floor must be marked and a cam-
era image must be taken. The calibration algorithm consists
of selecting the pixel points where the real world coordinate
markers are.

The next step is to train the algorithm for people detection.
In this work, the Histogram of Oriented Gradients (HOG)
is chosen [34]. HOG algorithm is a feature descriptor that
counts occurrences of gradient orientation in localized por-
tions of an image. This algorithm relies on the training of
a Supported Vector Machine (SVM) with images of persons
across the area under monitoring. As a result, a hard decision
about the objects detected in the crop image as persons is
made.

In order to mitigate the effects of eye-fish lens, an algo-
rithm to obtain undistorted images is executed [35]. This
algorithm contains functions to compensate radial and tan-
gential image deformity by using a predefined distortion
model.

Subsequently, the Kalman Filter is applied to the per-
sons detected to obtain their optimal pixel position. In this
paper, the Kalman Filter works in combination with the
Munkres or Hungarian algorithm [37] for people track
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FIGURE 3. Description of the Zenith camera algorithm process. from left to right in top row: (1) Original eye-fish image. (2) Camera
calibration, (3) Area calibration. Bottom row, from left to right: (4) Background subtraction. (5) Blob classification. (6) Person
detection. (7) Person tracking.

FIGURE 4. Example of calibration images with chessboard pattern in
different positions and orientations.

assignment. The latter algorithm is responsible for the asso-
ciation of trackers detected in a certain frame with the ones
of the previous and subsequent ones based on pixel distance
between frames.

Finally, the conversion from pixels to real coordinates in a
common system for all the sensors considered is performed
by using the Perspective-n-Point formula. As a result, the real
3D coordinates are computed as follows:

s

uv
1

 =
fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


(7)

where s is a scale parameter and u, v are the 2D pro-
jections. On the right side of Equation (7), the first matrix
contains the intrinsic camera parameters: focal lengths fx , fy,
and optical center cx , cy matching the 2D pixels with the 3D
real world coordinates [X ,Y ,Z , 1]′. Furthermore, the second
matrix, comprises the rotation rxx and translation tx values
that change the coordinate reference to the desired system.

4) KINECT CAMERA TRACKING
Kinect camera incorporates three depth sensors and an algo-
rithm for skeleton detection. This algorithm can be used to
extract the person position in real 3D coordinates with respect
to the camera focus [38].

Furthermore, the calibration process of this device can be
performed by transforming the real coordinates [X ,Y ,Z ]′

from Equation (7) to the desired common system reference.
The process is summarized as follows:
• To get the calibration points an image is taken from
Kinect camera to the floor markers.

• Using the open SDK from Kinect [23] the real world
coordinates from camera coordinate system can be
obtained by each selected point in the calibration.

• To move the coordinate system to the common coor-
dinates, it is required to obtain the rotation matrix and
translation vector:xy

z

 = R

XY
Z

+ t (8)

Both, the rotation matrix and the translation vector are
obtained by applying a singular value decomposition (SVD)
over the selected points.

U , S,V = svd((A− A)′ ∗ (B− B)) (9)

R = V ∗ U ′ (10)

T = −R ∗ A
′
+ B
′

(11)

where A is a (n × 3) matrix with n denoting the number
of selected points and the column vector X ,Y ,Z contains
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FIGURE 5. Kinect procedures description. On the left, the calibration markers are drawn. On the right side, Joint skeleton detection is shown (yellow dots)
for a person walking.

FIGURE 6. Example of trajectories extraction from WSN (left), Kinect (center ) and Zenith camera (right). The red line shows the real path whereas the
green line represents the estimated path. The WSN estimation accuracy is lesser than the one obtained from cameras. However, WSN coverage area is the
largest of the sensors chosen. Finally, the Kinect range of detection constraints the potential applications. In the experiment, WSN is composed of
4 nodes located at the top corners of the room. Kinect sensor is located at 500, 300 in horizontal and vertical axis respectively and Zenith Camera is
located in the room center at ceiling.

the coordinates of the depth sensor. Moreover, B is a (n× 3)
matrix with the x, y, z coordinates of the selected points in the
reference coordinate system. A and B are the centroid values
of x, y, z for all selected points.

D. PERSON IDENTIFICATION AND MULTI-MODAL FUSION
ABD is a fundamental part of the proposed system since this
module is in charge of the data analysis to extract trajectories
from data sensors and make inferences about elderly people
actions. To reach such objective, a multi-modal scheme is
proposed to fuse the information shown in Table 2.
However, in order to combine the information from the

sensors, a previous identification stage must be performed.
The reason is that multiple factors such as target occlusions,
lighting changes, signal attenuation, reflections, among other
effects, affect the tracking algorithms yielding to estimation
errors. In fact, for scenarios such as the ones considered in this

work, affluence of several persons is assumed and therefore
a classification tool to associate the routes estimated with
the corresponding person is required. Furthermore, the iden-
tification task must be performed for each sensor which
implies that several matching levels from sensors data are
needed.

In this work three main inference levels are proposed:

• Track-to track comparison: using the trajectories from
Bracelets, Kinect camera and Zenith camera.

• Orientation comparison: based on heading estimation
from bracelets and estimated orientation from Kinect
and Zenith camera using the trajectories.

• Accelerometer measures comparison with wrist body
point from Kinect camera.

Because of the system modularity, the identification pro-
cess must be performed even if there is no data gathered
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FIGURE 7. Comparison of the estimated heading for bracelet and skeleton. The blue line is the raw data whereas the
orange line represents the signal filtered. The skeleton noise is higher than the bracelet due to two main factors:
(a) changes between 360 degrees and 0 are reflected in spite that variations are small; and (b) the short-term angle
variation in the skeleton joints is large.

from all sensors due to occlusions or coverage. Conversely,
if measurements from Bracelets, Kinect and Zenith cameras
are available, the three comparison methods can be applied to
associate the estimated trajectories to a person in the scene.

1) TRACK-TO-TRACK COMPARISON
Assuming that data gathered have been synchronized in the
previous stages of the low level subsystem, the goal of
the Track-to-Track procedure is to detect the routes with
the higher similarity. The metric employed is the Minimum
Square Error MSE along the route duration and can be
expressed as follows:

minimize t

subject to fi(x) ≤ t i = 1, . . . ,m. (12)

fi(x) =
1
M

M∑
j=1

√
(x ij − x

j
j )
2 + (yij − y

j
j)
2 (13)

where x, y are the axis coordinates of a predefined route,
m represents the number of routes in a scene (frame or bracelet
time interval).M is the number of trajectory points taken into
account in the estimation (corresponds to the time interval
where synchronization is performed). The cost Matrix can be
created with the MSE combinations between the mentioned
sensors. As an example, if Kinect estimates two trajectories
and Zenith camera three, the cost matrix is determined as:

C =
[
t11 t12 t13
t21 t22 t23

]
(14)

where every tij is obtained by solving the optimization
problem (12). In this paper,Munkres algorithm [37] is applied
to the matrix (14). If all conditions are satisfied, the final
assignment can be carried out and therefore link the trajec-
tories for a determined person.

2) ORIENTATION COMPARISON
Orientation comparison is proposed as second level of infer-
ence for person identification. Bracelets are equipped with
sensors that directly provide the heading orientation. More-
over, there are several techniques to obtain the orientation
based on the movements of the object tracked [38], [45].

The comparison will be performed using the metric
described in (12). However, the level of comparison in this
case is higher. The reason is that the orientation of the
bracelets is not absolute when these devices lack of mag-
netometer. Therefore, a comparison of the orientation with
the route rotated in the 360 degrees must be introduced in
this process. The filtering process of the obtained curves is
then executed to obtain theMSE. Analogously to the previous
inference level, Hungarian algorithm [37] is utilized for the
assignation process.

3) ACCELERATION COMPARISONS
The third inference level relies on the Bracelets accelerometer
and wrist acceleration from Kinect body joints.

The process consists of extracting the data from every
frame in Kinect raw. In concrete, wrist points (6,18 for
left and right wrist respectively) from skeleton body
must be compared to the acceleration values (ax, ay, az)
extracted from the bracelets. Depending on the technology
employed, the inertial measurements can include the gravity
force (expressed in g). Therefore, initial normalization pro-
cedure must be performed before Kinect body and bracelets
analysis. The association process can be then carried out as
described in previous inference levels.

4) MULTI-MODAL FUSION
Once the identification procedure is performed, the mea-
sures can be fused in a multi-modal scheme to improve the
accuracy of estimations. A fusion algorithm can be used to
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FIGURE 8. Details of high level subsystem modules and technologies integrated into a smart city
infrastructure.

achieve a high level of accuracy estimation using information
from cameras, WSN and bracelets. In this paper, Kalman
Sensor Group Fusion algorithm (KSFG) is employed [29].
This algorithm exploits the Kalman filter properties for multi-
sensor data fusion estimating a final x, y coordinates based
on several trajectories. In particular, for the case of the sensor
considered in this work, the filter has the following form:

H =


1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

 (15)

H is the state matrix for Kalman filter. Furthermore, R
matrix includes sensor error covariance measurements. These
values are appended to the main diagonal:

R =



σ 2
x1 0 0 0 0 0
0 σ 2

y1 0 0 0 0
0 0 σ 2

x2 0 0 0
0 0 0 σ 2

y2 0 0
0 0 0 0 σ 2

x3 0
0 0 0 0 0 σ 2

y3


(16)

Finally, the observations vector z collects the x and y
coordinates estimated from each sensor:

z =
[
x̂1, ŷ1, x̂2, ŷ2, x̂3, ŷ3

]′ (17)

As an output of the KSFG stage, a high accuracy daily motion
estimation is obtained.

IV. HIGH LEVEL SUBSYSTEM
A. SMART CITIES CONTEXT
As previously described in Section II, the high level sub-
system is intended to access information from the moni-
tored places and using data from the city in a (PaaS). The
reason to select this option is that it includes not only the
remote use of software (as in Software-as-a-Service) but a
complete application development and distribution platform
and therefore, a service providing remote utilization of cloud
computing.
This platform technique streamlines development by elim-

inating the need to customize the code to run on different plat-
forms. In this work, a proposal for the mentioned architecture
is presented in Figure 8. This platform relies on the use of an
open technology modules for specific back-end services. The
subsystem comprises the EHR, CDS and Authentication ser-
vices. The complete stack of services for eHealth systems is
described in [50]. Two security modules are considered in this
architecture. The AuthZForce GE provides an API to obtain
authorization decisions based on authorization policies, and
authorization requests from Policy Enforcement Point. The
API follows the REST architecture style, and complies with
XACML v3.0. XACML (eXtensible Access Control Markup
Language).
Moreover, Identity Management GE covers a number

of aspects involving users’ access to networks, services
and applications, including secure and private authen-
tication from users to devices, networks and services,
authorization and trust management, user profile man-
agement, privacy-preserving disposition of personal data,
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Single Sign-On (SSO) to service domains and Identity
Federation towards applications.

B. ELECTRONIC HEALTH RECORD (EHR)
The EHR is the collection of medical and behavioral data
of patients. Information such as Health annotations, medica-
tions, frequency of ABDs generation, information from sen-
sors (low level Subsystem) among others is stored in the EHR.
This data is used by the recommendation engines in CDS to
provide inferences to the related stakeholders. As a result,
General practitioners, Neurologists and Physicians will have
a more complete health status of the patient for appropriate
decision making about patients treatment.

There exist some extended standards for EHR (also
known as Virtual Medical Record) [47], [48]. However,
for the presented work, the Fast Healthcare Interoperability
Resources (FHIR) standard is adopted. The reason to choose
this standard is the interoperability between legacy health
care systems (as the low level Subsystem), making the pro-
cess of delivering the information to multiple stakeholders
simple. The FIHR API [48] implements the operations for
interaction with the medical information stored based on
a HTTP RESTful. This implementation is fully compatible
with the first-catalogue Generic Enable (GE) [49]. The main
advantage of this GE is that it allows the interoperability of
the modules developed with the Next Generation Services
Interface (NGSI).

C. CLINICAL DECISION SUPPORT (CDS)
There is a large list of proposed commercial and research
CDS systems which are continuously evolving by apply-
ing complex algorithms for the recommendation processes.
These systems have been classified into multiple groups:
• Machine Learning: These methods rely on known tech-
niques such as Neural Networks, Supported Vector
Machines. The goal is to train the algorithms to learn
from the data.

• Knowledge Based: These systems contain knowledge
modules that provide the rules for decision-making
based on the expertise of professionals.

• Graphical Representation: these methods allow the
visualization of data to verify the data behavior and
trends. The extraction of inferences is controlled by the
data evaluator

• Data Mining: This approach consists in analyzing the
data through linguistic techniques such as Natural Lan-
guage Processing (NLP) [46].

• Hybrid Approaches: These techniques employ several
of the aforementioned methods combined for decision-
making.

Themain advantage of the proposed system is that it allows
the integration of multiple data sources to provide recommen-
dations. In Table 3, data inputs are described, as well as some
initial outputs are outlined. External sources such as smart
city services (weather, traffic and environmental data) can
be used to increase the system Knowledge (e.g. avoid places

with large pollution, etc). The proposed platform to support
these services is based on Cosmos ecosystem. This GE is
intended to deploy means for analyzing both batch or/and
stream data to provide insights on such a data revealing new
information that was hidden. Batch data is stored in advance,
and latency is not extremely important when processing it.

V. EXPERIMENTAL RESULTS
A. METHODOLOGY
The methodological aspects of experiments described in this
work have been designed according to the project research
book.2 To summarize, the experiments were performed in
several sessions with a total of 18 patients. The control
group has been composed of elderly people without cognitive
problems (APM volunteers). Additionally, the experimen-
tal group was formed by patients that were classified into
three groups according to they the illness stage as: initial,
moderate or severe. Diverse aspects concerning gender bal-
ance as well as related diseases. This classification is of
particular interest for the high level subsystem. However,
for the physical detection of abnormalities it is neglected.
Furthermore, PD patients were informed on the procedure
as well as the type of data that was going to be collected.
However, participants were not notified neither hypothesis
nor expected results to ensure unbiasedness of their behaviors
and consequent of the results.

B. EXPERIMENTS AND RESULTS
The first experiment was intended to show the identification
and individualization process. It is important to highlight that
bracelet-result orientation is not absolute with regard to car-
dinal system, there exist a phase-change with regard to Kinect
orientation which is absolute with camera focus as origin. It is
drawn in Figure 7 where the vertical axis denotes orientation
moves (angles) over time for both bracelets andKinect sensor.
After calibration process, the orientation changes must be
similar in both cases.

The second experiment consists in abnormal events detec-
tion by the use of the bracelets as described in Section III. The
analysis of accelerometer measures from bracelets provide
information about strong changes in the movement. Gyro-
scope produces data about the velocity of turning (angular
speed). Therefore, falls events can be detected by the com-
bination of these two sensors as shown in Figure 9. In this
figure, at top image the raw measurements can be observed.
The left side figure is noisy, therefore a smoothing stage is
applied using a Butterworth filter on the right side. Moreover,
the bottom figure depicts how the skeleton is detected.

Furthermore, another abnormal events can be detected
by the proper combination of inertial and visual sensors.
In particular, in freezing event detection, the goal is to find
Freezing of Gait (FOG) [45] patterns in the time evolution
of accelerometer measurements. In Figure 10, a time-lag cor-
responding to a FOG is shown. Notice that for this purpose,
the signal from accelerometers must not be filtered.

2http://www.ict4life.eu
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TABLE 3. Data sources and outputs of the Clinical Decision Support System.

FIGURE 9. Example of fall detection module using fusion of sensors.
In top graph, accelerometer variations for fall inference are outlined.
In bottom, Kinect skeleton fall detection is drawn on the body.

In Figure 11, the location of the patient in the home is
shown for a day. The living room area was the area covered by
the whole set of sensors. The detection was mainly obtained
through theWSN (via bracelet). The accuracy of the detection
is high as the resolution is not so large (a room). Kinect and
Zenith camera were deployed in the living room.

Finally, numerical results of the activities detected by
the sensors separately are drawn in Table 4. Patients were
recorded while walking for around 1 minute. Additionally,
the improvements reached by the multi-modal fusion are
detailed. From top to bottom:

• A comparison of diverse position estimation methods
for WSN in a route across the room employed for
the experiments using fingerprinting technique. These

FIGURE 10. Accelerometer and Gyroscope data for freezing detection.
On the (right side), the Freezing of Gait is appreciated whereas on the
(left side), accelerometer data is noisy and therefore it can not be
observed.

FIGURE 11. Evolution of patient location within home over a 24-hour
period. The time the patient is outside is not monitored by the system.

values show the error in centimeters of the estimated
positions with respect to the real patient location. The
employment of Kernel functions reaches better estima-
tion results. The reason is that these functions attain a
better wireless signal propagation modeling than linear
functions.

• A comparison of tracking methods for position estima-
tion is shown. It can be observed the significant error
reduction by applying these techniques. The Kalman
filter mitigates the impact of outliers, specially for WSN
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TABLE 4. Algorithms Accuracy. Comparison of different positioning and tracking methods and the associated average error. Person identification success
percentage based on the number of person presented in the monitored room.

estimation, due to use of previous estimations reduces
the error of noisy measurements.

• Estimation accuracy for two methods in Kinect devices
is compared. There are two scenarios considered:
(a) 2D calibration: this method consists in use a fix
plane (e.g. vertical axis z = 0) for the calibration pro-
cess. (b) 3D calibration: This method employs points in
all coordinates. As it can be observed, the formermethod
results are better as the main interest is in obtaining
the patient position location in the room without the
particular interest of the patient height.

• Tracking accuracy of several methods using the zenith
camera (deployed at roof) is compared. The results
obtained by using Particle Filter improves the results
compared to the rest of mentioned methods. It is impor-
tant to highlight that the error is similar to the one
of Kinect sensor. However, for the sake of simplic-
ity, results are shown only for areas covered by all
sensors.

• Results of multi-modal process are drawn. On the left
column, the accuracy improvement for diverse sensor
configurations (ensuring modularity) fused is shown.
Finally, the identification process results for cases (up to
4 individuals in the scene simultaneously) are described.

From a technical perspective, the main limitation of the
presented system is given by the search of the best tradeoff
between coverage and accuracy of the sensors considered.
Kinect sensor has a high precision, however, the maximum
distance is around 4m and 120 degrees view. Furthermore,
WSN detection has a large coverage (up to 10m bluetooth
and 40m Xbee). Nonetheless, accuracy of estimations is
lower than Kinect and Zenith camera as shown in Table 4.
Finally, Zenith cameras have a wide coverage range (up to
20m), however, occlusions and angle distortion decrease the

tracking performance compared to the accuracy obtainedwith
the Kinect sensor.

Finally, conversely to tailored solutions for healthcare
monitoring which are generally expensive, most of the
devices composing the system presented are well known
and of general purpose. The Kinect sensor is available to
be acquired for around 150USD. Moreover, Zenith camera
employed in this work is around 250USD, and the bands
cost 100USD [20] and 250USD [18] respectively. There is
a wide range of WSN technologies and the prices are around
100USD. Finally, the Kinect sensor requires at least 1 USB
3.0 port and 8GB RAM.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a complete multi-modal scheme for elder peo-
ple monitoring was presented. The system architecture was
outlined as well as the main modules such as DAP, ABD
of the low level subsystem. The key concept presented in
this work is the multi-modal approach, which includes a set
of sensors deployed to detect abnormal events in scenarios
associated to PD patients. It has been shown that accuracy of
the estimations for the events considered is high as well as the
usefulness of this approach for multiple environments (e.g.
home, rehabilitation therapy). Results confirm the modular-
ity of the proposed system as the system performance was
good even when not all sensors were available. As a conclu-
sion, it has been demonstrated that the multi-modal approach
allows to improve the accuracy of locations estimated which
is of special interest for the PDs patients’ monitoring. Addi-
tionally, WSN in combination with the trajectories can be
used to detect anomalies such as the patients leaving the
house.

Moreover, the fusion of bracelet sensors and skeleton body
points allows to perform an activity analysis. The individu-
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alization process described in this paper endows the system
with a multi-user functionality which is interested for places
with concurrent patients such as daily centers. ABD module
permits to identify unexpected behaviors that might require
immediate attention. The time-line evolution of these events
will allow professionals to better understand the progress of
the illness and make the proper decisions.

As future work, several activities can be integrated to this
approach. As an example, an analysis of medical information
can be employed for the implementation of algorithms for
multi-modal Fusion and analysis. Additionally, action points
to fuse physical activities with subjective patients information
can increase the data available for the creation of inferences
in the CDS.
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